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Abstract

After just a few hundred training updates, a
standard probabilistic model for language gen-
eration has likely not yet learnt many seman-
tic or syntactic rules of natural language, mak-
ing it difficult to estimate the probability dis-
tribution over next tokens. Yet around this
point, these models have identified a simple,
loss-minimising behaviour: to output the uni-
gram distribution of the target training corpus.
The use of such a heuristic raises the ques-
tion: Can we initialise our models with this be-
haviour and save precious compute resources
and model capacity? Here we show that we
can effectively endow standard neural lan-
guage generation models with a separate mod-
ule that reflects unigram frequency statistics
as prior knowledge, simply by initialising the
bias term in a model’s final linear layer with
the log-unigram distribution. We use neural
machine translation as a test bed for this sim-
ple technique and observe that it: (i) improves
learning efficiency; (ii) achieves better over-
all performance; and perhaps most importantly
(iii) appears to disentangle strong frequency
effects by encouraging the model to specialise
in non-frequency-related aspects of language.

1 Introduction

Consider the structure of a number of core tasks
in natural language processing (NLP): predicting
the next word following a given context. What if
you did not understand the context – for example,
if you did not know the language? In the absence
of such knowledge, the optimal prediction would
be the language’s most frequent word. In fact,
optimally one would predict each word according
to its (unigram) frequency.1 This is precisely

∗Work done during internship at DeepMind.
1Notably, void of contextual clues, models of human lan-

guage processing (Morton, 1969) would default to similar
strategies. A word’s frequency also influences its age of ac-
quisition (Gilhooly and Logie, 1980; Morrison et al., 1997),
and the time taken to produce it in speech (Gerhand and
Barry, 1998; Zevin and Seidenberg, 2002).

Figure 1: Average per-token divergence of the model
from unigram, uniform, and empirical distributions
of respective training set as a function of training step
(log-scale). Early in training, the model output closely
matches the unigram distribution for all contexts.

the strategy that neural language models have
been empirically observed to employ during early
training stages (Chang and Bergen, 2022) – before
they have learnt a language’s syntax or semantics.

Although this strategy of predicting the uni-
gram distribution emerges early in training, it still
takes the model hundreds (or even thousands) of
parameter updates to learn it from a cold start
(see Fig. 1 or Chang and Bergen, 2022, Fig. 5).
Yet a straightforward factorisation of a language
model’s final linear layer shows that we can in fact
encode this frequency-related knowledge prior to
any optimisation,2 with the goal of bypassing this
early stage of learning: Concretely, this is done by
setting the bias term in a model’s final linear layer
to the log-unigram distribution of the training data.
Mathematically, this setup can be loosely inter-
preted as a modular “product of experts” (Hinton,
2002), where the bias term represents a simple un-
conditional distribution over the vocabulary, thus
allowing the input-dependent logits to specialise
in capturing contextual information. Indeed, we
argue that a more modular design that disentangles
word-frequency effects from contextual informa-
tion may be desirable, given the recently-observed
negative effects of word frequency statistics on
models’ generalisation abilities (Wei et al., 2021;

2The unigram distribution of the training data is known
before optimisation, as it is often computed when building
vocabularies or tokenising; hence this approach should come
at no extra cost.
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Puccetti et al., 2022; Rajaee and Pilehvar, 2022).
While this initialisation approach has been

historically used in language models (Mnih and
Hinton, 2007; Botha and Blunsom, 2014; Fang
et al., 2015, inter alia), it has not seen widespread
adoption within our current language generation
architectures – an observation we attribute to
uncertainty around whether the bias term auto-
matically specialises to capture frequency without
explicit encouragement to do so. We first observe
that this is not the case – in fact, the final-layer bias
term rarely changes from its random initialisation
(see App. A.6), suggesting frequency is encoded
elsewhere in the model parameters. We then em-
pirically explore the impact of this initialisation
on various aspects of model behaviour – within
the context of current Transformer models for ma-
chine translation – including overall performance,
learning efficiency, and the relationship between
model-assigned probability and word frequency.
We find this initialisation indeed leads to increased
training efficiency: models achieve higher BLEU

scores earlier on in training. More surprisingly, it
also leads to improved overall performance. We
discuss several potential reasons for these results,
including changes to training dynamics and a
mitigation of overfitting to surface statistics.

2 Probabilistic Language Generators

2.1 Preliminaries
We consider neural probabilistic models pθ for
language generation. While there are a vari-
ety of architectural choices that can be made,
most are autoregressive and follow a local-
normalisation scheme. Explicitly, given prior
context y<t

def
= ⟨y0, . . . , yt−1⟩, these models

output a probability distribution pθ(· | y<t) over
the next token y ∈ V def

= V ∪ {EOS}, where V is
the model’s predefined vocabulary and EOS is a
special end-of-sequence token. To ensure that pθ

provides a valid probability distribution, the out-
put of the model is projected onto the probability
simplex ∆|V|−1 using a softmax transformation
after a (learnt) linear projection layer:3

pθ(y |y<t) = softmax (Wϕ(y<t) + b)y (1)

def
=

eWy ϕ(y<t)+by

∑
y′∈V eWy′ ϕ(y<t)+by′

(2)

3While ϕ is also conditioned on a source sentence x in
the case of machine translation, we leave this implicit in our
equations for notational simplicity.

where W ∈ R|V|×d denotes a weight matrix, b ∈
R|V| a bias vector, and ϕ : V∗ → Rd the model’s
d-dimensional encoding for a given context.4

A number of prior studies have investigated
whether – and if so, at what stage during the learn-
ing process – NLP models learn various linguistic
phenomena (Alain and Bengio, 2017; Adi et al.,
2017, inter alia). Among the key findings are
that language models reflect the statistical tenden-
cies exhibited by their respective training corpora
(Takahashi and Tanaka-Ishii, 2017, 2019; Meis-
ter and Cotterell, 2021); some of which are learnt
early on in training (Liu et al., 2021). For example,
Chang and Bergen (2022) observe that, after only
∼ 1000 training updates, language models’ out-
puts are approximately equal to the unigram dis-
tribution, regardless of the context that they con-
dition on. We similarly observe this for machine
translation models (see Fig. 1).

2.2 A Natural Bias

These learning trends motivate trying to supply
language generation models with a natural start-
ing point: the unigram distribution. Fortunately,
this form of prior knowledge can be modularly
encoded in standard neural models using the bias
term of the final, pre-softmax linear layer. Con-
sider the standard operation for projecting the out-
put of the model onto the probability simplex.
Upon closer inspection, we see that eq. (2) has
an interpretation as the product of two probability
distributions, up to a normalisation constant:

pθ(· |y<t) ∝ eWϕ(y<t) · eb (3)

∝ pWϕ(· |y<t) · pb(·) (4)

i.e., one described by pWϕ(· |y<t) – which is con-
textual as it depends on the input y<t – and a sep-
arate, non-contextual term denoted by pb(·). Thus,
we can qualitatively view this setup as factoris-
ing the model’s prediction into these two compo-
nents.5 In this light, it makes intuitive sense that
pb should be the unigram distribution – a distribu-
tion which optimally predicts (w.r.t. negative log-
likelihood loss) the next-token when there is no
contextual information to condition on. Note that
such a setup – where a probability distribution is

4We index vectors and matrices using y, assuming an iso-
morphic mapping between y ∈ V and integers [1, . . . , |V|].

5Given this decomposition, one might expect that models
learn to use the bias term to encode frequency on their own.
Yet we do not find this to be the case empirically (App. A.6).
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modelled using a product of several simpler dis-
tributions, each of which can specialise on mod-
elling one aspect of the problem – is referred to as
a product of experts (Hinton, 2002).6

3 Related Work

As previously mentioned, prior work has likewise
taken advantage of the interpretation of the bias
term as a frequency offset when initialising model
parameters (Mnih and Hinton, 2007; Botha and
Blunsom, 2014; Fang et al., 2015, inter alia). Yet
such techniques have fallen to the wayside for a
number of years now, as other more prominent de-
terminants of model performance and training effi-
ciency have dominated the community’s attention.
We revisit this initialisation strategy in the context
of today’s neural language models.

The practice of directly incorporating unigram
probabilities into next-word predictions can be
likened to the back-off methods proposed in the
n-gram literature (Kneser and Ney, 1995; Chen
and Goodman, 1999).7 Indeed, there is an en-
tire class of methods built around learning de-
viations from some base reference distribution,
some of which have been employed specifically
for language modelling (Berger and Printz, 1998;
Teh, 2006; Grave et al., 2017). More recently, Li
et al. (2022) cast neural language modelling as the
learning of the residuals not captured by n-gram
models and Baziotis et al. (2020) use language
models as a reference distribution for training low
resource machine translation models.

Another class of prior work has similarly ex-
plored efficient strategies for model weight initial-
isation (Glorot and Bengio, 2010; Le et al., 2015;
Mu et al., 2018, inter alia), including random vari-
able choices and re-initialisation criterion. In a
similar vein, Ben Zaken et al. (2022) investigate
the usefulness of the bias term, albeit for efficient

6The comparison of mixtures and products of experts is
well summarised by the phrase: a single expert in a mixture
has the power to pass a bill while a single expert in a product
has the power to veto it. Each paradigm has its advantages.
Here, we argue that the latter is more suitable for language
modelling, as the mixture formulation presents the issue that
high-frequency tokens will be strongly “up-voted” by the
expert corresponding to the unigram distribution. As these
models already have a propensity to select high frequency
tokens, even in improper contexts (Wei et al., 2021), this is
arguably an undesirable trait.

7How to properly estimate the unigram distribution itself
is an important, but often overlooked, question. In our work,
we consider a predefined and finite vocabulary V; and esti-
mate probabilities using their frequency in a training corpus.
For a longer discussion on this see Nikkarinen et al. (2021).

Figure 2: Mean test BLEU for models with different
bias initialisations. Bars indicate standard error. Panes
are adjusted so that the y-axis spans at least 0.5 BLEU.

fine-tuning techniques. They show that, often,
modifying solely the bias parameters during fine-
tuning provides comparable performance to updat-
ing the entire model. Both our results thus show-
case the usefulness of this simple set of parameters
for natural language processing tasks.

Other works have also embraced frameworks
akin to product or mixture of experts in language
modelling or generation tasks. For example Neu-
big and Dyer (2016) combine neural and count-
based language models in a mixture of experts
paradigm; Artetxe et al. (2022) take advantage
of the mixture of experts structure to propose
a compute-efficient language modelling architec-
ture. In contrast, we suggest a simple initialisation
method that does not require training additional
models or major changes to model architectures.

4 Experiments

We explore the effects of the unigram bias ini-
tialisation strategy on neural machine translation
systems in comparison to a standard initialisation
technique: initialising the bias to all 0s (denoted
as

→
0 ) or omitting the bias term entirely.

4.1 Setup
We perform experiments with several language
pairs: WMT’14 German-to-English (De→En;
Bojar et al., 2014), IWSLT’14 German-to-
English (De↔En; Cettolo et al., 2012), and
Afrikaans/Rundi-to-English in the AfroMT
dataset (Run↔En and Af↔En; Reid et al., 2021).
These corpora span several language families
and different sizes to demonstrate performance
in higher, medium and lower resource domains
(∼ 4.5M, ∼ 750K and ∼ 150K sentence pairs,
respectively). All models use the standard Trans-
former encoder–decoder architecture (Vaswani
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et al., 2017), with 6 layers in both. The IWSLT
and AfroMT Run↔En models have 4 attention
heads per layer (adjusted for the smaller size
of these datasets) while all other models have 8
attention heads. Dropout is set to 0.1; the feedfor-
ward hidden dimension is set to 512 for the WMT
model and 256 for all other models. Parameter
estimation is performed using stochastic gradient-
descent techniques, with the standard maximum
likelihood objective and label smoothing (Szegedy
et al., 2015) with hyperparameter α = 0.1. We
use the Adam optimizer (Kingma and Ba, 2015)
with (β1, β2) = (0.9, 0.997). Early stopping was
performed during training, i.e., model parameters
were taken from the checkpoint with the best
validation set BLEU (Papineni et al., 2002).

We preprocess the data using subword tokeni-
sation with the SentencePiece library (Kudo and
Richardson, 2018)8 For initialisation, unigram fre-
quencies are computed on respective training sets
after tokenisation is performed. We do not hold
bias term parameters fixed during training, al-
though we found that they do not change per-
ceptibly from their values at initialisation, even
for the

→
0 -initialised model (App. A.6). The pro-

jection matrix W in the final linear layer is ini-
tialised element-wise using N (0, 1/

√
d), where d

is the embedding hidden dimension;the matrix is
then scaled such that the matrix ℓ2 norm is approx-
imately equal in magnitude to the bias ℓ2 norm.
Decoding is done with length-normalised beam
search with a beam size of 5, which was simi-
larly chosen based on validation BLEU scores. All
BLEU and chrF (Popović, 2015) scores are com-
puted using the sacreBLEU library (Post, 2018).

4.2 Results

We present main results here, and defer additional
experimental results that exhibit similar trends
(e.g., using chrF as the evaluation metric, or train-
ing on WMT) to App. A. We also explore several
extensions that build on the unigram initialisation,
albeit with mixed results; again, see App. A.

Performance. Fig. 2 presents mean test BLEU

scores with standard error estimates from 5 differ-
ent random seeds per dataset–intitialisation strat-
egy combination. On 5 out of the 6 datasets, the

8For WMT and IWSLT, we train joint SentencePiece
models with vocabulary sizes 32000 and 20480, respectively.
For AfroMT, we use the SentencePiece model provided with
the dataset: https://github.com/machelreid/afromt.

Figure 3: ALC of validation BLEU for the first 20k
training updates for each initialisation strategy. Models
initialised with the unigram distribution achieve higher
BLEU earlier on in training, even when those models do
not ultimately perform best (see Fig. 2).

unigram bias initialisation technique leads to com-
parable or better test set performance in compari-
son to standard bias term initialisation techniques.

Efficiency. In order to quantify training effi-
ciency, we estimate9 the area under the validation
BLEU learning curve (ALC) (Guyon et al., 2011;
Liu et al., 2020) for the first 20k training up-
dates;10 for the sake of interpretability, scores are
renormalised by the interval span. From Fig. 3, we
see that, on 5 out of the 6 datasets, higher BLEU

is achieved earlier on in training. Hence, the uni-
gram bias initialisation approach appears to reach
better performance in fewer iterations than stan-
dard initialisation approaches, which would be
beneficial in cases where training efficiency con-
siderations are paramount (e.g., in low-resource
languages or in compute-limited settings).

Analysis. The aim of this analysis is to inves-
tigate whether – and to what extent – the final-
layer bias unigram initialisation leaves the contex-
tual part of the network, pWϕ(· |y<t), to better cap-
ture non-frequency effects. To this end, we exam-
ine model-assigned log-probability as a function
of token frequency. In Fig. 4, we plot a token’s
unigram log-frequency against the average log-
probability assigned to it (when it is the ground-
truth token) by a model initialised with (left) a bias
term of

→
0and (right) a log-unigram bias term, bin-

ning them in equal-length intervals and averaging
them for clarity. In Fig. 4a, the full model param-
eters are used. In Fig. 4b, the bias terms are not

9Explicitly, we use the composite trapezoidal rule.
10Models converged after ∼ 50k updates. We look only

at the first 20k updates to focus on early training behaviours.
Full training behaviours were similar (see App. A.1).
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(a) Full model parameters used.

(b) Bias term removed.

Figure 4: Average log-probability assigned by the
model to a ground-truth token in the test set vs. the
log-unigram probability of that token in the training set
(IWSLT’14 De→En). Probabilities in upper row are
computed using all model parameters; in the lower row,
the bias term is dropped from the final linear projection.

added in the linear projection, i.e., only the con-
textual part of eq. (4), pWϕ(· |y<t), is computed.

The upward trend in average model-assigned
log-probability in Fig. 4a suggests that, in general,
models are better (or at least more confident) when
predicting more frequent tokens. This trend holds
when the bias term is omitted from the final linear
computation of the

→
0 -initialised model. Interest-

ingly though, when the bias term is omitted from
the unigram-initialised model, the trend appears
to reverse. This change suggests that for unigram-
initialised models, frequency may instead be
encoded in the bias term, providing evidence
that for these models, pWϕ(· | y<t) may indeed
specialise in non-frequency aspects of language.

5 Discussion

NLP models have been observed to overfit to sur-
face cues in their training data, impeding their
ability to generalise at inference time (Warstadt
et al., 2020; Wei et al., 2021). Thus, one could
argue that learning or encoding the superficial sta-
tistical tendencies of language is not necessarily a
good thing. Yet, empirical results suggest that it
may in fact be an important part of model learning
dynamics (see App. A.4, for example). Indeed,
Takahashi and Tanaka-Ishii (2019) find evidence
that more powerful language models have a natu-
ral bias for learning them. Here we ask if – when

initialising model parameters – we can explicitly
endow our models with prior knowledge about one
such statistical tendency: frequency.

While the result that this initialisation strategy
improves training efficiency is perhaps not sur-
prising, the relatively consistent improvement in
overall performance is. We offer two possible ex-
planations for this improvement. The first is that
this initialisation beneficially alters model learning
dynamics at the beginning of training, especially
as early learning dynamics can have an outsized
impact on final model performance (Achille et al.,
2019). A second possible explanation is that it
disentangles frequency in the modelling of contex-
tual probabilities. If pb (eq. (4)) explicitly models
the unigram distribution, then our model does not
need to capture this component of the conditional
distribution in its other parameters, which frees
up model capacity to focus on more complex
phenomena within natural language. Its success
thus motivates exploring the use of higher-order
statistical models, such as a bigram or trigram
model, in an attempt to further disentangle sur-
faces statistics from more nuanced components of
natural language in a modular fashion.

6 Conclusion and Future Work

In this work, we revisit a simple initialisation tech-
nique in the context of modern neural language
generation models: setting the bias term in the fi-
nal linear projection layer to the log-unigram dis-
tribution of (sub)words within the training corpus.
This strategy leads to more efficient training; per-
haps more surprisingly, it also leads to better over-
all performance in our machine translation exper-
iments. We offer analysis and discussion as to the
cause of these trends. An interesting direction for
future work could be determining the effects that
this initialisation procedure has on various model
properties, e.g., its embedding space, and its ben-
efits specifically in low-resource settings. Further-
more, extensions of this work could explore po-
tential uses of this strategy in the mitigation of
problems with lexically infrequent words, e.g., by
analysing via the decomposition in eq. (4) whether
a model’s probability estimate for a word is being
driven by frequency or contextual components. Fi-
nally, this technique is not limited to models of
distributions over strings; it is in fact applicable to
any neural classification setting, the exploration of
which is left to future work.
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8 Limitations

Perhaps the main limitation of this work is that
we only explore the approach within the con-
text of machine translation benchmarks, although
we conduct extensive experiments within this task
that cover different training data scales and di-
verse pairs of languages, including low-resource
ones. Nevertheless, we remark that the proposed
approach is entirely general-purpose, and can be
applied to any other language generation or even
any neural classification tasks. We leave it to fu-
ture work to investigate whether the same gains
would apply in those settings. Furthermore, we
have not yet explored how this technique would
interact with other modelling choices, such as dif-
ferent optimizers, training objectives, or subword
tokenisation algorithms. Lastly, our unigram ini-
tialisation of the bias term is currently done at the
level of subword units, which do not always corre-
spond to lexically or morphologically meaningful
linguistic units. We leave the extension of this ap-
proach to more meaningful linguistic units, such
as words or morphemes, to future work.

9 Ethical Considerations

We foresee no ethical issues that could arise from
the findings presented in this work.
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A Additional Experiments

A.1 Additional Training Trends

Figure 5: Validation BLEU over the course of training.
y-axis is on log-scale.

Figure 6: ALC scores for models over the full course
of training. All other experimental details are the same
as in Fig. 3.

Figure 7: BLEU scores on WMT’14 De→En. Setup is
the same as in Fig. 2.

Figure 8: ALC scores on WMT’14 De→En. Setup is
the same as in Fig. 3.

A.2 WMT Experiments

A.3 chrF Scores

Figure 9: chrF scores on test set for models in Fig. 2.
We observe the same trends.
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Figure 10: ALC scores using chrF as metric; again only
the first 20k steps are considered.

A.4 Regularising Away from the Unigram
Distribution

Prior work has suggested that models’ learning
of surface statistics, such as the unigram dis-
tribution, may harm their generalisation abilities
(Warstadt et al., 2020; Wei et al., 2021). Under this
premise, it seems feasible that the learning trends
observed in Fig. 1 could have downstream nega-
tive side-effects, e.g., the inappropriate preference
for higher frequency words observed in (Wei et al.,
2021). Given the importance of early stage train-
ing dynamics (Achille et al., 2019), it may even be
the root cause of such behaviour. In the effort to
test this hypothesis, we try to regularise a model’s
output away from the unigram distribution in early
stages of training. Specifically, we instead min-
imise the objective KL(p || pθ)−λKL(ω(p) || pθ)
for empirical distribution p and the unigram distri-
bution of this empirical distribution ω(p). λ is a
hyperparameter. We use this objective for the ini-
tial steps of training, then switching back to the
standard objective KL(p || pθ). In Fig. 11, we
observe that this form of regularisation leads to
worse (or equivalently performing) models by the
time of convergence. Results were similar when
evaluated on out-of-distribution data.

Figure 11: BLEU scores (in decimal format) when reg-
ularising away from the unigram distribution. “Regu-
larisation steps” indicates the point at which we change
back to the standard objective.

A.5 Out-of-Domain Performance

Figure 12: BLEU on out-of-domain test sets (WMT14
for IWSLT and vice-versa) by bias initialisation strate-
gies. Bars indicate standard error.

A.6 Change in Bias Term over Training

In Figs. 13 and 14, we see the divergence of the
bias term from the unigram distribution and the
magnitude of the bias term, respectively. Interest-
ingly, we see that neither value changes percep-
tibly from the time of initialisation onward, sug-
gesting the bias term itself does not change much
from its initialised value. This trend is consistent
across seeds and datasets.
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Figure 13: Divergence of the bias term (after softmax
is performed to map bias onto probability simplex)
from the unigram distribution of the respective train-
ing set for models trained on different data sets. Same
models as used in Fig. 3.

Figure 14: Magnitude of the bias term in models
trained on different data sets. Same models as used
in Fig. 3. Along with Fig. 13, these results suggest that
the bias term does not change much from its value at
parameter initialisation.

A.7 Initialisation with Bias Term from
Large-Scale Dataset

We additionally explore the effects of initialising
the bias term with the log-unigram distribution, as
estimated from a larger dataset in a more general
purpose domain. We hypothesise that this strat-
egy could be useful in low resource settings. We
find that this indeed improves the generalisation
performance of a model trained on IWSLT when
evaluated on an OOD dataset (see Fig. 16).

Figure 15: Results of best model checkpoint on vali-
dation set of respective datasets. Models are initialised
with a

→
0bias term, no bias term, or the log-unigram dis-

tribution of either the C4 English dataset (Raffel et al.,
2019) or the respective training dataset.

Figure 16: Results of best model checkpoint trained
on IWSLT and WMT (as specified in facet label) and
evaluated on (validation set of) out-of-domain datasets
(WMT for the IWSLT model and vice-versa). Models
are same as those in Fig. 15.
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