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Abstract

Compositional and domain generalization
present significant challenges in semantic pars-
ing, even for state-of-the-art semantic parsers
based on pre-trained language models (LMs).
In this study, we empirically investigate im-
proving an LM’s generalization in semantic
parsing with two simple techniques: at the to-
ken level, we introduce a token preprocessing
method to preserve the semantic boundaries
of tokens produced by LM tokenizers; at the
sequence level, we propose to use special to-
kens to mark the boundaries of components
aligned between input and output. Our exper-
imental results on two text-to-SQL semantic
parsing datasets show that our token prepro-
cessing, although simple, can substantially im-
prove the LM performance on both types of
generalization, and our component boundary
marking method is particularly helpful for com-
positional generalization.1

1 Introduction

Pre-trained language models (LMs)2 such as T5
(Raffel et al., 2020) have now been more and more
widely adopted for semantic parsing due to their
promising performance and straightforward archi-
tectures (Shaw et al., 2021; Scholak et al., 2021;
Yin et al., 2021; Qi et al., 2022; Xie et al., 2022;
Qiu et al., 2021). However, recent work revealed
that these LMs still struggle to generalize on out-
of-distribution (OOD) samples (Lake and Baroni,
2018; Keysers et al., 2019; Shaw et al., 2021; Qiu
et al., 2022b). For example, if a parser has learned
“how many heads are in the department” and “how
many people are older than 56”, it is expected to
generalize to “how many heads of the departments

1The source code for our implementation is available at
https://github.com/Dakingrai/ood-generalizatio
n-semantic-boundary-techniques.

2We use “LMs” to refer to a broad set of models that
are pre-trained in (masked/autoregressive) language modeling
objectives, with encoder-decoder or decoder-only architecture.

Token Preprocessing (applied to database schema)
Before: department_management | department :| id

, budget_in_billions , num_employees
After: department_management | department :| id

, budget _ in _ billions , num _ employees

Token Preprocessing (applied to SQL)
Before: select avg ( flight.price) where

flight.origin = ‘New York’
After: select average ( flight . price ) where

flight . origin = ‘New York’

Component Boundary Marking (applied to NL input and
SQL output)
Before: How many heads of the departments are older than

56 ?
select count (head.*) where head.age > 56

After: [sep0] How many heads of the departments
[/sep0] [sep1] are older than 56 ? [/sep1]
[sep0] select count (head.*) [/sep0] [sep1]
where head.age > 56 [/sep1]

Table 1: Our proposed techniques. Top: we preprocess
the text such that its T5 tokenization aligns with word
semantics. Coloring indicates tokenization; for example,
“avg” is converted into three tokens of “a”, “v” and “g”.
Bottom: we add separator tokens to mark the boundaries
of aligned semantic components in the input and output.

are older than 56”. Generalizing to such novel com-
ponent compositions is known as compositional
generalization. Additionally, generalizing to new
domains (e.g., from “entertainment” to “flight”) is
referred to as domain generalization.

In this paper, we investigate these two types
of generalization of LMs in text-to-SQL seman-
tic parsing, i.e., given a natural language (NL) in-
put and the database schema, producing a SQL
query that can be executed against the database
for desired output. We conduct experiments us-
ing the cross-database Spider benchmark (Yu et al.,
2018b) and its derivation Spider-CG (Gan et al.,
2022). Compared with existing benchmarks (Key-
sers et al., 2019; Lake and Baroni, 2018), this task
setting is both more realistic (e.g., containing larger
language variations) and more challenging (e.g., re-
quiring grounding to the database context).
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Although previous work tackling the two types
of generalization all requires non-trivial engineer-
ing effort (see Section 2), in this work, we present
two simple yet effective techniques, which are ex-
tremely easy to implement with LMs (Table 1).
Our techniques improve the generalization of LMs
by preserving the semantic boundaries at the token
and the sequence levels. At the token level, our
first technique rewrites the inputs to handle naming
conventions in database schemas and SQL queries
such that a pre-trained LM tokenizer can split them
into semantically meaningful tokens. At the se-
quence level, our second technique introduces spe-
cial tokens to mark the semantic boundaries (e.g.,
phrases) aligned between the source NL and the tar-
get SQL. These special tokens implicitly help the
LM-based parser build more precise input-output
correspondences that are crucial for compositional
generalization.

On five evaluation sets, the experimental results
based on T5-base show that, albeit simple, our
token-level technique dramatically improves both
types of LM generalization, and our sequence-level
technique is particularly helpful for compositional
generalization. Combining them together leads to
further improvements. Our additional experiments
further demonstrate the generalizability of our ap-
proaches (e.g., to text-to-LISP expression parsing
(Semantic Machines et al., 2020)).

2 Related Work

Text-to-SQL Semantic Parsing. This task has
received considerate attention since the creation of
the WikiSQL (Zhong et al., 2017) and Spider (Yu
et al., 2018b) datasets. While a large amount of
existing work designed specialized architectures
for this task (Yu et al., 2018a; Zhang et al., 2019;
Wang et al., 2020; Lin et al., 2020), there has been
a trend of directly fine-tuning pre-trained sequence-
to-sequence models as semantic parsers (Shaw
et al., 2021; Scholak et al., 2021; Xie et al., 2022;
Qi et al., 2022). Our work follows the same line and
proposed approaches to further improve the LM
performance. On the other hand, Guo et al. (2019);
Gan et al. (2021); Herzig et al. (2021) showed that
simplifying the SQL representation in a way that
the new representation can semantically better align
with the NL can dramatically improve the parsing
performance. In our work, we follow the NatSQL
representation (Gan et al., 2021) as it has better
alignments with the NL.

Injecting Priors into Semantic Parsers. Our two
techniques can be viewed as injecting human prior
knowledge into neural models for better general-
ization, which has been one of the major research
efforts on improving domain and compositional
generalization. The key consideration to be taken
when injecting priors is the trade-off between the
form and the generalizability. Strong priors in
the form of specialized model architectures (Shaw
et al., 2021; Herzig and Berant, 2021; Wang et al.,
2021) are either too expensive or not applicable
across domains. Weaker priors in terms of special-
ized training algorithms (Yin et al., 2021; Conklin
et al., 2021) are more general, but often weaker in
performance compared to other lines of methods.
Our work is in the spirit of the third line on the
use of data augmentation (Andreas, 2020; Akyürek
et al., 2020; Qiu et al., 2022a). However, instead of
synthesizing new data from scratch, we “annotate”
the data with semantic boundary markers, which is
not only much simpler but also brings better perfor-
mance. The final line of work (Qiu et al., 2022b;
Levy et al., 2022) is based on the learning capaci-
ties in the context of large LMs, which is out of the
scope of this work.

3 Methods

3.1 Token Preprocessing

Before preprocessing After preprocessing

Snake case in schema items (add space)
booking_status_code booking _ status _ code
document_type document _ type

Dot notation in column references (add space)
farm.cows farm . cows
origin.flight origin . flight

SQL keyword (expand spelling)
avg average
desc descending

Table 2: Three token preprocessing types. Coloring
indicates tokenization, same as Table 1.

We present our two techniques for improving
the generalization of LM-based semantic parsers.
LM pre-training learns high-quality contextualized
word representation (Devlin et al., 2019), but to ef-
fectively use it on a downstream task, the tokeniza-
tion needs to “make sense.” For example, if the text
“pet_age” is tokenized as “pet”, “_” and “age”, then
the semantics of “pet” and “age” acquired during
pretraining can be directly used. However, if it is
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Dataset Size Usage Generalization Type

SpiderT 7,000 Train None (in-distribution)
SpiderD 1,034 Eval Domain
CG-SUBT 20,686 Eval None (in-distribution)
CG-SUBD 2,883 Eval Domain
CG-APPT 18,793 Eval Composition
CG-APPD 3,237 Eval Domain & Composition

Table 3: Datasets in our experiments.

tokenized as “pe”, “t_a” and “ge”, then pre-training
is hardly useful because the model does not even
recognize the two semantic words.

Unfortunately, this latter case is very common
when tokenizing non-natural language texts, such
as database schemas and SQL queries. Thus, we
propose a token preprocessing method to induce
more natural tokenization by, at a high level, adding
white spaces and handling the naming conventions
in database schema and SQL queries. We show
examples in Table 2 and details in Appendix A.

3.2 Component Boundary Marking

At the sequence level, our second technique further
assists LMs in recognizing the semantic boundaries
of components aligned between input and output.
An example is shown in Table 1. While prior work
has attempted the goal via implementing alignment-
based attention supervision (Yin et al., 2021), we
propose to insert special tokens in input and out-
put to inject such bias. Specifically, we use pairs
of “[sepN]” and “[/sepN]”, N ∈ Z, to mark
the boundaries, so as to hint the LM that compo-
nents within the paired special tokens should be
aligned. In practice, we also observed cases where
an NL component has to be aligned with a SQL
component consisting of multiple non-continuous
segments. To handle it, we will apply the same
pair of special tokens to each segment of the same
component. An example is shown in Table 8 in the
Appendix.

Finally, we note that our method assumes the
availability of component annotations. Such anno-
tations can be obtained via human labeling (Gan
et al., 2021), heuristic rules (Yin et al., 2021), or
other advanced machine learning algorithms, but
this is beyond the scope of our work.

4 Experiments

4.1 Setup

Datasets. We use two datasets, Spider (Yu et al.,
2018b) and Spider-CG (Gan et al., 2022). Spider

consists of a training set (SpiderT ) and a develop-
ment set (SpiderD) with non-overlapping domains
but otherwise similar data characteristics (e.g.,
length). Thus, we train the models on SpiderT , and
consider SpiderD as the evaluation for domain gen-
eralization. Spider-CG is derived from Spider by
first dissecting each Spider instance into different
components according to its dependency parse and
generates data in two ways: substituting a compo-
nent in one instance with one from another instance
and appending one component from one instance
to another instance. Depending on whether the
instances come from the Spider training or devel-
opment set, we get four splits: CG-SUBT , CG-
SUBD, CG-APPT and CG-APPD, all of which are
only used for evaluation. The instances created
under substitution share similar data characteristics
while those under appending are much longer, so
a good model performance on the latter requires
compositional generalization. Table 3 summarizes
the dataset information. In addition, we use the
NatSQL representation (Gan et al., 2021) through-
out the experiment due to its better alignment with
the NL input.

Evaluation Metrics. We follow the standard Spi-
der benchmarking and employ two evaluation met-
rics. Exact Match (EM) compares the generated
and the ground-truth query by performing exact
set matching at the lexical level (Yu et al., 2018b).
Execution Match (EX) measures whether execut-
ing the generated query on the given database can
yield the same results as using the ground truth.
Notably, for a fair comparison with existing seman-
tic parsers on the Spider leader board, we follow
Gan et al. (2022), convert each generated NatSQL
query into a SQL query, and report the evaluation
results based on the converted SQL query.

Models, Baselines, and Implementation. We
evaluate our proposed techniques by applying them
to the pre-trained T5 model (Raffel et al., 2020).
Our experiments are conducted using T5-base, with
the use of database contents following Lin et al.
(2020). As our second technique leverages com-
ponent boundary labels to encourage the composi-
tional generalization of LM, we compare it with a
baseline (Yin et al., 2021) which similarly assumes
the labels but utilizes them in a more complicated
way, i.e., transforming the component alignments
into supervision on the cross attention between
input and output of the LM. We denote this base-
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Model SpiderD CG-SUBT CG-SUBD CG-APPT CG-APPD

EM EX EM EX EM EX EM EX EM EX
Semantic Parsers with Specialized Architectures (Gan et al., 2022)
RATSQLB(S) 71.9 - 91.0 - 72.6 - 79.8 - 61.5 -
RATSQLG(S) 74.5 - 91.4 - 76.7 - 82.5 - 68.3 -

Semantic Parsers based on LMs
T5-base 64.6 67.9 83.8 88.1 69.1 71.1 60.2 70.3 45.0 54.9
T5-base + Tok 71.8 75.6 85.9 89.5 74.1 78.6 65.2 73.8 54.2 65.9
T5-base + Comp 64.4 68.2 86.3 90.2 69.3 73.1 69.8 77.9 53.5 63.4
T5-base + Tok + Comp 69.4 73.2 86.6 90.7 76.6 79.8 71.1 77.8 61.0 69.4
T5-base + Tok + Attn. Sup 69.4 73.7 83.6 87.7 71.7 75.6 62.3 70.8 56.3 66.2

Table 4: Results (%) on different evaluation sets. Top: state-of-the-art model using specialized architecture; numbers
are collected from its paper and only EM is reported (code unavailable). Bottom: T5-base models with our proposed
or baseline techniques; we report the average performance of each model over three runs. Tok: token preprocessing.
Comp: component boundary marking. Attn. Sup: the attention supervision method of Yin et al. (2021).

line as Attn. Sup.3 For both methods, we lever-
age component annotations from Spider-SS (Gan
et al., 2022). These annotations were generated by
applying a syntactic parser to decompose the NL
question into sub-questions and then manually an-
notating their corresponding NatSQL components.
We also compare with the state-of-the-art models,
RATSQLB(S) and RATSQLG(S), from Gan et al.
(2022), although their models adopt a specialized
architecture (i.e., RATSQL (Wang et al., 2020)) and
RATSQLG(S) additionally employed task-specific
pre-training (Shi et al., 2021). Both models used
the same component annotations from Spider-SS.

Finally, for each of our model variants in Ta-
ble 4, we repeat the experiment three times, using
three random seeds consistently across all models,
and report the average results. We include more
implementation details in Appendix D.

4.2 Results

Main Results. We present our results in Table
4. First, all models obtain the best performance on
the in-distribution evaluation set CG-SUBT while
suffering from more than 10% performance drops
on others, confirming the challenges of the domain
and compositional generation. As expected, all
models have the worst performance on CG-APPD,
which requires both types of generalization. Be-
tween the two types, it is also observed that compo-
sitional generalization (as measured by CG-APPT )

3In our implementation, we apply the supervision to cross-
attention distribution averaged across all decoder layers and
heads. We also tried cross-attention from only the top decoder
layer, but the results are similar.

is more challenging than domain generalization (as
measured by SpiderD and CG-SUBD).

Second, our results show that the token prepro-
cessing method, albeit simple, can improve both
domain and compositional generalizations of LMs
dramatically. For example, comparing T5-base
with T5-base+Tok, the latter is improved by around
5-7% EM and 7% EX for domain generalization
(on SpiderD and CG-SUBD), 5% EM and 3.5% EX
for compositional generalization (on CG-SUBT ),
and 9% EM and 11% EX for the challenging case
when both types occur (on CG-APPD). Addition-
ally, we also show the effectiveness of token pre-
processing with T5-3B on SpiderD in App. B.

Moving on to our proposed component boundary
marking method, it shows to be particularly help-
ful for compositional generalization. Specifically,
applying it to T5-base leads to a 9% EM and 7%
EX increase on CG-APPT , and an 8% EM and 8%
EX increase on CG-APPD. On the in-distribution
evaluation set, this technique also gives slight im-
provement, whereas, for domain generalization,
there is no obvious impact from this technique.

Finally, augmenting T5-base with both tech-
niques (i.e., T5-base+Tok+Comp) leads to better
performance than applying each technique individ-
ually in most evaluation sets, implying that our
two techniques are complementary to each other.
Specifically, for in-distribution evaluation, using
each technique individually or both of them to-
gether yield similar results; for domain general-
ization, there is no additional gain from applying
component boundary marking on the top of the
token preprocessing; for compositional generaliza-
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tion, the two techniques together contribute the best
EM across all models and baselines. Overall, com-
bining the two techniques shrinks the performance
gap between in-distribution and domain OOD by
around 2-4% EM, composition OOD by 7%, and
joint OOD by 13%.
Compared with Special Architectures. De-
spite its simplicity, our T5-base+Tok+Comp model
achieves comparable or better performance than the
two RATSQL variants on CG-SUBD. It also per-
forms comparably to RATSQLB(S) on CG-APPD.

Compared with Attn. Sup. Surprisingly, the at-
tention supervision has only led to around 2% EM
and 1.5% EX gains on CG-APPD, while no further
advantage is observed on other evaluation sets. In
our conjecture, this is due to the misalignment be-
tween the objective of Attn. Sup (Yin et al., 2021)
and the attention mechanism of pre-trained LMs.
Specifically, Attn. Sup encourages the attention
distribution of different heads to be consistent with
the component alignment supervision. However,
prior work (Voita et al., 2019) suggests that differ-
ent attention heads of even the same layer may have
different functions and roles. Thus, when coarsely
defining the objective function, it may not allow for
the most effective supervision. Furthermore, simi-
lar to our finding, Yin et al. (2021) did not observe
performance gain when they applied Attn. Sup to
T5-base on CFQ (Keysers et al., 2020).

Qualitative Analysis on Tokenization. To qual-
itatively understand how our token preprocessing
helps the generalization, we randomly sampled 50
examples from the SpiderD to analyze how fre-
quently the T5 tokenizer divides tokens into less
meaningful subtokens. Consequently, we found
243 tokenization issues in total, and 140 of them
can be resolved by our token preprocessing. The
remaining cases are like splitting “id” into “i” and
“d” as shown in Table 1, which is beyond our scope.

Error Analysis on Component Boundary Mark-
ing. We manually examined 50 error predictions
from T5-base+Tok+Comp and contrasted them
with the errors of T5-base+Tok. Intriguingly, we
observed much more frequent schema items or
value hallucinations from the former. For exam-
ple, it may generate queries accessing non-existing
columns in a table, or misspells the literal values
in the queries. We conjecture that this is because
our component boundaries are only applied to the
NL input, not the database schema (note that literal
values are grounded and attached to schema items

Model Exact Match

COARSE2FINE + SS (Span-level Sup.) 47.4

T5-base 63.9
T5-base + Tok 65.1
T5-base + Tok + Comp 67.7

Table 5: Results (%) on SMCalFlow-Compositional
Skills dataset (16-shot setting). Top: Result from Yin
et al. (2021). Bottom: T5-base models with our pro-
posed or baseline techniques; we report the average
performance of each model over three runs.

in their input representations; see Appendix D for
details). This reveals a new challenge of LM gen-
eralization in text-to-SQL semantic parsing, i.e.,
how to properly handle the database schema when
injecting prior knowledge into LMs for composi-
tional generalization.

Generalizing to Other Semantic Parsing Tasks.
While our main focus in this work is on text-to-
SQL parsing, we also investigate whether our ap-
proaches can generalize beyond this specific task.
To this end, we implemented both of our techniques
to SMCalFlow-CS (Yin et al., 2021), a composi-
tional generalization dataset for text-to-LISP ex-
pression parsing (Semantic Machines et al., 2020).
For “+Comp”, We utilize the span-level alignments
heuristically derived by Yin et al. (2021) as com-
ponent annotations.4 Our results in Table 5 show
that: (1) Our token preprocessing can be univer-
sally helpful for LMs to model schema items, pred-
icates, etc., leading to 1.2% performance gain over
T5-base; (2) Our component boundary marking
method is highly effective for compositional gener-
alization, which offers 2.6% additional gain.

5 Conclusion

In this paper, we present two simple yet effective
techniques to improve the domain and composi-
tional generalization of LMs in text-to-SQL seman-
tic parsing. Our techniques aid LMs in preserving
the semantic boundaries of tokens and components
in their input and output. We also demonstrate
their potential to be generalized to other semantic
parsing tasks.

4Yin et al.’s approach requires knowing the ground-truth
LISP expression when deriving the component boundaries
for the input question. In our experiment, we assume the
availability of these question boundaries at test time and focus
on showcasing the potential of “Comp”, while automating this
question decomposition is left as future work.
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Limitations

Future work can further apply our approaches
to other semantic parsing tasks. For example,
for parsing texts to lambda-calculus expressions
for knowledge base question answering (Dong
and Lapata, 2016), one can similarly preprocess
the schema items (e.g., “department_time” into
“department _ time”) and typed values (e.g.,
“dallas:ci” into “dallas : ci”) for more mean-
ingful subword tokenization results. In addition,
our experiments are based on T5. To further verify
the effectiveness of our techniques, one can apply
them to other pre-trained language models such as
BART (Lewis et al., 2020) and GPT-2 (Radford
et al., 2019) as well.

Acknowledgments

We would like to thank all anonymous reviewers
for their constructive comments. We also thank Yu-
jian Gan and Xinyun Chen for their help in using
the NatSQL and the Spider-SS datasets, as well as
Pengcheng Yin for using the code base of Attn. Sup.
This project was supported by resources provided
by the Office of Research Computing at George
Mason University (https://orc.gmu.edu) and
funded in part by grants from the National Sci-
ence Foundation (Awards Number 1625039 and
2018631).

References
Ekin Akyürek, Afra Feyza Akyürek, and Jacob An-

dreas. 2020. Learning to recombine and resample
data for compositional generalization. arXiv preprint
arXiv:2010.03706.

Jacob Andreas. 2020. Good-enough compositional data
augmentation. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics, pages 7556–7566, Online. Association for
Computational Linguistics.

Henry Conklin, Bailin Wang, Kenny Smith, and Ivan
Titov. 2021. Meta-learning to compositionally gen-
eralize. In Proceedings of the 59th Annual Meet-
ing of the Association for Computational Linguistics
and the 11th International Joint Conference on Natu-
ral Language Processing (Volume 1: Long Papers),
pages 3322–3335, Online. Association for Computa-
tional Linguistics.

DeepSpeed. 2023. https://github.com/microsoft/deepspeed.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of

deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Li Dong and Mirella Lapata. 2016. Language to logical
form with neural attention. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
33–43, Berlin, Germany. Association for Computa-
tional Linguistics.

Yujian Gan, Xinyun Chen, Qiuping Huang, and
Matthew Purver. 2022. Measuring and improving
compositional generalization in text-to-SQL via com-
ponent alignment. In Findings of the Association for
Computational Linguistics: NAACL 2022, pages 831–
843, Seattle, United States. Association for Compu-
tational Linguistics.

Yujian Gan, Xinyun Chen, Jinxia Xie, Matthew Purver,
John R. Woodward, John Drake, and Qiaofu Zhang.
2021. Natural SQL: Making SQL easier to infer from
natural language specifications. In Findings of the
Association for Computational Linguistics: EMNLP
2021, pages 2030–2042, Punta Cana, Dominican Re-
public. Association for Computational Linguistics.

Jiaqi Guo, Zecheng Zhan, Yan Gao, Yan Xiao, Jian-
Guang Lou, Ting Liu, and Dongmei Zhang. 2019. To-
wards complex text-to-SQL in cross-domain database
with intermediate representation. In Proceedings of
the 57th Annual Meeting of the Association for Com-
putational Linguistics, pages 4524–4535, Florence,
Italy. Association for Computational Linguistics.

Jonathan Herzig and Jonathan Berant. 2021. Span-
based semantic parsing for compositional general-
ization. In Proceedings of the 59th Annual Meet-
ing of the Association for Computational Linguistics
and the 11th International Joint Conference on Natu-
ral Language Processing (Volume 1: Long Papers),
pages 908–921, Online. Association for Computa-
tional Linguistics.

Jonathan Herzig, Peter Shaw, Ming-Wei Chang, Kelvin
Guu, Panupong Pasupat, and Yuan Zhang. 2021. Un-
locking compositional generalization in pre-trained
models using intermediate representations. arXiv
preprint arXiv:2104.07478.

Daniel Keysers, Nathanael Schärli, Nathan Scales,
Hylke Buisman, Daniel Furrer, Sergii Kashubin,
Nikola Momchev, Danila Sinopalnikov, Lukasz
Stafiniak, Tibor Tihon, Dmitry Tsarkov, Xiao Wang,
Marc van Zee, and Olivier Bousquet. 2020. Measur-
ing compositional generalization: A comprehensive
method on realistic data. In International Conference
on Learning Representations.

Daniel Keysers, Nathanael Schärli, Nathan Scales,
Hylke Buisman, Daniel Furrer, Sergii Kashubin,

155

https://orc.gmu.edu
https://doi.org/10.18653/v1/2020.acl-main.676
https://doi.org/10.18653/v1/2020.acl-main.676
https://doi.org/10.18653/v1/2021.acl-long.258
https://doi.org/10.18653/v1/2021.acl-long.258
https://github.com/microsoft/deepspeed
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/P16-1004
https://doi.org/10.18653/v1/P16-1004
https://doi.org/10.18653/v1/2022.findings-naacl.62
https://doi.org/10.18653/v1/2022.findings-naacl.62
https://doi.org/10.18653/v1/2022.findings-naacl.62
https://doi.org/10.18653/v1/2021.findings-emnlp.174
https://doi.org/10.18653/v1/2021.findings-emnlp.174
https://doi.org/10.18653/v1/P19-1444
https://doi.org/10.18653/v1/P19-1444
https://doi.org/10.18653/v1/P19-1444
https://doi.org/10.18653/v1/2021.acl-long.74
https://doi.org/10.18653/v1/2021.acl-long.74
https://doi.org/10.18653/v1/2021.acl-long.74
https://openreview.net/forum?id=SygcCnNKwr
https://openreview.net/forum?id=SygcCnNKwr
https://openreview.net/forum?id=SygcCnNKwr


Nikola Momchev, Danila Sinopalnikov, Lukasz
Stafiniak, Tibor Tihon, et al. 2019. Measuring com-
positional generalization: A comprehensive method
on realistic data. arXiv preprint arXiv:1912.09713.

Brenden Lake and Marco Baroni. 2018. Generalization
without systematicity: On the compositional skills
of sequence-to-sequence recurrent networks. In Pro-
ceedings of the 35th International Conference on
Machine Learning, volume 80 of Proceedings of Ma-
chine Learning Research, pages 2873–2882. PMLR.

Itay Levy, Ben Bogin, and Jonathan Berant. 2022.
Diverse demonstrations improve in-context
compositional generalization. arXiv preprint
arXiv:2212.06800.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020.
BART: Denoising sequence-to-sequence pre-training
for natural language generation, translation, and com-
prehension. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 7871–7880, Online. Association for Computa-
tional Linguistics.

Xi Victoria Lin, Richard Socher, and Caiming Xiong.
2020. Bridging textual and tabular data for cross-
domain text-to-SQL semantic parsing. In Findings
of the Association for Computational Linguistics:
EMNLP 2020, pages 4870–4888, Online. Association
for Computational Linguistics.

Jiexing Qi, Jingyao Tang, Ziwei He, Xiangpeng Wan,
Chenghu Zhou, Xinbing Wang, Quanshi Zhang, and
Zhouhan Lin. 2022. Rasat: Integrating relational
structures into pretrained seq2seq model for text-to-
sql. arXiv preprint arXiv:2205.06983.

Linlu Qiu, Peter Shaw, Panupong Pasupat, Pawel
Nowak, Tal Linzen, Fei Sha, and Kristina Toutanova.
2022a. Improving compositional generalization with
latent structure and data augmentation. In Proceed-
ings of the 2022 Conference of the North Ameri-
can Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
4341–4362, Seattle, United States. Association for
Computational Linguistics.

Linlu Qiu, Peter Shaw, Panupong Pasupat,
Paweł Krzysztof Nowak, Tal Linzen, Fei Sha,
and Kristina Toutanova. 2021. Improving composi-
tional generalization with latent structure and data
augmentation. arXiv preprint arXiv:2112.07610.

Linlu Qiu, Peter Shaw, Panupong Pasupat, Tianze Shi,
Jonathan Herzig, Emily Pitler, Fei Sha, and Kristina
Toutanova. 2022b. Evaluating the impact of model
scale for compositional generalization in semantic
parsing. arXiv preprint arXiv:2205.12253.

Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, Peter J Liu, et al. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. J. Mach. Learn. Res., 21(140):1–67.

Torsten Scholak, Nathan Schucher, and Dzmitry Bah-
danau. 2021. PICARD: Parsing incrementally for
constrained auto-regressive decoding from language
models. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing,
pages 9895–9901, Online and Punta Cana, Domini-
can Republic. Association for Computational Lin-
guistics.

Semantic Machines, Jacob Andreas, John Bufe, David
Burkett, Charles Chen, Josh Clausman, Jean Craw-
ford, Kate Crim, Jordan DeLoach, Leah Dorner, Ja-
son Eisner, Hao Fang, Alan Guo, David Hall, Kristin
Hayes, Kellie Hill, Diana Ho, Wendy Iwaszuk, Sm-
riti Jha, Dan Klein, Jayant Krishnamurthy, Theo Lan-
man, Percy Liang, Christopher H. Lin, Ilya Lints-
bakh, Andy McGovern, Aleksandr Nisnevich, Adam
Pauls, Dmitrij Petters, Brent Read, Dan Roth, Subhro
Roy, Jesse Rusak, Beth Short, Div Slomin, Ben Sny-
der, Stephon Striplin, Yu Su, Zachary Tellman, Sam
Thomson, Andrei Vorobev, Izabela Witoszko, Jason
Wolfe, Abby Wray, Yuchen Zhang, and Alexander
Zotov. 2020. Task-oriented dialogue as dataflow syn-
thesis. Transactions of the Association for Computa-
tional Linguistics, 8:556–571.

Peter Shaw, Ming-Wei Chang, Panupong Pasupat, and
Kristina Toutanova. 2021. Compositional generaliza-
tion and natural language variation: Can a semantic
parsing approach handle both? In Proceedings of the
59th Annual Meeting of the Association for Compu-
tational Linguistics and the 11th International Joint
Conference on Natural Language Processing (Vol-
ume 1: Long Papers), pages 922–938, Online. Asso-
ciation for Computational Linguistics.

Peng Shi, Patrick Ng, Zhiguo Wang, Henghui Zhu,
Alexander Hanbo Li, Jun Wang, Cicero Nogueira
dos Santos, and Bing Xiang. 2021. Learning con-
textual representations for semantic parsing with
generation-augmented pre-training. In Proceedings
of the AAAI Conference on Artificial Intelligence,
volume 35, pages 13806–13814.

Elena Voita, David Talbot, Fedor Moiseev, Rico Sen-
nrich, and Ivan Titov. 2019. Analyzing multi-head
self-attention: Specialized heads do the heavy lift-
ing, the rest can be pruned. In Proceedings of the
57th Annual Meeting of the Association for Computa-
tional Linguistics, pages 5797–5808, Florence, Italy.
Association for Computational Linguistics.

Bailin Wang, Mirella Lapata, and Ivan Titov. 2021.
Structured reordering for modeling latent alignments
in sequence transduction. Advances in Neural Infor-
mation Processing Systems, 34:13378–13391.

Bailin Wang, Richard Shin, Xiaodong Liu, Oleksandr
Polozov, and Matthew Richardson. 2020. RAT-SQL:

156

https://proceedings.mlr.press/v80/lake18a.html
https://proceedings.mlr.press/v80/lake18a.html
https://proceedings.mlr.press/v80/lake18a.html
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.findings-emnlp.438
https://doi.org/10.18653/v1/2020.findings-emnlp.438
https://doi.org/10.18653/v1/2022.naacl-main.323
https://doi.org/10.18653/v1/2022.naacl-main.323
https://doi.org/10.18653/v1/2021.emnlp-main.779
https://doi.org/10.18653/v1/2021.emnlp-main.779
https://doi.org/10.18653/v1/2021.emnlp-main.779
https://doi.org/10.1162/tacl_a_00333
https://doi.org/10.1162/tacl_a_00333
https://doi.org/10.18653/v1/2021.acl-long.75
https://doi.org/10.18653/v1/2021.acl-long.75
https://doi.org/10.18653/v1/2021.acl-long.75
https://doi.org/10.18653/v1/P19-1580
https://doi.org/10.18653/v1/P19-1580
https://doi.org/10.18653/v1/P19-1580
https://doi.org/10.18653/v1/2020.acl-main.677


Relation-aware schema encoding and linking for text-
to-SQL parsers. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics, pages 7567–7578, Online. Association for
Computational Linguistics.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language processing.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38–45, Online. Association
for Computational Linguistics.

Tianbao Xie, Chen Henry Wu, Peng Shi, Ruiqi Zhong,
Torsten Scholak, Michihiro Yasunaga, Chien-Sheng
Wu, Ming Zhong, Pengcheng Yin, Sida I Wang,
et al. 2022. Unifiedskg: Unifying and multi-tasking
structured knowledge grounding with text-to-text lan-
guage models. arXiv preprint arXiv:2201.05966.

Pengcheng Yin, Hao Fang, Graham Neubig, Adam
Pauls, Emmanouil Antonios Platanios, Yu Su, Sam
Thomson, and Jacob Andreas. 2021. Compositional
generalization for neural semantic parsing via span-
level supervised attention. In Proceedings of the 2021
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 2810–2823, Online.
Association for Computational Linguistics.

Tao Yu, Michihiro Yasunaga, Kai Yang, Rui Zhang,
Dongxu Wang, Zifan Li, and Dragomir Radev. 2018a.
SyntaxSQLNet: Syntax tree networks for complex
and cross-domain text-to-SQL task. In Proceedings
of the 2018 Conference on Empirical Methods in Nat-
ural Language Processing, pages 1653–1663, Brus-
sels, Belgium. Association for Computational Lin-
guistics.

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga,
Dongxu Wang, Zifan Li, James Ma, Irene Li, Qingn-
ing Yao, Shanelle Roman, Zilin Zhang, and Dragomir
Radev. 2018b. Spider: A large-scale human-labeled
dataset for complex and cross-domain semantic pars-
ing and text-to-SQL task. In Proceedings of the 2018
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 3911–3921, Brussels, Bel-
gium. Association for Computational Linguistics.

Rui Zhang, Tao Yu, Heyang Er, Sungrok Shim, Eric
Xue, Xi Victoria Lin, Tianze Shi, Caiming Xiong,
Richard Socher, and Dragomir Radev. 2019. Editing-
based SQL query generation for cross-domain
context-dependent questions. In Proceedings of the
2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 5338–5349, Hong Kong,
China. Association for Computational Linguistics.

Victor Zhong, Caiming Xiong, and Richard Socher.
2017. Seq2sql: Generating structured queries from
natural language using reinforcement learning. arXiv
preprint arXiv:1709.00103.

A Token Preprocessing Details

We propose a simple token preprocessing method.
Instead of directly feeding the input to the subword
tokenizer, we introduce three preprocessing steps:
(1) For schema items in input and output, reversing
the snake case to the normal, e.g., “pet_age” to
“pet _ age”; (2) For any call of “Table.Column”,
splitting the tokens around the access operator “.”
(i.e., “Table . Column”); and (3) Replacing any
reserved words that cannot be properly handled
in NatSQL, e.g., “avg” to “average”. In practice,
we also handle formalism-specific special tokens,
e.g., adding the “less than” operator “<” to the
vocabulary of T5 tokenizer. While we showcase
our token preprocessing under text-to-SQL parsing,
the intuition can be generalized to other formalisms
(e.g., regex, λ-expression) easily.

In addition, we also check the issue of tokeniza-
tion in other popular LM tokenizers and found that
the tokenization issue is not specific to T5. Exam-
ples of bad tokenization from BERT (Devlin et al.,
2019) and GPT2 (Radford et al., 2019) tokeniz-
ers and after our token preprocessing are listed in
Table 6.

GPT2 Tokenizer
Before: student_enrolment_courses
After: student _ enrolment _ courses
Before: transcripts.transcript_date
After: transcripts . transcript _ date
Before: avg
After: average

BERT Tokenizer
Before: singer.NetWorthMillions
After: singer . Net Worth Millions
Before: avg
After: average
Before: asc
After: ascending

Table 6: Tokenization of snake case, camel case, and
token notation in BERT and GPT2 tokenizer. Coloring
indicates tokenization, same as Table 1.

B T5-3B Experiment

To assess the effectiveness of our token preprocess-
ing technique with larger LMs, we apply it to T5-
3B and evaluate the model on SpiderD. The results
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Model SpiderD
EM EX

T5-3B (w deepspeed) 73.2 77.4
T5-3B (w/o deepspeed) 76.0 79.8
T5-3B + Tok (w deepspeed) 74.4 78.7
T5-3B + Tok (w/o deepspeed) 77.4 80.9

Table 7: Results (%) on SpiderD when T5-3B(+Tok)
was trained with or without using deepspeed.

are shown in Table 7. Our results show that T5-
3B+Tok has a performance gain of 1.1%, indicating
that it is helpful for larger LMs as well. Addition-
ally, we also provide results with and without using
DeepSpeed (2023), a deep learning optimization
library that is used to train large models more effi-
ciently. Surprisingly, although DeepSpeed (2023)
helped us improve training speed, we found a per-
formance drop of around 2.1-2.2% EX while using
it. However, our token preprocessing consistently
leads to around 1.0% absolute performance gain.

C Component Boundary Marking Details

In Table 8, we present one more example of com-
ponent boundary marking. In this example, the NL
component “What is the most populace city” is
aligned with two non-continuous SQL segments,
“select city.Name, city.Population” and
“order by city.Population desc limit 1”.
To handle such cases, we apply the same pair of
special tokens “[sep0]” “[/sep0]” twice, one
for each segment.

Component Boundary Marking Example

Before: What is the most populace city that speaks English?
Select city.Name, city.Population where
countrylanguage.Language = “English” order
by city.Population desc limit 1

After: [sep0] What is the most populace city [/sep0] [sep1]
that speaks English? [/sep1]
[sep0] select city.Name , city.Population
[/sep0] [sep1] where countrylanguage.Language
= "English" [/sep1] [sep0] order by
city.Population desc limit 1 [/sep0]

Table 8: An example of component boundary marking
when an NL component aligns with non-continuous
segments in the SQL side. In this case, we apply the
special tokens for each segment.

D Implementation Details

Our experiments are conducted based on the pre-
trained T5 model. The input to T5 follows the same

format and order as Scholak et al. (2021) (except
our additional token preprocessing, if applied), i.e.,
“Question | Database 1 | Table 1: Column 1,
Column 2,...| Table 2: Column 1, Column
2...”. We also use the database contents as parts
of the input, following Lin et al. (2020). For ex-
ample, if the NL question mentions a literal value
(e.g., “New York”), the appearance of whom can be
found in the contents of a certain “Column 1” via
fuzzy string matching, then when we represent the
database schema, we will include it via “Database
1 | Table 1: Column 1 (New York), Column
2, ...”.

We fine-tune the T5-base LM that consists of
220 million parameters on NVIDIA A100 GPU for
10-12 hours. It was trained with a learning rate of
10−4 and batch size 16 for T5-base for a maximum
of 20K training steps. The model is evaluated on
SpiderD for every 1K training steps, and the best
checkpoint is selected based on the model EM on
SpiderD. In inference time, we perform simple
greedy decoding.

We use the PyTorch-Transformers library (Wolf
et al., 2020), which is a library for state-of-the-
art pre-trained models for NLP, to fine-tune our
models. Specifically, our code for fine-tuning T5-
base is adapted from PICARD’s implementation
(Scholak et al., 2021). Furthermore, we also use
DeepSpeed (2023) to fine-tune all of our T5-base
models.

Datasets. We used Spider (Yu et al., 2018b), Nat-
SQL (Gan et al., 2021), Spider-CG (Gan et al.,
2022), and SMCalFlow-CS (Yin et al., 2021) in
our work. They are under the license of CC BY-SA
4.0. Our use of these datasets is consistent with
their intended use, i.e., for scientific research. All
datasets are in English. They contain annotated NL
and SQL or NatSQL or LISP expression pairs from
the open domain.
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