
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics
Volume 2: Short Papers, pages 1433–1441

July 9-14, 2023 ©2023 Association for Computational Linguistics

Bring More Attention to Syntactic Symmetry
for Automatic Postediting of High-Quality Machine Translations

Baikjin Jung♢ Myungji Lee♡ Jong-Hyeok Lee♢♡ Yunsu Kim♢♡
♢Department of Computer Science and Engineering♡Graduate School of Artificial Intelligence

Pohang University of Science and Technology, Republic of Korea
{bjjung, mjlee7, jhlee, yunsu.kim}@postech.ac.kr

Abstract

Automatic postediting (APE) is an automated
process to refine a given machine translation
(MT). Recent findings present that existing
APE systems are not good at handling high-
quality MTs even for a language pair with
abundant data resources, English–German: the
better the given MT is, the harder it is to de-
cide what parts to edit and how to fix these
errors. One possible solution to this problem is
to instill deeper knowledge about the target lan-
guage into the model. Thus, we propose a lin-
guistically motivated method of regularization
that is expected to enhance APE models’ un-
derstanding of the target language: a loss func-
tion that encourages symmetric self-attention
on the given MT. Our analysis of experimental
results demonstrates that the proposed method
helps improving the state-of-the-art architec-
ture’s APE quality for high-quality MTs.

1 Introduction

Automatic postediting (APE) is an automated pro-
cess to transform a given machine translation (MT)
into a higher-quality text (Knight and Chander,
1994). Since 2015, Conference on Machine Trans-
lation (WMT) has been hosting an annual shared
task for APE, and most of the recently developed
APE systems are within the common framework
of representation learning using artificial neural
networks to learn postediting patterns from the
training data (Chatterjee et al., 2018, 2019, 2020;
Akhbardeh et al., 2021).

Since 2018, all participants in the shared task
have used Transformer-based models (Vaswani
et al., 2017), but recent findings of the shared
task (Chatterjee et al., 2018, 2019, 2020;
Akhbardeh et al., 2021) cast doubt on whether
Transformer-based APE models learn good general-
izations because such models’ APE quality appears
to be significantly affected by external factors such
as the source–target language pair, the qualitative
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Figure 1: A depiction of Doppelbaum (§2).

characteristics of the provided data, and the quality
of the given MT.

Especially, the good quality of the given MTs
has brought great difficulty in performing APE on
the WMT 2019 test data set: the better the given
MT is, the harder it is to decide what parts to edit
and how to correct these errors (Chatterjee et al.,
2018, 2019). The thing to notice is that this out-
come is not a question of data scarcity because the
language pair of this test data set, English–German,
is a language pair provided with abundant training,
validation, and test data. Also, it is not a question
of data heterogeneity, either: the domain of this test
data set, IT, shows a high degree of lexical repeti-
tion, which indicates that data sets in this domain
use the same small set of lexical items (Chatterjee
et al., 2018, 2019; Akhbardeh et al., 2021). Thus, it
would be a question of modeling, and one possible
solution is to implant deeper knowledge about the
target language into the model.

To this end, we propose a new method of regu-
larization that is expected to enhance Transformer-
based APE models’ understanding of German trans-
lations. Specifically, the proposed method is based
on Feldermodell (§2), an established linguistic
model, which implies the need for proper treatment
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of the underlying symmetry of German sentence
structures. To instill the idea of syntactic symme-
try into Transformer-based APE models, we intro-
duce a loss function that encourages symmetric
self-attention on the given MT. Based on experi-
mental results, we conduct a careful analysis and
conclude that the proposed method has a positive
effect on improving the state-of-the-art architec-
ture’s APE quality for high-quality MTs.

2 Linguistic Theory

In German linguistics, das topologische Satzmodell
(‘the topological sentence model’) or das Felder-
modell (‘the field model’) (Reis, 1980; Wöllstein,
2018; Höhle, 2019) describes how constituents of
a sentence are closely related even if they are far
apart from each other. Usually, Feldermodell di-
vides a clause into das Vorfeld (‘the prefield’; VF),
die linke Satzklammer (‘the left bracket’; LSK),
das Mittelfeld (‘the middlefield’; MF), die rechte
Satzklammer (‘the right bracket’; RSK), and das
Nachfeld (‘the postfield’; NF).

(1) [Heute VF] [ habe LSK] [ ich MF] [ gesehen

RSK] [ zufällig NF],
(2) [ [ dass LSK] [ du eine Tasse Kaffee MF] [

getrunken hast RSK] NF].
These parts are all interrelated; LSK and RSK

are a typical example: while the former holds a
finite verb or a complementizer, the latter holds
a past participle, an infinitive, and a particle. In
(1), VF holds “Heute” (‘today’); LSK holds “habe”
(‘have’); MF holds “ich” (‘I’); RSK holds “gesehen”
(‘seen’); and NF holds “zufällig” (‘by chance’). (2)
is an additional NF of (1) and includes its own LSK
holding “dass” (‘that’); MF holding “du eine Tasse
Kaffee” (‘you a cup of coffee’); and RSK holding
“getrunken hast” (‘drank’).

For such analyses, special tree structures such as
Doppelbaum (Wöllstein, 2018) (‘double tree’) can
be used, which is a bimodal tree (Fig. 1), where
two CP, C, IP, I, and VP subtrees are ‘symmetric’
with respect to V. We assume that this structural
symmetry is parameterized from the perspective,
not only of generative linguistics (Wöllstein, 2018;
Höhle, 2019), but also of a parametric model P ={Pθ ∣ θ ∈ Θ}, where Pθ and Θ are a probability
distribution and the parameter space, respectively.

Especially, if we look at APE in terms of
sequence-to-sequence learning (Sutskever et al.,

2014), the probability distribution of the output se-
quence (y1,⋯, yLy) is obtained in the following
manner:

Pθ(y1,⋯, yLy ∣ x1,⋯, xLx , z1,⋯, zLz)
= Ly∏

t=1Pθ(yt ∣ u, v, y1,⋯, yt−1),
where u and v are the representations of a source
text (x1,⋯, xLx) and its MT (z1,⋯, zLz), respec-
tively. In this process, we presume that the syntac-
tic symmetry of the target language affects the re-
sulting distribution Pθ; in other words, this syntac-
tic symmetry would be an inductive bias (Mitchell,
1980) that should be handled properly.

3 Methodology

We implement a multi-encoder Transformer model
consisting of the “Joint-Final” encoder and the
“Parallel” decoder, which is a state-of-the-art ar-
chitecture for APE (Shin et al., 2021), and conduct
a controlled experiment without concern for usage
of performance-centered tuning techniques. Specif-
ically, the Joint-Final encoder consists of a source-
text encoder and an MT encoder, which process the
given source text and MT, respectively. Based on
this baseline architecture, we propose a method to
encourage the MT encoder to perform symmetric
self-attention by minimizing the skewness of each
self-attention layer’s categorical distribution pself.

The used measure of skewness is

(µ̈3)i = ⎛⎜⎝
⌊Lz

2
⌋∑

j=1 pself[i, j] − Lz∑
j=⌈Lz

2
⌉+1

pself[i, j]⎞⎟⎠
2

,

for each token zi in the given MT (z1,⋯, zLz).
Accordingly, the basic cross-entropy loss LCE

is regularized by (µ̈3)i, resulting in a new loss
function

LDOPPELBAUM = LCE +E[α]E[µ̈3] + (1 − α),
where

E[α] = ∑B
b=1∑Lz

i=1 αb,i

B ×Lz

is the expected value of coefficients

αb,i = σ(W Tvb,i + β)
in the given minibatch, and

E[µ̈3] = ∑B
b=1∑N

n=1∑H
h=1∑Lz

i=1(µ̈3)b,n,h,i
B ×N ×H ×Lz

1434



is the expected value of (µ̈3)b,n,h,i. In addition,(1 − α) is an initial inducement to utilizing µ̈3. In
the equations above, σ is the sigmoid function, v
is the output of the final layer of the MT encoder,
W ∈ Rdmodel and β ∈ R are learned parameters, B is
the number of data examples, N is the number of
layers, and H is the number of heads.

4 Experiment

In the conducted experiment, all hyperparameters
are the same as those of Shin et al. (2021) except
the learning rate (Appendix A); we basically repro-
duce their experimental design.

DATA SETS SIZES

TRAINING
eSCAPE-NMT 5,065,187

WMT 2019 13,442

VALIDATION WMT 2019 1,000

TEST WMT 2019 1,023

Table 1: APE data sets used in the experiment. eSCAPE-
NMT is a cleansed subset of eSCAPE’s (Negri et al.,
2018) English–German-NMT set. The cleansing proce-
dure is a reproduction of Shin et al. (2021). The WMT
2019 data sets (Chatterjee et al., 2019) were released for
WMT 2018 but used also at WMT 2019.

Both the baseline model and the proposed model
are trained by using the training data sets and the
validation data set listed in Table 1; we first train
the models by using eSCAPE-NMT mixed with the
WMT 2019 training data in the ratio of 27 ∶ 1, and
then tune them by using the WMT 2019 training
data solely.

5 Results and Analysis

The result of automatic evaluation (Table 2) in-
dicates that the proposed model improves on the
baseline model in terms of BLEU (75.47) but does
not in terms of TER (16.54), which is unusual. Al-
though those measures have a strong correlation
overall (Fig. 2), the proposed model has more out-
liers, δBLEU (the value obtained by subtracting
a given MT’s BLEU from the postedited result’s
BLEU) of which is over 20, compared to the base-
line model; they must be the ones that bring the
improvement in BLEU.

Thus, we present an additional evaluation result
to further investigate this mismatch between TER
improvements and BLEU improvements: a rela-
tive frequency distribution of successes and fail-
ures in APE with regard to the TER difference

SYSTEMS
WMT 2019

TER↓ (σ) BLEU↑ (σ)

Given MT 16.84 (19.52) 74.73 (25.89)
Baseline 16.60 † (19.51) 75.11 † (26.21)

DOPPELBAUM 16.54 † (19.48) 75.47 †* (26.16)

Table 2: The results of automatic evaluation on the
WMT 2019 test data set. Baseline is the above-
mentioned baseline model (§3), and DOPPELBAUM is
the proposed model. Beside TER (Snover et al., 2006)
and BLEU (Papineni et al., 2002), their sentence-level
standard deviations (σ) are presented. In each column,
the figure implying the best performance is in bold. The
dagger symbols denote the proposed model’s quality im-
provement on the given MTs is statistically significant
(p ≤ 0.05). The asterisks denote the proposed model’s
performance improvement on the baseline model is sta-
tistically significant (p ≤ 0.05).
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Figure 2: The relationship between models’ sentence-
level TER improvements (−δTER; positive values de-
note decrease in TER) and sentence-level BLEU im-
provements (δBLEU; positive values denote increase in
BLEU) on those of the given MTs in the test data set.

between a given MT and each model’s output (Ta-
ble 3). Then, the mentioned outliers correspond
to PERF, which is the set of the cases where an
APE system succeeds in perfectly correcting the
given MT with one or more errors, considering that
the proposed model’s PERF has a µδBLEU (the av-
erage of sentence-level BLEU improvements) of
27.21. We see that the proposed model has sub-
stantially more PERF cases (5.87%) than the base-
line model (4.30%) and that because most of those
‘new’ (1.57pp) cases are results of nontrivial poste-
diting (Table 4), this increase in the proportion of
perfect postediting is valid evidence of the pro-
posed method’s effect on enhancing the baseline
model’s APE quality for high-quality MTs.
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SYSTEMS
MODIFIED INTACT

F1
RUIN DEGR EVEN IMPR PERF ACCE NEGL

Baseline
% 1.86 6.65 5.67 7.14 4.30 23.36 51.03

22.8µδBLEU −24.48 −13.51 0.50 9.22 27.23 0.00 0.00
σδBLEU 15.48 9.42 3.38 8.43 16.39 0.00 0.00

DOPPELBAUM
% 1.56 7.33 5.77 7.14 5.87 23.66 48.68

25.4µδBLEU −26.12 −11.72 −0.42 10.04 27.21 0.00 0.00
σδBLEU 16.09 9.16 3.82 8.69 16.37 0.00 0.00

Table 3: A relative frequency distribution containing the frequencies of the following groups (we compare the TER
of the given MT and that of the postedited result.): the cases where an APE system injects errors to an already
perfect MT (RUIN); both the given MT and the APE result are not perfect, but the former is better in terms of TER
(DEGR); both are not perfect and have the same TER although they are different from each other (EVEN); both are
not perfect, but the latter is better (IMPR); the given MT is not perfect whereas the APE result is (PERF); both are
perfect (ACCE); and lastly, even though the MT is not perfect, the APE system does not change anything (NEGL).
The calculation of the F1 score is based on two criteria: whether the given MT is perfect or not (for recall) and
whether the APE system edits the given MT or not (for precision). % is the proportion of the cases belonging to
each category, µδBLEU is the average of sentence-level BLEU improvements, and σδBLEU is their standard deviation.

TYPES OF APE NUMBERS

PERF

Linguistic

Nouns 5
Expressions 5
Agreement 3
Prepositions 2

Other
Punctuation 5
URLs 2
Noise Removal 2

Total 24

ACCE

Linguistic
Nouns 3
Expressions 2
Adjectives 1

Other Punctuation 2

Total 8

Table 4: Manual categorization of the cases where only
the proposed model produces a perfect translation. For
more information on the definitions of PERF and ACCE,
refer to Table 3. ‘Linguistic’ and ‘Other’ cases are re-
sults of nontrivial postediting and trivial postediting,
respectively. ‘Expressions’ means using appropriate de-
terminers, verb phrases, shortened forms of the definite
article, etc.. ‘Noise Removal’ means filtering out mean-
ingless tokens from the given MT. This categorization
was double-checked by a native German speaker.

In addition, in an actual example where only the
proposed model corrects the given MT perfectly
(Table 5), we observe that the proposed model suc-
cessfully captures the close relation between the
verb “enthält” (‘contains’) and its object so that
the correct form “Variablen” (‘variables’) is used.
Considering that the adverb phrase “zum Beispiel”

(‘for example’) in the given MT makes some dis-
tance between the verb and its object, it appears that
the proposed model integrates information from a
wider range of constituents than the baseline model;
hence the conclusion that the proposed method in-
stills Feldermodell’s idea of syntactic symmetry
into Transformer-based APE models and enhances
their understanding of German translations.

Another example (Table 6) suggests that the in-
crease in the proportion of ACCE (0.3pp), which is
the set of the cases where an APE system adopts the
given, already perfect MT, should be cautiously in-
terpreted. Although professional translators tend to
perform “only the necessary and sufficient correc-
tions" (Bojar et al., 2015), the validity of test data
created by professional translators, including the
WMT 2019 test data set, can also be disputable
because other native speakers might argue that
they can perform better postediting. For example,
some people may consider hyphenated compound
“Zoom-Werkzeug” (‘Zoom tool’) more natural than
closed compound “Zoomwerkzeug” (Table 6).

However, considering the big differences in the
proportion of NEGL (2.35pp), which is the set
of the cases where an APE system neglects to
postedit the given MT, and the F1 score (Table 3),
it appears that such a risk need not be consid-
ered in this analysis. Moreover, the proposed
model has fewer RUIN cases (1.56%), where it
injects errors to the given, already perfect MT,
than the baseline model (1.86%). Although the
proposed model has more DEGR cases (7.33%),
where it degrades the given MT, than the baseline
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CASE 1: PERF TER↓ BLEU↑

Source Text For example , the following function contains variables that are defined in
various block scopes .

Given MT
Die folgende Funktion enthält zum Beispiel Variable , die

in verschiedenen Codebereichen definiert sind .
6.67 80.03

Baseline
Die folgende Funktion enthält zum Beispiel Variable , die

in verschiedenen Codebereichen definiert sind .
6.67 80.03

DOPPELBAUM
Die folgende Funktion enthält zum Beispiel Variablen , die

in verschiedenen Codebereichen definiert sind .
0.00 100.00

Manual Postediting Die folgende Funktion enthält zum Beispiel Variablen , die in
verschiedenen Codebereichen definiert sind .

Table 5: A case where only the proposed model corrects the given MT perfectly. Considering the manually
postedited result, wrong words in the given MT, the APE result of the baseline model, and that of the proposed
model are highlighted in pink while correct words are highlighted in green. All the texts are tokenized or detokenized
using Moses (Koehn et al., 2007).

CASE 2: ACCE TER↓ BLEU↑

Source Text Double-click the Zoom tool .

Given MT Doppelklicken Sie auf das Zoomwerkzeug . 0.00 100.00

Baseline Doppelklicken Sie auf das Zoom-Werkzeug . 16.67 53.73

DOPPELBAUM Doppelklicken Sie auf das Zoomwerkzeug . 0.00 100.00

Manual Postediting Doppelklicken Sie auf das Zoomwerkzeug .

Table 6: A case where only the proposed model adopts the given, already perfect MT. Details are the same as in
Table 5.

(6.65%), the proposed model’s quality degradation
µδBLEU = −11.72 is less severe than that of the
baseline (µδBLEU = −13.51). Therefore, we con-
clude that the proposed method results in small but
certain improvements.

6 Conclusion

To improve the APE quality for high-quality MTs,
we propose a linguistically motivated method of
regularization that enhances Transformer-based
APE models’ understanding of the target language:
a loss function that encourages APE models to
perform symmetric self-attention on a given MT.
Experimental results suggest that the proposed
method helps improving the state-of-the-art archi-
tecture’s APE quality for high-quality MTs; we
also present a relative frequency distribution of suc-
cesses and failures in APE and see increases in the

proportion of perfect postediting and the F1 score.
This evaluation method could be useful for assess-
ing the APE quality for high-quality MTs in gen-
eral. Actual cases support that the proposed method
successfully instills the idea of syntactic symmetry
into APE models. Future research should consider
different language pairs and different sets of hyper-
parameters.
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8 Limitations

First, neither Feldermodell (Reis, 1980; Wöllstein,
2018; Höhle, 2019) nor Doppelbaum (Wöllstein,
2018) has obtained complete concurrence among
linguists. Also, we limit our scope to the English–
German language pair and the IT domain using the
WMT 2019 training, validation, and test data sets.
A broader scope would not provide confidence in
the validity of conducted experiments because there
are hardly any standard setups for experimental
research (Chatterjee et al., 2018, 2019; Akhbardeh
et al., 2021).

In addition, the conducted experiment should
take into consideration the effect of randomness
that is attended in the process of training artifi-
cial neural networks; different techniques, differ-
ent hyperparameters, and multiple runs of optimiz-
ers (Clark et al., 2011) may present different re-
sults. However, as previous studies (Chatterjee
et al., 2018, 2019, 2020; Akhbardeh et al., 2021),
including the study on the baseline model (Shin
et al., 2021), do not consider the effect of random-
ness, we also do not investigate the effect of ran-
domness further, considering that training multiple
models (Appendix A) to obtain good estimators
(TER and BLEU) will cost a lot.
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A Experimental Details

We use the following hyperparameters: the number
of layers N = 6, the number of heads H = 8, the
dimension of key vectors dk = 64, the dimension
of value vectors dv = 64, the vector dimension for
multi-head attention layers dmodel = 512, the vector
dimension for the inner layer of position-wise feed-
forward networks dff = 2,048, the dropout (Srivas-
tava et al., 2014) probability Pdrop = 0.1, the label
smoothing value ϵLS = 0.1, minibatches of 25,000
tokens, a learning rate of 2.0, warmup for 18,000
training steps, and a shared vocabulary consisting
of 32,000 subword units (Sennrich et al., 2016)1.
We also use weight tying (Pappas et al., 2018) and
the Adam optimizer (Kingma and Ba, 2015) with
β1 = 0.9, β2 = 0.998, and ϵ = 10−8. Decoding
options are beam search with a beam size b = 5, a
length penalty multiplied by a strength coefficient
α = 0.6, and beam search stopping (Yang et al.,
2018) with the length ratio lr = 1.3.

We use OpenNMT-py 3.0 (Klein et al., 2017)2

with the random seed 1128. We first train the
models for 100,000 steps, about 36 hours on one
NVIDIA GeForce RTX™ 3090, and then tune them
around 1,000 steps.

1We used SentencePiece (Apache License 2.0)
2The MIT License.
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