
On the Efficacy of Sampling Adapters

Clara Meister Tiago Pimentel Luca Malagutti
Ethan G. Wilcox Ryan Cotterell
ETH Zürich University of Cambridge

meistecl@inf.ethz.ch tp472@cam.ac.uk lmalagutti@inf.ethz.ch
ethan.wilcox@inf.ethz.ch ryan.cotterell@inf.ethz.ch

Abstract

Sampling is a common strategy for generating
text from probabilistic models, yet standard
ancestral sampling often results in text that
is incoherent or ungrammatical. To alleviate
this issue, various modifications to a model’s
sampling distribution, such as nucleus or top-k
sampling, have been introduced and are now
ubiquitously used in language generation
systems. We propose a unified framework for
understanding these techniques, which we term
sampling adapters. Sampling adapters often
lead to qualitatively better text, which raises the
question: From a formal perspective, how are
they changing the (sub)word-level distributions
of language generation models? And why
do these local changes lead to higher-quality
text? We argue that the shift they enforce can
be viewed as a trade-off between precision
and recall: while the model loses its ability to
produce certain strings, its precision rate on
desirable text increases. While this trade-off is
not reflected in standard metrics of distribution
quality (such as perplexity), we find that
several precision-emphasizing measures
indeed indicate that sampling adapters can lead
to probability distributions more aligned with
the true distribution. Further, these measures
correlate with higher sequence-level quality
scores, specifically, MAUVE.

https://github.com/rycolab/
sampling-adapters

1 Introduction

The vast majority of natural language generation
systems take a probabilistic approach. The
backbone of such an approach is a probability
distribution over strings pθ for a specific target
domain. While modern language models have
achieved remarkable performance on standard
measures of distribution quality, e.g., perplexity
(Brown et al., 2020; Chowdhery et al., 2022;
Hoffmann et al., 2022; OpenAI, 2023), they often
fall short when applied out of the box for language

generation tasks—both sampling directly from
them and searching for the maximum-probability
string under them can lead to dull, incoherent, and
degenerate text (Holtzman et al., 2020; Eikema
and Aziz, 2020; Welleck et al., 2020).

Surprisingly, applying a post-hoc modification
to pθ(· | y<t) often serves to dramatically improve
the quality of the generated text (Nadeem et al.,
2020; Pillutla et al., 2021; Wiher et al., 2022;
Hewitt et al., 2022; Li et al., 2022). In this paper,
we give a name to these methods, dubbing them
sampling adapters. A sampling adapter can be
formally defined as a simplex-to-simplex map
α : ∆|V|−1 → ∆|V|−1 that systematically modifies
the conditional distribution of an autoregressive
language model pθ(· | y<t), thus creating another
language model α(pθ(· | y<t)) with a desired set
of characteristics, e.g., it may only give non-zero
probability to items assigned high probability
under the original model. Sampling adapters often
require little to no fine-tuning and can be imple-
mented in just a few lines of code. Presumably due
to their simplicity, sampling adapters have become
a default tool in text generation pipelines, serving
as the core component of baseline decoding
strategies in various tasks (Welleck et al., 2020;
Pillutla et al., 2021; Pimentel et al., 2023).

The fact that sampling adapters often lead to
qualitatively better text, however, evokes a simple
question: How do they change our language gener-
ation models such that the distribution pθ(· | y<t)
places more probability mass on what we quali-
tatively deem to be “better” text? Most sampling
adapters have been found through trial and error
with only intuitive motivations given for their
efficacy. Moreover, standard evaluation measures1

do not immediately shed light on why sampling
adapters work well because most sampling adapters
make language generation models substantially
worse according to these measures, e.g., they often

1We use the term measure instead of the more common
metric throughout this work because several of the functions
that we consider are not metrics in the mathematical sense.

mailto:meistecl@inf.ethz.ch
mailto:tp472@cam.ac.uk
mailto:lmalagutti@inf.ethz.ch
mailto:ethan.wilcox@inf.ethz.ch
mailto:ryan.cotterell@inf.ethz.ch
https://github.com/rycolab/sampling-adapters
https://github.com/rycolab/sampling-adapters

reduce the probability assigned to certain strings
to zero, which can yield a perplexity of ∞.

In this paper, we posit that the change of
distribution induced by sampling adapters can be
analyzed in terms of a precision–recall trade-off,
using the generalizations of these terms to the
field of generative modeling (Sajjadi et al., 2018;
Lucic et al., 2018; Djolonga et al., 2020). While
a model loses its ability to produce certain strings,
its ability to produce desirable text increases. We
experiment with various sampling adapters that
have been proposed (Fan et al., 2018; Holtzman
et al., 2020; Meister et al., 2023; Hewitt et al.,
2022) and find that, while the use of these adapters
negatively affects recall-emphasizing performance
measures, certain choices of hyperparameters
increase performance in terms of measures that
balance between precision and recall or that are
precision-emphasizing. Comparing trends in these
measures, we see evidence of a precision–recall
trade-off, which offers a quantitative motivation
for the efficacy of sampling adapters. We further
find that precision-emphasizing measures correlate
most highly with sequence-level quality metrics,
offering a potential avenue for efficiently choosing
sampling adapter hyperparameter values. The
formal framework and empirical analysis presented
here should pave the way for the development of
theoretically motivated sampling adapters, and
provide a straightforward means for both analysis
of and comparison between adapters.

2 Language Generation

2.1 Probability Distributions over Strings

Most language generation systems are based on
probabilistic models, i.e., models of the probability
distribution over natural language strings2 V∗,
where V∗ is the Kleene closure of an alphabet
V . In words, V∗ is the set of all strings that can
be generated from a vocabulary of (sub)words
V . A common modeling choice is to break down
string probabilities autoregressively and locally
normalize pθ, i.e., instead of directly modeling
the full sequence probability pθ(y), one models
(sub)word probabilities pθ(y | y<t) conditioned on
the prior context y<t

def
= ⟨y1, . . . , yt−1⟩ ∈ V∗. Note

that here, we have y ∈ V for V def
= V∪{EOS} where

EOS is a special end of string token required for an

2Notably, these distributions might be conditioned on an
input string, as in machine translation or summarization.

autoregressive pθ to define a valid probability distri-
bution over V∗. The sequence-level probability can
then be computed via the chain rule of probability:

pθ(y) = pθ(EOS | y)
|y|∏
t=1

pθ(yt | y<t) (1)

See Du et al. (2023) for a characterization of when
these models are tight, i.e., when the probability
mass assigned to finite-length strings is 1.

The parameters θ of these models are typi-
cally chosen by (numerically) maximizing the
log-likelihood of the training data D, where
log-likelihood is defined as:

L(θ)=
∑
y∈D

log pθ(y) (2)

Note this is equivalent to minimizing the (forward)
cross-entropy between the empirical distribution
pD induced by the training data D.

2.2 Decoding Strategies

In order to produce text from a model, one must
use a decoding strategy, which provides a set of
decision rules according to which tokens are se-
quentially chosen from the distribution pθ to form
a string. Decoding strategies can be broadly taxon-
omized as either maximization-based or sampling-
based. Maximization-based strategies aim to find
the candidate string that scores highest under some
objective. Finding the string with the highest prob-
ability under the model is a common maximization-
based strategy. Sampling-based strategies instead
sample tokens according to some distribution de-
rived from the model. While maximization-based
strategies may make intuitive sense, they often
lead to dull or degenerate text in open-generation
settings (Cohen and Beck, 2019; Eikema and
Aziz, 2020; Nadeem et al., 2020). Sampling-based
strategies likewise have shortcomings: They intro-
duce randomness into the generated text, which
may lead to a disruption in coherence or fluency
when units are sampled from low-probability
regions of the distribution (Holtzman et al., 2020;
Hewitt et al., 2022). A class of methods has been
developed to address the problems observed when
sampling directly from the model, specifically by
altering the distribution from which tokens are sam-
pled. We term these methods sampling adapters,
formally defining them in the next section.

3 The Sampling Adapter Framework

Formally, sampling adapters are simplex-to-
simplex mappings, i.e., functions α : ∆|V|−1 →
∆|V|−1 that take a probability distribution over V
as input and map it to another one over V .3 We use
the notation p̃ to denote the output of this map, as
applied to the distribution p:

p̃(· | y<t)
def
= α

(
p(· | y<t)

)
(3)

similarly denoting the individual adapted probabil-
ities as p̃(y | y<t) = α

(
p(· | y<t)

)
(y). We now

give two examples of common sampling adapters.

Example 3.1. We recover standard ancestral sam-
pling when α

(
p(· | y<t)

)
(y) = p(y | y<t).

Example 3.2. We recover temperature sampling
when α

(
p(· | y<t)

)
(y) ∝ p(y | y<t)

1
T for temper-

ature parameter T .4

One popular way of formulating sampling
adapters in the literature has been via truncation
functions, i.e., functions where vocabulary units
that do not meet a certain criterion are re-assigned
zero probability. We write these functions as:

α
(
p(· | y<t)

)
(y) ∝ (4)

p(y | y<t)1
{
y ∈ C

(
p(· | y<t)

)}
where C : ∆|V|−1 → P(V) is a function that finds
the set of (sub)words that meets said criterion;
P(·) denotes the powerset operator. Truncation
sampling methods aim to eliminate probability
mass placed on tokens deemed likely to lead to
undesirable text, reallocating their probability mass
to the remaining options. We now specify several
common truncation-based sampling adapters.

Example 3.3. We recover top-k sampling (Fan
et al., 2018) when

C(p(· | y<t)) = argmax
V ′⊆V

∑
y∈V ′

p(y | y<t) (5)

s.t. |V ′| = k

i.e., a function that returns the top-k most-probable
(sub)words.

3Sampling adapters can be generalized to work on full
distributions p(y) instead of on the conditionals p(· | y<t),
but we focus on the simpler case of the conditionals here.

4T allows us to control the entropy of the distribution.
As T → 0, we recover a distribution that places probability
1 on the argmax, and, as T → ∞, we recover the uniform
distribution.

Example 3.4. We recover top-π (nucleus) sam-
pling (Holtzman et al., 2020) when

C(p(· | y<t)) = argmin
V ′⊆V

|V ′| (6)

s.t.
∑
y∈V ′

p(y | y<t) ≥ π

i.e., a function that returns the smallest subset of
(sub)words that collectively have probability mass
≥ π.

Example 3.5. We recover locally typical sampling
(Meister et al., 2023) when

C(p(· | y<t)) = argmin
V ′⊆V

∑
y∈V ′

∣∣∣H(p(· | y<t)) (7)

+ log p(y | y<t)
∣∣∣

s.t.
∑
y∈V ′

p(y | y<t) ≥ π

i.e., the set of items with log-probability closest to
the (sub)word-level entropy that collectively have
probability mass ≥ π.

Example 3.6. We recover η-sampling (Hewitt
et al., 2022) when

C(p(· | y<t)) = {y ∈ V | p(y | y<t) > η} (8)

where η = min (ϵ,
√
ϵ exp(−H(p(· | y<t)))), i.e.,

the set of items with probability greater than η for
hyperparameter ϵ > 0.

Other methods can similarly be cast in the sam-
pling adapter framework, such as Mirostat (Basu
et al., 2021) and the re-calibration method proposed
by Braverman et al. (2020). Moreover, the general
equation for sampling adapters given in Eq. (3) sug-
gests that one direction for future research is learn-
ing a sampling adapter α. While many previously
proposed adapters are truncation-based, adapters
that reallocate mass in a different manner may also
prove effective. Indeed, equipping α with tunable
parameters could prove useful as a lightweight fine-
tuning method.

An Unintuitive Effect. The motivation behind
the use of sampling adapters with language genera-
tion models is to readjust their distribution, shifting
mass away from tokens deemed likely to lead to
undesirable text and onto tokens that will generate
high-quality text. Yet why are such transformations
even necessary? Standard measures of distribution
quality, such as perplexity, would suggest that our

models’ estimates of the ground-truth distribution
over natural language strings are quite good
(Brown et al., 2020; Wang and Komatsuzaki, 2021;
Hoffmann et al., 2022). This, in turn, implies that
the heuristic shifts performed by sampling adapters
should lead to worse language generators. We
argue that the disparity between the quality of lan-
guage generation systems using sampling-adapted
models and the quality of these same models
according to standard measures can be reconciled
using probabilistic analogs of precision and recall.

4 A Precision–Recall Hypothesis

We begin by reviewing generalizations of the con-
cepts of precision and recall in the field of genera-
tive modeling. We then discuss the shortcomings of
current language generation models and how sam-
pling adapters may address these shortcomings.

4.1 Generalizations of Precision and Recall

A series of recent papers have related the precision
of a learned distribution pθ to the average quality of
generated samples, where high-quality samples are
assumed to be those with high probability under the
data-generating distribution p.5 Additionally, they
relate the recall of pθ to its coverage of p (Sajjadi
et al., 2018; Lucic et al., 2018; Djolonga et al.,
2020, inter alia), i.e., high overlap in the support
of pθ and p. Following this line of reasoning, the
notions of precision and recall can naturally be
operationalized using measures of the difference
between two distributions—specifically, ones that
enable different penalizations of over- and under-
coverage of our reference distribution.

There are several measures that, when consid-
ered together, naturally operationalize precision,
recall, or some combination of the two.6 In
this paper, we focus on cross-entropy, KL
divergence, total variation distance (TVD), and
Jensen–Shannon (JS) divergence. We introduce
each in greater detail below. We note that for all
these measures, a larger value indicates a greater
discrepancy between two distributions, and that
all but the cross-entropy will be zero when the
two distributions are identical. Further, we note
that not all the measures are symmetric, i.e., their

5We note that in general though, it is not clear that
high-probability and high-quality should necessarily coincide
(Zhang et al., 2021; Meister et al., 2023).

6We refer the reader to Cichocki and Amari (2010) and
Djolonga et al. (2020) for a more comprehensive discussion
of such measures.

values change depending on the order in which the
distributions are given as arguments to the measure.
Out of convention, in the case that the reference dis-
tribution is provided first, we call this the forward
variant of the measure. We call the case where
the reference distribution is the second argument
the reverse variant of the measure. We define all
measures in terms of generic distributions p1 and
p2, which we assume both have (not necessarily
identical) supports that are a subset of V .

Precision-emphasizing Measures. We first
consider the cross-entropy between p1 and p2:

H(p1, p2) = −
∑
y∈V

p1(y) log p2(y) (9)

Upon inspection, we can see that the reverse cross-
entropy, i.e., where p1 is the distribution being eval-
uated and p2 is a (fixed) reference distribution, re-
wards high precision.7 Specifically, it rewards p1
for assigning probability mass where p2 is large,
implicitly penalizing p1 for assigning high proba-
bility where p2 is small. In fact, the reverse cross-
entropy is minimized in the case where p1 places
all probability on the most probable token under p2.

A related measure is the reverse KL divergence

KL(p1 || p2) =
∑
y∈V

p1(y) log
p2(y)

p1(y)
(10a)

= H(p1, p2)−H(p1) (10b)

which is equivalent to the cross-entropy up to the
subtraction of the entropy term H(p1). As with
cross-entropy, the reverse KL divergence rewards
high precision. This property is reflected by a com-
mon intuition provided about this measure when
it is used as a learning objective: It is referred to
as a mode-seeking objective, i.e., it aims to place
mass on the modes of p1.8 Importantly, the distribu-
tions that minimize the reverse variants of Eq. (9)
and (10a) will not necessarily be equivalent be-
cause the latter takes into account p1’s entropy. So
which of these two metrics should we use? As we
are interested in using metrics that operationalize
the notion of precision, the entropy of the distri-
bution under evaluation is irrelevant. Thus, we
will use the reverse cross-entropy as our primary
precision-emphasizing metric.

7We note that most readers are likely more familiar with
the forward cross-entropy, which is a common loss function.

8For further insights about the properties of the various
measures used here, we refer the reader to the following
detailed discussions (Minka, 2005; Nickisch and Rasmussen,
2008; Huszár, 2015; Theis et al., 2016).

Recall-emphasizing Measures. On the other
hand, the forward variants of Eq. (9) and (10a),
where p2 is now the distribution under evaluation
and p1 is assumed to be fixed, reward recall.
This is evident when taking a closer look at their
definitions. If p2 fails to place probability on
all elements y assigned probability by p1, then
both the cross-entropy and KL divergence will be
∞.9 Analogously to the reverse KL’s description
as mode-seeking, the forward KL is referred to
as mean-seeking. Note that using the forward
variants of cross-entropy and KL divergence as
learning objectives is equivalent since H(p1) is
constant with respect to p2. Further, the forward
KL and cross-entropy, as well as the reverse KL,
are minimized when p2 = p1.

Balanced Measures. The definitions for TVD

and JS divergence, which are both symmetric mea-
sures, suggest a balance between the characteristics
of precision and recall:

TVD(p1, p2) =
∑
y∈V

|p1(y)− p2(y)| (11)

JS(p1, p2) =
KL(p1 || m) + KL(p2 || m)

2
(12)

where m(y) = p1(y)+p2(y)
2 for y ∈ V is a point-

wise average. Practically, the JS divergence can
informally be viewed as an interpolation between
the forward and reverse KL divergences. Indeed,
several divergences that generalize the forward and
reverse KL recover the JS divergence given a par-
ticular choice of hyperparameter (Huszár, 2015;
Meister et al., 2020; Pillutla et al., 2021). TVD

can be similarly motivated: Sajjadi et al. (2018)
recover TVD in their precision–recall operational-
ization for generative models when assigning equal
importance to precision and recall. Further, a stan-
dard result demonstrates that the JS divergence is a
lower bound on TVD (Lin, 1991). With these mea-
sures in hand, we can more effectively assess the
shifts to precision and recall that sampling adapters
induce in a model.

9To avoid the possibility of an infinite cross-entropy, one
can use an ε-smoothed variant of p2 i.e., where p

(ε)
2 (·) =

p2(·)+ε

1+|V|·ε . This trick is often employed to evaluate methods that
do not produce distributions covering the entire support, e.g.,
Peters et al. (2019) and Martins et al. (2020). As many of the
sampling adapters that we analyze produce sparse distributions
(specifically, the truncation sampling methods), we will like-
wise employ this variant of KL divergence where necessary.

4.2 Current Modeling Shortcomings

It is not clear that the objective with which prob-
abilistic language generators are typically trained
imparts characteristics that align with the goals of
building good language generators.10 Any form of
maximum-likelihood training is equivalent to mini-
mizing H(pD, pθ)—often with an additional form
of regularization. Thus, it encourages high recall:
pθ(yt | y<t) must be nonzero for all tokens yt in
every string y in the training set D for the objective
to be finite. This, in turn, results in pθ allocating
some probability mass to all (sub)words y ∈ V
for all contexts y<t. In language modeling, this is
perhaps a desirable property: We often care about
the relative probabilities of strings, and assigning
strings 0 probability would be counter-productive
towards this goal. Yet, this property can potentially
prove problematic when such models are used out
of the box as language generators.11 For language
generation systems, high precision is arguably a
higher priority, i.e., the goal is for all of the gener-
ated sequences to be of high quality. An intuitive
argument for this is that a single bad output can
leave a lasting poor impression on the user. Yet,
the inability to generate a single sequence may go
unnoticed—especially if the difference between
that sequence and one the model can produce is a
single, exchangeable token.

In this light, a possible explanation for the
efficacy of sampling adapters is as follows: While
model parameters are chosen to minimize a
recall-prioritizing objective, sampling adapters
re-align the distribution with a more appropriate
precision-prioritizing probabilistic objective, i.e.,
sampling adapter hyperparameter combinations
that work well perhaps do so because they mini-
mize an objective that balances between precision
and recall. If this is indeed the case, it should not
be surprising that the transformation induced by
sampling adapters leads to worse models according
to standard, recall-emphasizing measures: Any
generator that assigns zero probability to a

10Several works have explored this topic specifically, which
we discuss in §6.

11To see why, consider a simple example: A model that
assigns a very small collective probability mass of 0.001 to
all (sub)words in the tail (low-probability region) of the distri-
bution at any given generation step. If we sample a sequence
of 200 tokens from this (unaltered) model, there is a 1−(1−
0.001)200 ≈ 20% chance it will contain at least one token
from the tail of the distribution, which after sampled, can have
negative downstream effects, ultimately rendering the whole
string incoherent (Holtzman et al., 2020; Xia et al., 2023).

valid string—as is the case when top-π or top-k
sampling are applied—will have both infinite
cross-entropy and perplexity with respect to the
natural language distribution. They may, however,
lead to better models according to more balanced
(or even precision-emphasizing) measures, which
is what we now empirically test.

5 Experiments

To test the hypothesis that the operations performed
by sampling adapters are akin to a re-prioritization
of precision over recall in the output of the model,
we evaluate the effects of sampling adapters on
measures that emphasize recall, precision or a
balance of the two, as outlined in §4.1. We then ob-
serve how these measures vary as a function of the
sampling adapters’ hyperparameters. Further, we
also look at these measures’ Spearman correlations
with MAUVE, a sequence-level quality metric.

We consider five different adapters: temperature,
η (eta), top-π, top-k and locally typical sampling,
each over a wide range of hyperparameters. Note
that for the latter three adapters, a smaller hyperpa-
rameter value corresponds to a larger shift between
pθ and p̃θ. For η-sampling, the reverse is true, and
for temperature sampling, hyperparameter values
farther from 1 imply a larger shift. For reproducibil-
ity, we leverage the Hugging Face framework (Wolf
et al., 2020) and its implementation of sampling
adapters for all but η-sampling, for which we rely
on the original authors’ implementation.12 Error
bars for all plots indicate 95% confidence intervals
for the observed values; note that bars are often
small enough that they are not visible.

5.1 Setup
We focus on the task of open-ended text genera-
tion. We use GPT-2 small and large (Radford et al.,
2019), as well as, GPT-Neo (small) (Gao et al.,
2020) as our generation models. The main results
of this paper use the test set of a public version of
the WebText dataset13 as our reference text. Results
using the WikiText test set (Merity et al., 2016) are
qualitatively similar and can be found in App. A.

Sequence-level Metrics. Following Pillutla et al.
(2021), we use the first 35 tokens of samples from
our reference text as a prompt to generate contin-
uations y ∼ pθ(· | y<t) until |y| = 512, or EOS

is sampled. We generate 1000 samples for each
12github.com/john-hewitt/truncation-sampling
13The dataset is at github.com/openai/gpt-2-output-dataset.

combination of model, sampling adapter, and hy-
perparameter. We compute MAUVE scores (where
higher implies the samples are closer to the ref-
erence text), aggregated over 5 seeds, for each of
these sets of text samples.

Token-level Measures. In this analysis, we com-
pare (sub)word-level distributions p̃θ(· | y<t) and
p(· | y<t). The former is our generation model
after the application of a sampling adapter and the
latter is a reference distribution. We present results
using both the empirical distribution induced by
our test set and the distribution given by the GPT-
J model (Wang and Komatsuzaki, 2021)14 as our
reference distribution. Here, y is a string from the
test set. Results are mean-aggregated across both
t = 1, . . . , |y| and all y. Note that when we com-
pute either the cross-entropy or KL divergence and
it is not guaranteed that the support of p1 is a subset
of the support of p2, we make use of the ε version
of the metrics, as specified in §4.1, with ε = 1e-6.

5.2 Results

Trends in Probabilistic Measures. We first
present our analysis of how different adapter–
hyperparameter settings affect the relationship of
the model to a reference distribution (either proba-
bilities according to GPT-J or the empirical distri-
bution). Note that if our hypothesis in §4.1 is cor-
rect, we would expect to see that certain sampling
adapter–hyperparameter settings lead to lower val-
ues of measures that emphasize precision, such
as reverse cross-entropy, while simultaneously in-
creasing measures that emphasize recall, such as
forward cross-entropy. We show the reverse and
forward cross-entropy, as well as TVD, in Fig. 1.15

Both the forward and reverse cross-entropy
results align closely with our hypothesis: A larger
adapter shift generally leads to a higher forward
cross-entropy and lower reverse cross-entropy.16

This observation holds when using either the

14We use GPT-J as a reference because it has substantially
better perplexity on benchmark datasets. Note that it has ≈ 50
times more parameters than either GPT-2 small or GPT-Neo,
both of which it shares a vocabulary with.

15As anticipated given the relationship between TVD and
JS, results showing the JS divergence are qualitatively very
similar to TVD. Hence, they appear in App. A.

16Importantly, if not for use of the ε-smoothed versions of
the forward and reverse cross-entropies, many of the cross-
entropies in Fig. 1 would be infinite for the truncation-based
adapters. Specifically, this would be true for any adapter
without 100% coverage of the tokens in the evaluation text,
which is the case for most adapter–hyperparameter settings
(see Fig. 6 in App. A).

https://huggingface.co/
https://github.com/john-hewitt/truncation-sampling
https://github.com/openai/gpt-2-output-dataset

Figure 1: Forward/reverse cross-entropy and TVD of the model with GPT-J and the empirical distribution (WebText
test set) after different sampling adapter methods have been applied to the output distribution. Note that as described
in §4.1, the ε-variant is used in all cross-entropy estimates except for reverse estimates with GPT-J. Dashed lines
represent divergence with the unmodified distribution, i.e., the equivalent of using ancestral sampling.

empirical distribution or GPT-J as our reference.
Interestingly, we see that the trends reverse when
we consider the reverse KL divergence (as opposed
to the reverse cross-entropy; see Fig. 3). This is
perhaps expected given that the entropy of the
model’s distribution monotonically decreases after
the application of sampling adapters (see Fig. 7).

Lastly, the trends in TVD differ largely depend-
ing on the distribution used as a reference. When
GPT-J is used, we see that TVD monotonically in-
creases as adapter strength increases. The reverse

trend appears to hold when considering the em-
pirical distribution: TVD generally decreases with
adapter strength. The reason for this difference
is not immediately obvious. Closer inspection re-
veals that when GPT-J is the reference, the trends
in TVD mimic what we would expect from a metric
that interpolates between forward and reverse cross-
entropies. Since TVD is motivated as a metric that
balances between precision and recall, our results
therefore make intuitive sense. On the other hand,
the observed trends for the empirical distribution

do not have a clear explanation.
Critically, we find that the observed trends are

stable across various design choices; see App. A
for results with the WikiText dataset and with
different choices of ε for the ε-smoothed versions
of metrics.17

A Precision–Recall Trade-Off. We next look
at whether the shifts induced by common sampling
adapters correspond to a precision–recall trade-off
according to our probabilistic measures. In
Fig. 2, we compare the reverse and forward cross-
entropies (with GPT-J used as the reference) across
the adapter hyperparameter settings used. Results
using the empirical distribution are similar (see
Fig. 10 in App. A). Fig. 2 indeed suggests a quite
direct trade-off between our operationalizations
of precision and recall. Notably, the highest
sequence-level quality scores do not correspond
with the sampling adapter–hyperparameter settings
that achieve the best precision (i.e., lowest reverse
cross-entropy).18 Rather, they correspond to an
intermediate point along the line, suggesting the
importance of balancing precision and recall.

Correlations. The previous observations moti-
vate us to look at correlations between (sub)word-
level probabilistic measures and sequence-level
quality metrics. We consider both the WebText and
WikiText results when computing correlations. In
Tab. 1, we see that the reverse KL of the generation
model with GPT-J has the highest (rank) correlation
with our quality metrics, closely followed by TVD.
This finding suggests that reverse KL with another
model could be a useful metric for selecting sam-
pling adapter’s hyperparameters, as its computation
is much faster than standard methods for choosing
such hyperparameters—e.g., human annotations or
sequence-level quality scores—which require the
generation of full sequences.

6 Related Work

Precision and Recall in Language Generation.
This is by no means the first work to focus on
the notions of precision and recall in the context
of language generation. Language generator
evaluation metrics have historically intentionally

17We also observed that trends were very stable across the
choice of reference model, i.e., using GPT2-XL and the 1.5B
parameter version of GPT-Neo rather than GPT-J. We omit
these results from the appendix to reduce clutter.

18MAUVE scores for all adapter–hyperparameter settings
and both datasets can be seen in Fig. 4.

KL Cross-entropy

TVD Reverse ε-Forward Reverse ε-Forward

G
PT

-J GPT-2 -0.73∗ -0.77∗ -0.38∗ -0.11 -0.44∗

GPT-Neo -0.74∗ -0.73∗ -0.33∗ 0.08 -0.41∗

GPT-Large -0.77∗ -0.80∗ -0.49∗ 0.01 -0.55∗

E
m

pi
ri

ca
l GPT-2 -0.18∗ -0.26∗ -0.48∗ -0.18∗ -0.48∗

GPT-Neo -0.02 -0.25∗ -0.42∗ -0.02 -0.42∗

GPT-Large -0.10 -0.50∗ -0.61∗ -0.10 -0.61∗

Table 1: Spearman correlations of (sub)word-level prob-
abilistic measures with MAUVE. We use ∗ to indicate
significance with a p-value < 0.001.

prioritized precision-based measures due to their
higher correlation with human quality judgments.
For example, BLEU (Papineni et al., 2002) is
computed using n-gram precision, and the original
work on CHRF (Popović, 2015), which is a
precision–recall-based metric, found that variants
of the metric that placed more weight on precision
correlated better with human judgments. More re-
cently, Pimentel et al. (2023) report that the reverse
KL divergence between multinomial distributions
over embeddings of text from language models
and of text from humans correlated more with
human quality judgments than the results of other
divergence measures. On the other hand, measures
that place higher importance on recall of the model
with respect to some test set, such as perplexity,
are known not to be good indicators of text quality
(Holtzman et al., 2020; Cohen and Beck, 2019;
Meister et al., 2023). In terms of model training,
alternative objectives that emphasize precision
have been proposed in an attempt to alleviate the
zero-avoiding effect induced by optimization for
maximum likelihood (Kang and Hashimoto, 2020;
Pang and He, 2021).

Analysis of Language Generation Models. The
effect of sampling adapters on language models
has previously been discussed in the framework
of a quality–diversity trade-off (Zhang et al., 2021;
Meister et al., 2022). For instance, Nadeem et al.
(2020) and Wiher et al. (2022) catalog various
sampling adapters and analyze their properties with
respect to a quality–diversity trade-off using a wide
range of automatic metrics. Hashimoto et al. (2019)
propose an evaluation framework that combines hu-
man and statistical evaluation. In contrast, our work
makes an explicit connection to the concepts of
precision and recall and analyzes the effect of sam-
pling adapters employing measures of differences
in distributions. While Pillutla et al. (2021) like-
wise use notions of precision and recall for assess-

Figure 2: Reverse cross-entropy versus forward cross-entropy (the latter uses ε-smoothing) of the model with GPT-J
for various sampling adapter and hyperparameter settings. Stars correspond to values at which hyperparameter
settings achieved the highest MAUVE scores. The black dot corresponds to ancestral sampling.

ing language generators, they look at quantized dis-
tributions over language embedding spaces rather
than directly at distributions over (sub)words.

7 Conclusion

In this work, we offer a formal treatment of
sampling adapters and provide an analysis that
aims to uncover why they are effective when used
with probabilistic models for language generation.
To this end, we first introduce a general framework
that encompasses most of the transformations per-
formed by previously proposed sampling adapters.
We then offer an intuition as to why sampling
adapters may lead to better language generators.
Using the notions of precision and recall proposed
for generative models, which can be quantified
in terms of standard probabilistic measures, we
perform an empirical analysis. We find evidence
that the application of sampling adapters increases
the precision of a distribution at the expense
of its recall; this observation is robust across
several experimental design choices. We further
find a high correlation between sequence-level
quality metrics and reverse KL divergence of the
generation model with a reference model.

Acknowledgments

We would like to thank John Hewitt and Afra Amini
for the insightful discussions preceding this work.
Clara was supported by a Google Ph.D. Fellowship.
Tiago was supported by a Facebook Ph.D. Fellow-
ship. Ethan was supported by an ETH Zürich Post-
doctoral Fellowship.

Limitations

A clear limitation of this work is that the results
have been shown only for English. Further work
should consider other model architectures, as well
as datasets that span a variety of languages and
domains. Another limitation is that we do not con-
duct human evaluations. Given the large number of
adapter and hyperparameter settings that we chose
to explore, acquiring the human evaluations that
would have allowed us to make statistically signif-
icant conclusions regarding the relationships be-
tween text quality, distribution-level measures, and
adapter–hyperparameter settings would have been
financially prohibitive. Instead, we chose to look
at automatic sequence-level quality metrics that
are known to correlate highly with human qual-
ity judgments. Further, it has been observed that
crowd-sourced judgments of text quality are far
from perfect (Clark et al., 2021), making it not
obvious whether this is indeed the better option.

Ethical Considerations

The use of language models for text generation
comes with several ethical concerns. Especially
when using sampling-based decoding algorithms,
as is promoted in this work, the text generated by
probabilistic models may contain malicious or hal-
lucinatory content. This may be an intention of the
user, but can also occur simply due to the training
data that the model was exposed to, which is often
not carefully filtered for undesirable material that
a model then learns to mimic. The goal of works
like this—to help create systems that can produce
more human-like text—may also make it easier
to automatically produce such content, which can

ultimately have several negative downstream side
effects. We caution designers and users of text gen-
eration systems to publicly advertise when content
was created by a machine, and implement checks
to prevent the production of harmful material.

References
Sourya Basu, Govardana Sachitanandam Ramachan-

dran, Nitish Shirish Keskar, and Lav R. Varshney.
2021. Mirostat: A perplexity-controlled neural text
decoding algorithm. In 9th International Conference
on Learning Representations.

Mark Braverman, Xinyi Chen, Sham Kakade, Karthik
Narasimhan, Cyril Zhang, and Yi Zhang. 2020. Cali-
bration, entropy rates, and memory in language mod-
els. In Proceedings of the 37th International Con-
ference on Machine Learning, volume 119, pages
1089–1099. PMLR.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens
Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-
teusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. 2020.
Language models are few-shot learners. In Ad-
vances in Neural Information Processing Systems,
volume 33, pages 1877–1901. Curran Associates,
Inc.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts,
Paul Barham, Hyung Won Chung, Charles Sutton,
Sebastian Gehrmann, Parker Schuh, Kensen Shi,
Sasha Tsvyashchenko, Joshua Maynez, Abhishek
Rao, Parker Barnes, Yi Tay, Noam Shazeer, Vin-
odkumar Prabhakaran, Emily Reif, Nan Du, Ben
Hutchinson, Reiner Pope, James Bradbury, Jacob
Austin, Michael Isard, Guy Gur-Ari, Pengcheng Yin,
Toju Duke, Anselm Levskaya, Sanjay Ghemawat,
Sunipa Dev, Henryk Michalewski, Xavier Garcia,
Vedant Misra, Kevin Robinson, Liam Fedus, Denny
Zhou, Daphne Ippolito, David Luan, Hyeontaek Lim,
Barret Zoph, Alexander Spiridonov, Ryan Sepassi,
David Dohan, Shivani Agrawal, Mark Omernick, An-
drew M. Dai, Thanumalayan Sankaranarayana Pil-
lai, Marie Pellat, Aitor Lewkowycz, Erica Moreira,
Rewon Child, Oleksandr Polozov, Katherine Lee,
Zongwei Zhou, Xuezhi Wang, Brennan Saeta, Mark
Diaz, Orhan Firat, Michele Catasta, Jason Wei, Kathy
Meier-Hellstern, Douglas Eck, Jeff Dean, Slav Petrov,
and Noah Fiedel. 2022. PaLM: Scaling language
modeling with pathways. CoRR, abs/2204.02311.

Andrzej Cichocki and Shun-ichi Amari. 2010. Families
of alpha- beta- and gamma- divergences: Flexible and

robust measures of similarities. Entropy, 12(6):1532–
1568.

Elizabeth Clark, Tal August, Sofia Serrano, Nikita
Haduong, Suchin Gururangan, and Noah A. Smith.
2021. All that’s ‘human’ is not gold: Evaluating
human evaluation of generated text. In Proceedings
of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pages 7282–7296, Online.
Association for Computational Linguistics.

Eldan Cohen and Christopher Beck. 2019. Empirical
analysis of beam search performance degradation
in neural sequence models. In Proceedings of the
International Conference on Machine Learning, vol-
ume 97, Long Beach, California, USA. PMLR.

Josip Djolonga, Mario Lucic, Marco Cuturi, Olivier
Bachem, Olivier Bousquet, and Sylvain Gelly. 2020.
Precision-recall curves using information divergence
frontiers. In International Conference on Artificial
Intelligence and Statistics, pages 2550–2559. PMLR.

Li Du, Lucas Torroba Hennigen, Tiago Pimentel, Clara
Meister, Jason Eisner, and Ryan Cotterell. 2023. A
measure-theoretic characterization of tight language
models. In Proceedings of the 61st Annual Meet-
ing of the Association for Computational Linguistics,
Toronto, Canada. Association for Computational Lin-
guistics.

Bryan Eikema and Wilker Aziz. 2020. Is MAP decoding
all you need? The inadequacy of the mode in neu-
ral machine translation. In Proceedings of the 28th
International Conference on Computational Linguis-
tics, COLING, pages 4506–4520, Barcelona, Spain
(Online). International Committee on Computational
Linguistics.

Angela Fan, Mike Lewis, and Yann Dauphin. 2018.
Hierarchical neural story generation. In Proceedings
of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 889–898, Melbourne, Australia. Association
for Computational Linguistics.

Leo Gao, Stella Biderman, Sid Black, Laurence Gold-
ing, Travis Hoppe, Charles Foster, Jason Phang, Ho-
race He, Anish Thite, Noa Nabeshima, et al. 2020.
The pile: An 800GB dataset of diverse text for lan-
guage modeling. CoRR, abs/2101.00027.

Tatsunori B. Hashimoto, Hugh Zhang, and Percy Liang.
2019. Unifying human and statistical evaluation for
natural language generation. In Proceedings of the
2019 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, Volume 1 (Long and
Short Papers), pages 1689–1701, Minneapolis, Min-
nesota. Association for Computational Linguistics.

John Hewitt, Christopher Manning, and Percy Liang.
2022. Truncation sampling as language model

https://openreview.net/forum?id=W1G1JZEIy5_
https://openreview.net/forum?id=W1G1JZEIy5_
https://proceedings.mlr.press/v119/braverman20a.html
https://proceedings.mlr.press/v119/braverman20a.html
https://proceedings.mlr.press/v119/braverman20a.html
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://doi.org/10.48550/ARXIV.2204.02311
https://doi.org/10.48550/ARXIV.2204.02311
https://doi.org/10.3390/e12061532
https://doi.org/10.3390/e12061532
https://doi.org/10.3390/e12061532
https://doi.org/10.18653/v1/2021.acl-long.565
https://doi.org/10.18653/v1/2021.acl-long.565
http://proceedings.mlr.press/v97/cohen19a.html
http://proceedings.mlr.press/v97/cohen19a.html
http://proceedings.mlr.press/v97/cohen19a.html
http://proceedings.mlr.press/v108/djolonga20a/djolonga20a.pdf
http://proceedings.mlr.press/v108/djolonga20a/djolonga20a.pdf
https://doi.org/10.48550/ARXIV.2212.10502
https://doi.org/10.48550/ARXIV.2212.10502
https://doi.org/10.48550/ARXIV.2212.10502
https://doi.org/10.18653/v1/2020.coling-main.398
https://doi.org/10.18653/v1/2020.coling-main.398
https://doi.org/10.18653/v1/2020.coling-main.398
https://doi.org/10.18653/v1/P18-1082
https://arxiv.org/abs/2101.00027
https://arxiv.org/abs/2101.00027
https://doi.org/10.18653/v1/N19-1169
https://doi.org/10.18653/v1/N19-1169
https://aclanthology.org/2022.findings-emnlp.249

desmoothing. In Findings of the Association for Com-
putational Linguistics: EMNLP 2022, pages 3414–
3427, Abu Dhabi, United Arab Emirates. Association
for Computational Linguistics.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch,
Elena Buchatskaya, Trevor Cai, Eliza Rutherford,
Diego de las Casas, Lisa Anne Hendricks, Johannes
Welbl, Aidan Clark, Tom Hennigan, Eric Noland,
Katherine Millican, George van den Driessche, Bog-
dan Damoc, Aurelia Guy, Simon Osindero, Karen
Simonyan, Erich Elsen, Oriol Vinyals, Jack William
Rae, and Laurent Sifre. 2022. An empirical analysis
of compute-optimal large language model training.
In Advances in Neural Information Processing Sys-
tems, volume 35. Curran Associates, Inc.

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and
Yejin Choi. 2020. The curious case of neural text
degeneration. In 8th International Conference on
Learning Representations.

Ferenc Huszár. 2015. How (not) to train your generative
model: Scheduled sampling, likelihood, adversary?
CoRR, abs/1511.05101.

Daniel Kang and Tatsunori B. Hashimoto. 2020. Im-
proved natural language generation via loss trunca-
tion. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pages
718–731, Online. Association for Computational Lin-
guistics.

Xiang Lisa Li, Ari Holtzman, Daniel Fried, Percy Liang,
Jason Eisner, Tatsunori Hashimoto, Luke Zettle-
moyer, and Mike Lewis. 2022. Contrastive decoding:
Open-ended text generation as optimization. CoRR,
abs/2210.15097.

J. Lin. 1991. Divergence measures based on the Shan-
non entropy. IEEE Transactions on Information The-
ory, 37(1):145–151.

Mario Lucic, Karol Kurach, Marcin Michalski, Sylvain
Gelly, and Olivier Bousquet. 2018. Are GANS cre-
ated equal? A large-scale study. Advances in Neural
Information Processing Systems, 31:698–707.

Pedro Henrique Martins, Zita Marinho, and André F. T.
Martins. 2020. Sparse text generation. In Proceed-
ings of the 2020 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages
4252–4273, Online. Association for Computational
Linguistics.

Clara Meister, Tiago Pimentel, Gian Wiher, and Ryan
Cotterell. 2023. Locally typical sampling. Transac-
tions of the Association for Computational Linguis-
tics, 11:102–121.

Clara Meister, Elizabeth Salesky, and Ryan Cotterell.
2020. Generalized entropy regularization or: There’s
nothing special about label smoothing. In Proceed-
ings of the 58th Annual Meeting of the Association
for Computational Linguistics, pages 6870–6886, On-
line. Association for Computational Linguistics.

Clara Meister, Gian Wiher, Tiago Pimentel, and Ryan
Cotterell. 2022. On the probability–quality paradox
in language generation. In Proceedings of the 60th
Annual Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers), pages 36–45,
Dublin, Ireland. Association for Computational Lin-
guistics.

Stephen Merity, Caiming Xiong, James Bradbury, and
Richard Socher. 2016. Pointer sentinel mixture mod-
els. CoRR, abs/1609.07843.

Thomas Minka. 2005. Divergence measures and mes-
sage passing. Technical report, Microsoft Research.

Moin Nadeem, Tianxing He, Kyunghyun Cho, and
James Glass. 2020. A systematic characterization
of sampling algorithms for open-ended language gen-
eration. In Proceedings of the 1st Conference of the
Asia-Pacific Chapter of the Association for Compu-
tational Linguistics and the 10th International Joint
Conference on Natural Language Processing, pages
334–346, Suzhou, China. Association for Computa-
tional Linguistics.

Hannes Nickisch and Carl Edward Rasmussen. 2008.
Approximations for binary Gaussian process clas-
sification. Journal of Machine Learning Research,
9(67):2035–2078.

OpenAI. 2023. GPT-4 technical report. CoRR,
abs/2303.08774.

Richard Yuanzhe Pang and He He. 2021. Text genera-
tion by learning from demonstrations. In 9th Interna-
tional Conference on Learning Representations.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. BLEU: a method for automatic eval-
uation of machine translation. In Proceedings of the
40th Annual Meeting of the Association for Compu-
tational Linguistics, pages 311–318, Philadelphia,
Pennsylvania, USA. Association for Computational
Linguistics.

Ben Peters, Vlad Niculae, and André F. T. Martins. 2019.
Sparse sequence-to-sequence models. In Proceed-
ings of the 57th Annual Meeting of the Association for
Computational Linguistics, pages 1504–1519, Flo-
rence, Italy. Association for Computational Linguis-
tics.

Krishna Pillutla, Swabha Swayamdipta, Rowan Zellers,
John Thickstun, Sean Welleck, Yejin Choi, and Zaid
Harchaoui. 2021. MAUVE: Measuring the gap be-
tween neural text and human text using divergence
frontiers. In Advances in Neural Information Pro-
cessing Systems, volume 34, pages 4816–4828. Cur-
ran Associates, Inc.

Tiago Pimentel, Clara Isabel Meister, and Ryan Cot-
terell. 2023. On the usefulness of embeddings, clus-
ters and strings for text generation evaluation. In
The Eleventh International Conference on Learning
Representations.

https://aclanthology.org/2022.findings-emnlp.249
https://openreview.net/forum?id=iBBcRUlOAPR
https://openreview.net/forum?id=iBBcRUlOAPR
https://openreview.net/forum?id=rygGQyrFvH
https://openreview.net/forum?id=rygGQyrFvH
https://doi.org/10.48550/arXiv.1511.05101
https://doi.org/10.48550/arXiv.1511.05101
https://doi.org/10.18653/v1/2020.acl-main.66
https://doi.org/10.18653/v1/2020.acl-main.66
https://doi.org/10.18653/v1/2020.acl-main.66
https://arxiv.org/abs/2210.15097
https://arxiv.org/abs/2210.15097
https://doi.org/10.1109/18.61115
https://doi.org/10.1109/18.61115
https://proceedings.neurips.cc/paper/2018/file/e46de7e1bcaaced9a54f1e9d0d2f800d-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/e46de7e1bcaaced9a54f1e9d0d2f800d-Paper.pdf
https://doi.org/10.18653/v1/2020.emnlp-main.348
https://doi.org/10.1162/tacl_a_00536
https://doi.org/10.18653/v1/2020.acl-main.615
https://doi.org/10.18653/v1/2020.acl-main.615
https://doi.org/10.18653/v1/2022.acl-short.5
https://doi.org/10.18653/v1/2022.acl-short.5
https://arxiv.org/abs/1609.07843
https://arxiv.org/abs/1609.07843
https://www.microsoft.com/en-us/research/publication/divergence-measures-and-message-passing/
https://www.microsoft.com/en-us/research/publication/divergence-measures-and-message-passing/
https://aclanthology.org/2020.aacl-main.36
https://aclanthology.org/2020.aacl-main.36
https://aclanthology.org/2020.aacl-main.36
http://jmlr.org/papers/v9/nickisch08a.html
http://jmlr.org/papers/v9/nickisch08a.html
https://arxiv.org/abs/2303.08774
https://openreview.net/forum?id=RovX-uQ1Hua
https://openreview.net/forum?id=RovX-uQ1Hua
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.18653/v1/P19-1146
https://proceedings.neurips.cc/paper/2021/file/260c2432a0eecc28ce03c10dadc078a4-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/260c2432a0eecc28ce03c10dadc078a4-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/260c2432a0eecc28ce03c10dadc078a4-Paper.pdf
https://openreview.net/forum?id=bvpkw7UIRdU
https://openreview.net/forum?id=bvpkw7UIRdU

Maja Popović. 2015. chrF: character n-gram F-score
for automatic MT evaluation. In Proceedings of the
Tenth Workshop on Statistical Machine Translation,
pages 392–395, Lisbon, Portugal. Association for
Computational Linguistics.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. 2019. Language
models are unsupervised multitask learners. OpenAI
blog, 1(8):9.

Mehdi S. M. Sajjadi, Olivier Bachem, Mario Lucic,
Olivier Bousquet, and Sylvain Gelly. 2018. Assess-
ing generative models via precision and recall. Ad-
vances in Neural Information Processing Systems,
31:5234–5243.

L. Theis, A. van den Oord, and M. Bethge. 2016. A
note on the evaluation of generative models. In 4th
International Conference on Learning Representa-
tions.

Ben Wang and Aran Komatsuzaki. 2021. GPT-J-6B: A
6 billion parameter autoregressive language model.

Sean Welleck, Ilia Kulikov, Stephen Roller, Emily Di-
nan, Kyunghyun Cho, and Jason Weston. 2020. Neu-
ral text generation with unlikelihood training. In 8th
International Conference on Learning Representa-
tions.

Gian Wiher, Clara Meister, and Ryan Cotterell. 2022.
On decoding strategies for neural text generators.
Transactions of the Association for Computational
Linguistics, 10:997–1012.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language processing.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38–45, Online. Association
for Computational Linguistics.

Mengzhou Xia, Mikel Artetxe, Chunting Zhou, Xi Vic-
toria Lin, Ramakanth Pasunuru, Danqi Chen, Luke
Zettlemoyer, and Ves Stoyanov. 2023. Training tra-
jectories of language models across scales. CoRR,
abs/2212.09803.

Hugh Zhang, Daniel Duckworth, Daphne Ippolito, and
Arvind Neelakantan. 2021. Trading off diversity and
quality in natural language generation. In Proceed-
ings of the Workshop on Human Evaluation of NLP
Systems, pages 25–33, Online. Association for Com-
putational Linguistics.

https://doi.org/10.18653/v1/W15-3049
https://doi.org/10.18653/v1/W15-3049
https://openai.com/blog/better-language-models/
https://openai.com/blog/better-language-models/
https://proceedings.neurips.cc/paper/2018/file/f7696a9b362ac5a51c3dc8f098b73923-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/f7696a9b362ac5a51c3dc8f098b73923-Paper.pdf
http://arxiv.org/abs/1511.01844
http://arxiv.org/abs/1511.01844
https://github.com/kingoflolz/mesh-transformer-jax
https://github.com/kingoflolz/mesh-transformer-jax
https://openreview.net/forum?id=SJeYe0NtvH
https://openreview.net/forum?id=SJeYe0NtvH
https://arxiv.org/abs/2203.15721
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://arxiv.org/abs/2212.09803
https://arxiv.org/abs/2212.09803
https://aclanthology.org/2021.humeval-1.3
https://aclanthology.org/2021.humeval-1.3

A Additional Results

Figure 3: Reverse and forward KL divergence of the model with GPT-J and the empirical distribution (WebText test
set) after different sampling adapter methods have been applied to the output distribution. Note that the ε-method, as
described in §4.1, is used in all but reverse KL estimates of models with GPT-J. Dashed lines represent divergence
with unmodified distribution, i.e., the equivalent of using ancestral sampling.

Figure 4: MAUVE scores for text generated using WebText prefixes and different sampling adapters. The dashed
lines indicate the scores of samples generated using ancestral sampling.

Figure 5: JS divergence of the model with the empirical distribution in the first row and with GPT-J in the second
row after different sampling adapter methods have been applied to the output distribution. Dashed lines represent
the distance to the unmodified distribution. We observe that at lower temperature values, some NaNs are produced
by the JS computation with the empirical distribution.

Figure 6: Average entropy of the distribution p̃θ(· | y<t) for different sampling adapter–hyperparameter combina-
tions. Dashed lines correspond to the entropy of the unmodified distribution.

Figure 7: Average model token coverage per sequence y (i.e., percentage of tokens to which the adapter assigns
non-zero probability) of the WebText test set after different sampling adapter methods have been applied to the
output distribution. Dashed lines correspond to unmodified distribution, which always assigns probability mass to
each token.

Figure 8: Same plot as Fig. 1 albeit using smaller ε (1e-8 instead of 1e-6) in computation of ϵ variants of methods.
Results are essentially unchanged, except for a slight shift in axis values.

Figure 9: Same plot as Fig. 1 except using the test set of WikiText as our set of strings (y) and to construct the
empirical distribution.

Figure 10: Reverse cross-entropy versus forward cross-entropy divergence (both using ε-smoothing) of the model
with the empirical distribution for various sampling adapter and hyperparameter settings. Stars correspond to values
at which hyperparameter settings achieved the highest MAUVE scores. The black dot corresponds to ancestral
sampling.

