
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics
Volume 1: Long Papers, pages 14095–14112

July 9-14, 2023 ©2023 Association for Computational Linguistics

Explicit Syntactic Guidance for Neural Text Generation
Yafu Li♠♣∗, Leyang Cui♡†, Jianhao Yan♠♣ , Yongjng Yin♠♣

Wei Bi♡ , Shuming Shi♡ , Yue Zhang♣♢†
♠ Zhejiang University ♡ Tencent AI lab

♣ School of Engineering, Westlake University
♢ Institute of Advanced Technology, Westlake Institute for Advanced Study

yafuly@gmail.com
{leyangcui,victoriabi,shumingshi}@tencent.com

{yanjianhao,yinyongjing,zhangyue}@westlake.edu.cn

Abstract

Most existing text generation models follow
the sequence-to-sequence paradigm. Gener-
ative Grammar suggests that humans gener-
ate natural language texts by learning language
grammar. We propose a syntax-guided gener-
ation schema, which generates the sequence
guided by a constituency parse tree in a top-
down direction. The decoding process can be
decomposed into two parts: (1) predicting the
infilling texts for each constituent in the lexical-
ized syntax context given the source sentence;
(2) mapping and expanding each constituent
to construct the next-level syntax context. Ac-
cordingly, we propose a structural beam search
method to find possible syntax structures hierar-
chically. Experiments on paraphrase generation
and machine translation show that the proposed
method outperforms autoregressive baselines,
while also demonstrating effectiveness in terms
of interpretability, controllability, and diversity.

1 Introduction

Natural language generation (NLG), such as para-
phrase generation (Sun et al., 2021), text sum-
marization (Lin et al., 2018), machine translation
(Vaswani et al., 2017; Edunov et al., 2018), and lan-
guage models (Brown et al., 2020; OpenAI, 2023),
have shown remarkable progress in the past few
years. Most of the highest-performing NLG models
train the model based on source-target correspon-
dence and conduct autoregressive inference, which
achieves competitive empirical performances yet
deviates from a range of desirable attributes of hu-
man language generation, e.g., lack of interpretabil-
ity (Alvarez-Melis and Jaakkola, 2017; He et al.,
2019; Li and Yao, 2021).

It has been shown that humans generate lan-
guage by learning and manipulating language gram-
mar (Zholkovskii and Mel’chuk, 1965; Montague,
1974), which generative grammar (Chomsky, 1965)

*Work was done during the internship at Tencent AI lab.
†Corresponding authors.

…………………………………………………...

………..…….

………………….….

……………………………………………….....……………………….…………………….

<T>

<NP> <VP>.<VP>.

he seems
<VP>.

he seems
wrong.

looks like he
was wrong

he seems to
have <VP>.

looks like he
made <NP>.

he seems to
have made
a mistake.

looks like he
made mistakes.

looks like
<NP> <VP>.

he seems to
have made
mistakes.

looks like he
made a mistake.

…………………….……….….he seems <S>.sounds like <S>.

Figure 1: Syntax-guided generation: searching the hy-
potheses hierarchically throughout the syntax tree in a
top-down direction, starting from the root node “<T>”.
The green blocks denote the possible syntax structures
at different tree depths, the blue one denotes the external
modification, whereas the gray ones denote the finalized
hypotheses, marking the end of search paths.

considers as a finite rule set that combines words to
form grammatical sentences, thereby avoiding enu-
meration of surface sequences, which can signifi-
cantly increase data sparsity and reducing learning
efficiency (Li et al., 2021; Dankers et al., 2022). In
this process, syntax plays a crucial role, imposing
constraints on how to construct sentences. Syntax
knowledge has been found implicitly contained by
deep neural models (Kovaleva et al., 2019; Clark
et al., 2019) and also useful for NLG tasks (Yang
et al., 2020a; Sun et al., 2021; Xie et al., 2021).
However, relatively little recent work has consid-
ered explict syntax in NLG (Wang et al., 2018).

Inspired by the above psycholinguistic obser-
vation, we propose a syntax-guided generation
scheme, which generates text by following a well-
defined grammar. As shown in Figure 1, instead of
sequential generation, the model generates the sen-
tence in a hierarchically top-down manner guided
by the constituency parse tree, starting with the
root node <T>. Syntactic categories such as noun
phrases <NP> and verb phrases <VP> are inte-
grated with tokens in the generation process, and

14095

the model simultaneously considers multiple syn-
tax structures at each tree depth, hierarchically ex-
ploring the syntax tree for reasonable hypotheses.

Intuitively, such a generation paradigm has the
following advantages compared with autoregres-
sive generation. First, akin to the language learn-
ing process of human beings, grammar learning
breaks down non-enumerable surface sequences
into finite pieces, acting as a training curriculum.
Second, it provides an effective and interpretable
pathway to probe into the generation process. Con-
sequently, generation errors can be traced back to
specific constituent expansion at the respective tree
depth. Third, one can manipulate the generation
process by exerting versatile control at arbitrary
depths, e.g., modifying the translation of a verb
phrase and constraining the paraphrase style with
syntax templates. Forth, diverse sequences can be
generated by exploring various syntax structures
hierarchically throughout the syntax tree.

We implement the above process on Transformer
(Vaswani et al., 2017). As shown in Figure 1, the
generation process proceeds under the guidance
of syntactic grammar. Starting from the root node
“<T>”, the model recursively generates the infilling
texts (e.g., “he” and ”seems <S>”) for each con-
stituent in the current lexicalized syntax context
(e.g, “<NP> <VP>.”.), and infills each one accord-
ingly to construct the next-level lexicalized syntax
context (e.g., “he seems <S>.”). The generation
proceeds until there is no remaining constituent.
The infilling texts are predicted by a Transformer-
based model, which is trained by maximizing the
likelihood of infilling texts for each constituent in
the syntax context based on the source input. To
explore more syntactically diverse and reasonable
hypotheses during inference, we propose structural
beam search, which searches promising syntax
structures over the entire syntax tree in a top-down
manner, as shown in Figure 1.

To isolate the effect of syntax and avoid the in-
fluence of other transformation factors, we con-
duct experiments on two sequence-to-sequence
(seq2seq) tasks with semantic equivalence between
the source and target sequences: paraphrase gen-
eration and machine translation. Empirical re-
sults demonstrate that our method can generate
sequences with higher quality than the seq2seq
baselines. Quantitative analysis demonstrates that
the generation process can be interpreted effec-
tively. In addition, our method demonstrates the ca-

pability of executing control from both syntax tem-
plates and fine-grained manual modifications. Fi-
nally, we show the diversity advantage through both
automatic evaluation and human evaluation. We
release the code on https://github.com/
yafuly/SyntacticGen.

2 Related Work

Syntax as Extra Input. A line of work incorpo-
rates syntax knowledge as extra input to boost task
performance. In paraphrase generation, Iyyer et al.
(2018), Chen et al. (2019), Kumar et al. (2020)
and (Sun et al., 2021) additionally encode a con-
stituency tree to produce controllable paraphrases.
For machine translation, researchers utilize syntac-
tic information to boost the neural machine trans-
lation system using syntactic encoders (Li et al.,
2017; Ma et al., 2018; Eriguchi et al., 2019; Ma
et al., 2020; Yang et al., 2020a), position encod-
ing (Ma et al., 2019; Xie et al., 2021), attention
mechanism (Chen et al., 2018; Peng et al., 2019),
and auxiliary training objectives (Ma et al., 2019).

Syntax for Generation Guidance. Different
from the above work, we focus on guiding genera-
tion explicitly following syntactic grammar. Typ-
ically, Aharoni and Goldberg (2017) and Le et al.
(2017) learn the mapping from sequences to lin-
earized constituency trees to improve machine
translation. Eriguchi et al. (2017) proposes a
hybrid decoder with RNNG (Dyer et al., 2016)
to jointly learn parse actions and word predic-
tions. Wu et al. (2017) and Wang et al. (2018)
design a syntactic tree decoder based on LSTM
(Hochreiter and Schmidhuber, 1997), with an ex-
tra rule decoder. Yang et al. (2020b) introduce a
syntax-guided soft target template as extra prompts
in Transformer. Different from their work, our
method leverages Transformer strengths and breaks
down the sequence-to-sequence generation process
into a hierarchically top-down generation guided
by the syntax tree.

3 Method

3.1 Baseline Transformer

Transformer models the correspondence between
the source sequence x = {x1, . . . , x|x|} and the tar-
get sequence y = {y1, . . . , y|y|} in an end-to-end
fashion. The Transformer encoder transforms the
discrete source sequence x into a continuous repre-
sentation, which the Transformer decoder utilizes

14096

https://github.com/yafuly/SyntacticGen
https://github.com/yafuly/SyntacticGen

Self Attention

Source Context Attention

Feedforward Network

Syntax Context Attention

Syntax Context
Encoder

<NP> <VP> .𝒔!:

𝒇!:

<bos> <c> I <c> ate

N x

<c> I <c> ate <NP>

Source Context
Encoder

Ich habe einen
Apfel gegessen .

𝒙:
Decoder

N x

S

NP VP .

I ate NP

an apple

T d 𝕋" 𝒔" 𝒇"
0 {(0,4,0,T)} <T> <S>

1 {(0,4,1,S)} <S> <c> <NP> <VP> .

2 {(0,0,2,NP),
(1,3,2,VP)} <NP> <VP> . <c> I

<c> ate <NP>

3 {(2,3,3,NP)} I ate <NP> . <c> an apple

Figure 2: Method illustration: the left part demonstrates the construction of the training triplet (i.e., (x, sd,fd))
based on the constituency parse tree; the right part denotes the architecture of the neural decoder, which takes in the
German source sentence x and the syntax context s2 as input, and predicts the infilling text f2.

to generate the target sequence. The conditional
probability p(y|x) can be factorized in an autore-
gressive way:

pθ(y|x) =
|y|∏

t=1

pθ(yt|x, y1:t−1), (1)

where θ denotes the model parameters.
Given a source-target training set D =

{xi,yi}||D|
i=1, the model is optimized by minimiz-

ing the cross-entropy (CE) loss:

LD
ce = −

|D|∑

i=1

T∑

t=1

log pθ(y
i
t|xi, yi1:t−1). (2)

3.2 Syntax-guided Generation
In this section, we introduce syntax-guided gener-
ation, which generates texts by hierarchically ex-
panding constituents in syntax contexts throughout
the syntax tree, while also leveraging the strengths
of Transformer. In general, the generation process
can be decomposed into two stages: (1) neural gen-
eration: the neural decoder (Section 3.2.2) gener-
ates the infilling sequences based on the source se-
quence and the syntax context; (2) constituent ex-
pansion: predicted infilling sequences are mapped
and filled into each constituent in the syntax context
accordingly (Section 3.2.3), forming the next-level
syntax context. To facilitate parallelism during
training, we decompose the sequence-to-sequence
dataset to a triplet set, where the neural decoder
is optimized to maximize the probability of the
infilled sequence (e.g., "<c> I <c> ate <NP> .")
given the lexicalized syntax context (e.g., "<NP>
<VP> ."), as shown in Figure 2.

3.2.1 Triplet Construction
Given a target sequence y, the corresponding con-
stituency parse tree of depth |T| can be composed

by a set of labeled spans T:

T = {Td}||T|d=1 = {{(ak, bk, d, lk)}||Td|
k=1}|

|T|
d=1,

(3)
where ak and bk represent the k-th constituent
span’s fencepost positions at depth d, and lk rep-
resents the constituent label. Our model is op-
timized to predict the next-level span sets Td

given the previous one and the source input, i.e.,
pθ(Td|Td−1,x).

Given the set of labeled spans at depth d,
i.e., Td, we transform the target sequence into
a lexicalized syntax sequence of length |sd|:
sd = {sd;1, sd;2, . . . , sd;|sd|}, by keeping the lex-
ical tokens and replacing the constituent spans
with corresponding labels. For instance, the se-
quence “I ate an apple .” is transformed to
s2 ={<NP>,<VP>,.} at depth 2, and is transformed
to s3 ={I,ate,<NP>,.} at depth 3, as shown in Fig-
ure 2. The alignment between s2 and s3 can be
modeled as a text-infilling task. For example, the
{<NP>}, {<VP>} and at depth 2 are replaced by
{I} and {ate <NP>} at depth 3, respectively. To
generate the whole s3 based on s2 in one pass, we
concatenate all the infilling texts with a special to-
ken “<c>”, yielding an infilling sequence f2 =
{<c>,I,<c>,ate,<NP>}.

Similarly for each syntax context sd, we collect
the respective infilling texts for each constituent in
the lexicalized sequence at depth d+1, and concate-
nate them to construct the target infilling sequence
of length |fd|: fd = {fd;1, fd;2, . . . , fd;|fd|}. In
this way, a triplet is constructed for a source-target
sequence pair at depth d: {(x, sd,fd)}. We tra-
verse the target syntax tree in level-order to obtain
the full set Φ of training triplets for a training in-
stance:

Φ = {Φd}||T|−1
d=1 = {(x, sd,fd)}||T|−1

d=1 . (4)

Given a sequence-to-sequence training set D =

14097

{xi,yi}||D|
i=1, we go through the full training set to

construct the complete triplet set Ψ:

Ψ = {Φi}||D|
i=1 = {(xj , sj ,f j)}|

∑|D|
i=1 |Φi|

j=1 . (5)

3.2.2 Neural Decoder
Given a triplet instance Ψj , we construct the neu-
ral decoder based on Transformer to model the
generative probability pθ(f

j |xj , sj). The neural
decoder takes the source sequence and the lexi-
calized syntax context as input and generates the
corresponding infilling texts, as shown in Figure 2.

Besides the encoder that encodes source context,
we introduce an extra Transformer encoder, i.e.,
syntax context encoder, to encode the lexicalized
syntax context into a representation. On top of self-
attention and source context attention, we insert an
extra attention layer (syntax context attention) into
each decoder layer to incorporate syntax contexts,
as shown in the right part of Figure 2.

Similarly, the probability of the infilling se-
quence can be factorized as:

pθ(f |x, s) =
|f |∏

t=1

pθ(ft|x, s, f1:t−1). (6)

We define the scoring function for an infilling
sequence as the sum of the log probabilities:

score(x, s,f) =

|f |∑

t=1

log pθ(ft|x, s, f1:t−1). (7)

We adopt the standard cross-entropy loss (CE
loss) to optimize our model, where the loss for the
j-th triplet in the training set Ψ can be written as:

Lj
ce = −

|fj |∑

t=1

log pθ(f
j
t |xj , sj , f j

1:t−1), (8)

and the CE loss across the whole triple set Ψ be-
comes:

LΨ
ce =

|Ψ|∑

j=1

Lj
ce. (9)

3.2.3 Generation Process
Given a source sequence, our model generates the
target sequence in a top-down manner which is
grounded on syntactic grammar rules. As shown
in Figure 2, the neural decoder first encodes the
source sequence x into the source context represen-
tation hsrc, which remains fixed and can be reused

throughout the generation process. Initially, the
neural decoder generates the infilling sequences
t0 given x and s0 ={<T>}, based on Equation
6. Then the model proceeds with the generation
process via iteratively generating infilling texts and
expanding constituents.

At each iteration step (i.e., tree depth), the neural
decoder generates the infilling sequence fd for the
syntax context sd:

fd = argmax
f ′

pθ(f
′|x, sd) (10)

Then the constituent expansion function yields the
next-level syntax context given the syntax context
and the infilling sequences predicted by the neural
decoder:

sd+1 = expand(sd,fd). (11)

Specifically, we first separate the infill-
ing sequences by the special separator “<c>”
into a group of infilling texts, e.g., split-
ing f2 ={{<c>,I,<c>,ate,<NP>}} to {{I},{ate
<NP>}}. Then we fill in each of the infilling texts
into the corresponding constituent in the syntax
context s2 to obtain the syntax context at the fol-
lowing level, e.g., s3={I,ate,<NP>,.}. The syntax
context encoder encodes the updated syntax context
sd+1 and starts the next iteration. The remaining
decoding process loops between these two stages,
until there is no constituent label in the syntax con-
text, or a maximum tree depth is reached, as shown
in Figure 2.

As the model behavior on expanding con-
stituents over the entire syntax tree is completely
accessible, the generation process can be effec-
tively interpreted, as shown in Section 6.2. More-
over, manual modifications can be directly incor-
porated into the expansion process for each con-
stituent throughout the syntax tree (Section 6.3).
Finally, more than one syntax structure can be con-
sidered simultaneously at each tree depth, enabling
searching for hypotheses of better syntactical diver-
sity(Section 6.4).

3.2.4 Structural Beam Search
By default, our model selects the best infilling texts
greedily in each iteration. We introduce structural
beam search to explore the hypothesis space for
a more accurate and diverse generation. Similar
to standard beam search (Sutskever et al., 2014),
structural beam search maintains a beam width of

14098

<T> <S>

did <NP>
<VP> ?

<NP> <VP> .

<VP> .

did he
seem <S> ?

did he
look like <S> ?

he seems
<S> .

he seemed
<S> .

looks like
<S> .

sounds like
<S> .

he seems
<VP> .

he seems
wrong .

looks like
<NP> <VP> .

looks like
<NP> just <VP> .

he seems
to <VP> .

he seems
<S> , <NP> .

looks like he
made <NP> .

looks like
he was wrong .

he seems
to have <VP> .

he seems
to be wrong .

looks like he
made a mistake .

looks like he
made mistakes .

he seems to
have made <NP> .

he seems to have
made <NP> <PP> .

he seems to have
made a mistake .

he seems to have
made mistakes .

d=0 d=1 d=2 d=3 d=4 d=5 d=6 d=7 d=8

Figure 3: A real example of our model generating a paraphrase given the source sequence “it seems like he has
made a mistake.”, under the structural beam search of width 2. Diverse syntax structures are explored during the
generation, e..g, “<VP>.”, “<NP> <VP>.”, and “did <NP> <VP>?”.

candidates at each iteration. Thanks to explicitly
traversing the constituency parse tree during infer-
ence, our method is able to search promising syntax
structures throughout the syntax tree in a top-down
manner. We show a real example of our model
generating a paraphrase in Figure 3.

At each level, we apply standard beam search
for neural generation and keep top k infilling texts
along with their scores, computed by Equation 7.
Taking previous predictions into consideration, we
introduce a moving average mechanism to trade
off confidence between the predictions from lower
levels and the current-level prediction. Specifically,
suppose si is the i-th syntax context in the k-width
beam at the current depth, with an accumulated
score of δsi ; and f j;si is the j-th infilling sequence
candidate from the neural generation beam given
the syntax context si, with a score of δfj;si

. A
beam of next-level syntax contexts is constructed,
by filling in the current syntax context with the
corresponding infilling sequences:

sik+j = expand(si,f j;si). (12)

The updated score for each of the next-level syn-
tax contexts in the beam is given by:

δik+j = αδsi + (1− α)δfj;si
, (13)

where α is a hyper-parameter (accumulation
weight) that determines how much weight is put on
predictions at lower levels. Then the beam is fur-
ther pruned by their updated scores to maintain the
beam width. For example, the first two candidate
syntax contexts are selected at depth 2 in Figure 3.
Algorithm implementation details can be referred
to in Appendix A.

4 Experiment Setup

Datasets For paraphrase generation, we experi-
ment on ParaNMT-small (Chen et al., 2019), which

contains 500K sentence-paraphrase pairs for train-
ing, 500 for validation, and 800 for testing. Both
validation and test sets are provided with human-
annotated sentence exemplars from which syn-
tax information can be extracted for controlling
paraphrase generation. For machine translation,
we use NIST Chinese-English (Zh-En), WMT’16
Romanian-English (Ro-En), WMT’14 English-
German (De-En), and WMT’14 English-German
(En-De). For WMT datasets, we follow the offi-
cial split for validation and testing. For NIST Zh-
En, we use MT06 as the validation set and choose
MT02, MT03, MT04, MT05, and MT08 as the test
sets. For all datasets, we use Berkeley Parser (Ki-
taev and Klein, 2018; Kitaev et al., 2019) to obtain
constituency parse trees and use the most frequent
constituents (e.g., <NP>, <VP>, <PP> and <S>)
for syntactic guidance.

Model Settings For Transformer baselines, we
adopt the Transformer_Base configuration which
consists of a 6-layer encoder and decoder. For our
model, we keep the 6-layer source context encoder,
and set the number of layers for both the syntax
context encoder and the decoder as 3, resulting
in a similar model size with Transformer_Base.
The accumulation weight α is as 0.8 for structural
beam search based on validation experiments. For
machine translation, we adopt sequence-level dis-
tillation (Kim and Rush, 2016) for both our model
and the corresponding baseline Transformer. More
details are shown in Appendix B.

Evaluation We use the BLEU score (Papineni
et al., 2002) to evaluate machine translation perfor-
mance. For paraphrase generation, we also adopt
ROUGE (Lin, 2004) and METEOR (Banerjee and
Lavie, 2005) as reference-based metrics. Besides,

14099

Model BLEU↑ / self-BLEU↓ / iBLEU↑ METEOR↑ ROUGE-1/2/L↑ Dlex↑ Dsyn ↑

Copy 18.5 / 100 / -17.1 28.8 50.6 / 23.2 / 47.7 0.0 0.0
Gold 100.0 / 18.6 / 64.4 100.0 100.0 /100.0 / 100.0 20.7 32.6

without Syntax Control

SCPN (Iyyer et al., 2018) 12.1 / - / - 23.3 35.7 / 15.1 / 32.9 - -
AESOP (Sun et al., 2021) 15.0 / - / - 26.1 47.0 / 21.3 / 47.3 - -

Transformer (beam 1) 15.2 / 28.2 / 2.2 29.5 49.8 / 23.6 / 49.2 17.4 19.8
Our Method (beam 1) 18.6 / 15.2 / 8.5 30.8 51.1 / 26.3 / 51.3 21.6 24.4
Transformer (beam 5) 17.6 / 33.8 / 2.2 31.1 51.9 / 26.0 / 51.0 16.2 18.1
Our Method (beam 5) 19.3 / 16.4 / 8.6 31.5 51.8 / 27.0 / 52.2 21.5 25.1

with Human-annotated Syntax Control

CGEN (Chen et al., 2019) 13.6 /- /- 24.8 44.8 / 21.0 / 48.3 - -
SGCP-F (Kumar et al., 2020) 15.3 / - / - 25.9 46.6 / 21.8 / 49.7 - -
SGCP-R (Kumar et al., 2020) 16.4 / - / - 28.8 49.4 / 22.9 / 50.3 - -
AESOP-F (Sun et al., 2021) 20.4 / - /- 30.0 52.0 / 27.8 / 55.3 - -

Our Method 20.9 / 10.5 / 13.0 33.3 54.1 / 29.7 / 55.3 22.6 27.7

Table 1: Experimental results on paraphrase generation (ParaNMT-small).

Model NIST Zh-En WMT16 WMT14
MT02 MT03 MT04 MT05 MT08 avg Ro-En En-De De-En

Transformer (beam 1) 48.9 49.2 50.7 49.3 41.4 47.9 33.9 27.9 30.7
Our Method (beam 1) 50.8 51.8 51.9 51.7 42.2 49.7 34.4 28.6 31.8
Transformer (beam 5) 49.8 50.1 51.1 50.1 42.3 48.7 34.1 28.3 31.3
Our Method (beam 5) 51.1 52.4 52.4 52.1 43.1 50.2 34.9 28.7 32.2

Table 2: Experimental results (BLEU score) on machine translation benchmark datasets. The result of our method
is statistically significant compared to the corresponding Transformer baseline with p < 0.05 (Koehn, 2004).

Model iBLEU↑ Dlex↑ Dsyn↑
BART 4.4 19.6 24.4

BART + Our Method 8.8 21.3 24.7

Table 3: Results for training on BART, compared with
sequence-to-sequence BART for paraphrase generation.

we report iBLEU (Sun and Zhou, 2012):

iBLEU = r · BLEU(hypothesis, reference)

−(1− r) · BLEU(hypothesis, source),

which evaluates the generation fidelity with nov-
elty to the source sentence considered*. Following
Bandel et al. (2022), we consider two reference-
free metrics: (1) lexical diversity score, i.e., Dlex,
which is the normalized character-level minima
edit distance between the bag-of-words; and (2)
syntax diversity score, i.e., Dsyn, which is the nor-
malized tree edit distance. Both scores measure
generated paraphrases with the source sequences
unless specified.

5 Results

Paraphrase We compare our method with the
baselines and previous work on syntax-control para-
phrase generation. Another two baselines are also

*r is set as 0.7.

listed, i.e., copy the source input and use the refer-
ence as the output. The results are shown in Table 1.
For paraphrase generation without syntax control
(the center section in Table 1), our method achieves
higher performance than the seq2seq Transformer,
in both greedy and beam search settings. Typically,
our method under greedy decoding obtains com-
parable results with the Transformer under beam
search, and even outperforms under some metrics.
The advantage of our method becomes larger for
metrics such as iBLEU, Dlex, and Dsyn, which
consider generation novelty compared with the
source input. For example, compared with Trans-
former (beam 5), our method (beam 5) gives a
much lower self-BLEU score (16.4 v.s. 33.8) and
higher diversity scores (21.5 v.s. 16.2 for lexi-
cal diversity and 25.1 v.s. 18.1 for syntax diver-
sity), indicating better generation diversity and con-
tributing to a significant improvement on iBLEU
(8.6 v.s. 2.2). With annotated exemplars (the
lower section in Table 1), our model obtains further
improvement over the non-exemplar setting and
achieves better performance compared to previous
work which utilizes full syntactic parse.

We extend our method to the pre-trained lan-
guage model (PLM) setting and present the result
in Table 3 (Details in Appendix A). It can be seen
from the table that the utilization of BART (Lewis

14100

et al., 2019) improves the generation diversity for
the sequence-to-sequence model significantly. De-
spite the narrowed gap, our model outperforms the
seq2seq counterpart in terms of iBLEU and lexical
diversity by a considerable margin.

Machine Translation As shown in Table 2, our
method achieves consistent performance (BLEU
score) improvement over the Transformer base-
line. The improvement is larger for the greedy
setting (+1.5 BLEU scores on average), compared
with the beam search setting (+1.2). This indi-
cates that using syntax to guide and constrain gen-
eration yields more reasonable and high-quality
hypotheses than the greedy autoregressive genera-
tion, and thus relies less on search algorithms (e.g.,
beam search). Note that compared with the English-
oriented datasets, our model obtains a smaller per-
formance improvement on WMT’14 En-De. This
can be because the German parser is less accurate
than the English one (92.1 v.s. 96.3 for F1 score),
resulting in a training set with lower quality.

6 Analysis

We first discuss the influence of grammar quality,
then we understand the potential advantages of our
method from three perspectives, i.e., interpretabil-
ity, controllability, and diversity.

6.1 The Influence of Grammar Quality
Intuitively, learning syntactic grammar of higher
quality results in better generation performance,
e.g., the advantage of our method on English-
oriented datasets is larger than the German-oriented
one. To further explore the influence of grammar
quality, we randomly replace a certain ratio of the
constituent labels with a random one to simulate a
less accurate parser. We conduct experiments on
the WMT’16 Ro-En dataset. By injecting noise of
ratios of 0.2 and 0.4, the model performance de-
teriorates from 34.9 to 34.6 and 32.3 accordingly,
indicating the quality of syntactic grammar exerts a
large influence on model’s generation performance.

6.2 Interpretability
We evaluate the model’s interpretability based on
its capability of providing explanations in under-
standable terms to a human (Doshi-Velez and Kim,
2017), i.e., whether it generates texts following
language grammar. We trace each constituent ex-
pansion during generation and compare the model-
induced tree with the tree parsed by a benchmark

Dataset Precision Recall F1 Score

ParaNMT-small 96.0% 98.4 % 97.2%
NIST Zh-En 96.6% 96.8% 96.7%

WMT’16 Ro-En 93.5% 94.2% 93.9%
WMT’14 De-En 95.7% 96.3% 96.0%
WMT’14 En-De 84.4% 95.4% 89.6%

Table 4: The quantitative evaluation of the models’ in-
terpretability.

Dataset BLEU ↑ Dref
syn ↓

w/o w w/o w

ParaNMT-small 19.3 24.9(+5.6) 25.7 17.2(-8.5)
NIST (ref-0) 28.0 30.3(+2.3) 25.1 19.2(-5.9)
NIST (ref-1) 27.3 29.3(+2.0) 25.5 20.1(-5.4)
NIST (ref-2) 25.7 28.5(+2.8) 25.4 18.3(-7.1)
NIST (ref-3) 26.1 28.1(+2.0) 25.7 20.1(-5.6)

WMT’16 Ro-En 35.0 35.8(+0.8) 18.3 15.9(-2.4)
WMT’14 De-En 32.2 35.3(+3.1) 19.6 14.0(-5.6)
WMT’14 En-De 28.7 30.6(+1.9) 28.9 26.3(-2.6)

Table 5: Controllable generation using golden syntax
exemplars. NIST (ref-i) denotes the merged test sets
with the i-th reference. A lower Dref

syn denotes higher
syntactic similarity with the reference.

parser, e.g., Berkeley Parser. Specifically, we use
the Berkeley parser to parse the same generated
hypotheses by our model and treat the correspond-
ing parsing results as golden parses. Quantitative
results (Figure 4) show that our model achieves
an average F1 score of 94.6 , which demonstrates
the generation process highly corresponds to the
syntactic grammar and thus can be effectively inter-
preted. Note that the score for WMT’14 En-De is
lower (89.0), possibly due to the less accurate Ger-
man parser for constructing the syntactic grammar,
as discussed in Section 6.1.

6.3 Controllability
Control with Complete Syntax Template To
leverage control signals from delexicalized syntax
templates (e.g., “(S (NP) (VP (NP)))” for the se-
quence “I ate an apple.”), we introduce a reward γ
into Equation 13:

δik+j = αδsi + (1− α)δfj;si
+ γ. (14)

If the updated syntax context sik+j matches the
corresponding template pattern at depth d+ 1, the
γ is a positive value otherwise 0. For example, the
syntax context “<NP> <VP>” in Figure 3 matches
the pattern “((NP)(VP))” at depth 2. Intuitively, the
reward encourages the model to favor beam candi-
dates that match the syntax template. We set the
reward value as 0.32 based on validation results

14101

(Appendix F). The testset of ParaNMT-small is pro-
vided with human-annotated exemplars and we use
it to control generation, with results shown in Ta-
ble 1. More generally, golden templates can be
derived by parsing the reference sentences for each
dataset with a parser (e.g., the Berkeley Parser). We
present the results in Table 5. Guided by the refer-
ence syntax template, our model obtains consistent
improvement in terms of hypothesis similarity with
references, which is reflected by the decreased syn-
tax edit distance to the references, i.e., Dref

syn. For
the multi-reference dataset NIST Zh-En, our model
can generate translations of different styles which
are prompted by alternative syntax templates from
multiple references.

Control with Partial Syntax Template We fur-
ther explore whether the model can handle fine-
grained arbitrary controls. Specifically, we ask
three annotators to modify the intermediate syn-
tax contexts output by the model, based on the
source input. 100 instances are randomly selected
from the NIST Zh-En test set and each annota-
tor gives different modifications for each instance.
The modified contexts are fed to the model to pre-
dict the infilling texts. We then ask the annotators
to evaluate whether their controls (i.e., modifica-
tions) are safely responded to by the model. We
show some of the control examples in Appendix
G. The average control success rate is 81%, which
demonstrates the capability of our model to handle
arbitrary fine-grained controls.

6.4 Diversity
Beam Diversity We expect the model to gener-
ate diverse hypotheses under beam search, while
also maintaining generation quality. To this end,
we measure the model’s beam diversity by com-
puting two average scores: (1) the average of the
mutual diversity scores of every two of the beam
candidates, i.e., Dbeam

lex and Dbeam
syn ; (2) the average

generation quality of the beam candidates, mea-
sured by BLEU scores. The results for paraphrase
generation are shown in Table 6. In terms of gen-
eration quality, our model generates consistently
better beam candidates on average than the baseline
model. Besides, we can see that structural beam
search can yield more diverse beam candidates, in-
dicated by the higher mutual diversity (i.e., Dbeam

lex

and Dbeam
syn) among beam candidates.

Effects of Accumulation Weight A larger accu-
mulation weight (α in Eq. 13) indicates a larger

ParaNMT-small
Model avg BLEU/iBLEU Dbeam

lex ↑ Dbeam
syn ↑

Transformer 15.0/1.6 12.6 11.2
Our Method 16.9/7.1 15.0 12.6

Table 6: Beam diversity measured by the average gen-
eration quality and the average mutual diversity among
the beam candidates.

20.0

22.0

24.0

26.0

28.0

30.0

32.0

6.0

6.5

7.0

7.5

8.0

8.5

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 0.95 0.99 1.00

D
_l
ex
/D
_s
yn

iB
LE
U

Alpha

iBLEU D_lex D_syn

Figure 4: Effects of accumulation weights.

weight on previous decisions when re-ranking the
newly updated beam candidates. As a result, early
determined syntax structures are less likely to be
surpassed throughout the whole structural beam
search. On the contrary, a smaller α encourages the
model to explore promising candidates at higher
levels, and can therefore find more diverse hypothe-
ses. We explore the effects of α with results shown
in Figure 4. As the weight grows smaller, the model
generates sequences of better syntactic diversity,
i.e., Dsyn. However, an overly small weight de-
teriorates generation quality (iBLEU), which can
be caused by the model’s overconfidence in local
predictions without considering the predictions of
syntax contexts at lower levels. Such deterioration
is also seen for overly large weights (>0.95), due
to limited exploration at higher levels.

Human Evaluation We further conduct a hu-
man evaluation to evaluate generation quality and
diversity on paraphrase generation. We ask three
annotators to vote for one of the two candidates: hy-
potheses from the seq2seq baseline and our method.
The annotators are required to decide, which one is
better by considering Fidelity, Novelty, and Diver-
sity (See Appendix H for details). The results are
shown in Table 7. As can be seen from the table,
our method achieves much better generation nov-
elty and beam diversity compared with the baseline,
while maintaining semantic fidelity, which further

14102

Model Fidelity Novelty Diversity

Transformer 50.2% 29.6 % 29.0%
Our Method 49.8% 70.4% 71.0%

Table 7: Human evaluation on paraphrase generation.

validates the results of the automatic evaluation.

7 Conclusion

We proposed a syntax-guided generation paradigm,
which leverages the strengths of Transformer and
generates sequences by hierarchically expanding
constituents in the lexicalized syntax contexts
throughout the syntax tree. The neural decoder was
trained by maximizing the likelihood of the infill-
ing texts for each constituent in the syntax contexts
given the source sequence. Moreover, we proposed
the structural beam search to better explore the hy-
pothesis space. Empirical results demonstrated the
advantage of generation quality over the seq2seq
baseline, and also the effectiveness in terms of in-
terpretability, controllability, and diversity.

Our method can be seen as a step towards ex-
plicit modelling of psycholinguistic structures dur-
ing neural text generation , helping the model to
have a degree of control over what it intends to gen-
erate, which can potentially address salient issues
of current neural NLG, such as hallucination (Guer-
reiro et al., 2023; Dziri et al., 2022) and ethical
issues (Sheng et al., 2019, 2021; Weidinger et al.,
2021), if semantics, pragmatics, and other factors
are also integrated.

Limitations

Despite the competitive performance, there are sev-
eral limitations of this work: (1) As discussed in
Section 6.1, the generation performance relies on
the parser performance, which is strong enough
for English but still less satisfactory for other lan-
guages. Dedicated methods need to be considered
to compensate for the weak parser performance if
we want to extend our method to more languages.
(2) In this work, we consider two NLG tasks with
semantic equivalence to testify if the proposed
method can convey the source semantics accurately
by following the target syntactic grammar. Other
tasks such as summarization and dialogue genera-
tion can also be tested, where the semantics are not
equivalent between the source and target. (3) To
train the neural decoder parallelly, we break down
the source-target dataset into a triple set. However,

the global dependency of the syntax parse tree is
not considered, which can deteriorate generation
performance. (4) Due to the recursive encoding of
the syntax contexts, our model’s inference speed is
approximately half that of the seq2seq counterpart
(Appendix E). (5) Future work should include ex-
periments on large language models (Brown et al.,
2020; OpenAI, 2023; Zeng et al., 2022; Touvron
et al., 2023; Taori et al., 2023). to further demon-
strate the effectiveness of our method beyond pre-
trained language models.

Ethics Statement

We honor the ACL Code of Ethics. No private data
or non-public information is used in this work. For
human annotation (Section 6.3 and Section 6.4),
we recruited our annotators from the linguistics
departments of local universities through public
advertisement with a specified pay rate. All of
our annotators are senior undergraduate students or
graduate students in linguistic majors who took this
annotation as a part-time job. We pay them 60 CNY
an hour. The local minimum salary in the year 2022
is 25.3 CNY per hour for part-time jobs. The an-
notation does not involve any personally sensitive
information. The annotated is required to rank the
system output and label factual information (i.e.,
syntactic annotation).

Acknowledgement

We would like to thank all reviewers for their in-
sightful comments and suggestions to help im-
prove the paper. We thank Deng Cai and Xinting
Huang for their insightful suggestions. This work is
funded by the Ministry of Science and Technology
of China (grant No. 2022YFE020038).

References
Roee Aharoni and Yoav Goldberg. 2017. Towards

string-to-tree neural machine translation. In Proceed-
ings of the 55th Annual Meeting of the Association for
Computational Linguistics (Volume 2: Short Papers),
pages 132–140, Vancouver, Canada. Association for
Computational Linguistics.

David Alvarez-Melis and Tommi Jaakkola. 2017. A
causal framework for explaining the predictions of
black-box sequence-to-sequence models. In Proceed-
ings of the 2017 Conference on Empirical Methods
in Natural Language Processing, pages 412–421,
Copenhagen, Denmark. Association for Computa-
tional Linguistics.

14103

https://doi.org/10.18653/v1/P17-2021
https://doi.org/10.18653/v1/P17-2021
https://doi.org/10.18653/v1/D17-1042
https://doi.org/10.18653/v1/D17-1042
https://doi.org/10.18653/v1/D17-1042

Elron Bandel, Ranit Aharonov, Michal Shmueli-
Scheuer, Ilya Shnayderman, Noam Slonim, and Liat
Ein-Dor. 2022. Quality controlled paraphrase gener-
ation. CoRR, abs/2203.10940.

Satanjeev Banerjee and Alon Lavie. 2005. METEOR:
an automatic metric for MT evaluation with improved
correlation with human judgments. In Proceedings
of the Workshop on Intrinsic and Extrinsic Evalua-
tion Measures for Machine Translation and/or Sum-
marization@ACL 2005, Ann Arbor, Michigan, USA,
June 29, 2005, pages 65–72. Association for Compu-
tational Linguistics.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei.
2020. Language models are few-shot learners. In Ad-
vances in Neural Information Processing Systems 33:
Annual Conference on Neural Information Process-
ing Systems 2020, NeurIPS 2020, December 6-12,
2020, virtual.

Kehai Chen, Rui Wang, Masao Utiyama, Eiichiro
Sumita, and Tiejun Zhao. 2018. Syntax-directed
attention for neural machine translation. In Proceed-
ings of the AAAI conference on artificial intelligence,
volume 32.

Mingda Chen, Qingming Tang, Sam Wiseman, and
Kevin Gimpel. 2019. Controllable paraphrase gener-
ation with a syntactic exemplar. In Proceedings of
the 57th Annual Meeting of the Association for Com-
putational Linguistics, pages 5972–5984, Florence,
Italy. Association for Computational Linguistics.

Noam Chomsky. 1965. Aspects of the theory of syntax.

Kevin Clark, Urvashi Khandelwal, Omer Levy, and
Christopher D. Manning. 2019. What does bert
look at? an analysis of bert’s attention. In Black-
BoxNLP@ACL.

Verna Dankers, Elia Bruni, and Dieuwke Hupkes. 2022.
The paradox of the compositionality of natural lan-
guage: A neural machine translation case study. In
Proceedings of the 60th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), ACL 2022, Dublin, Ireland, May 22-27,
2022, pages 4154–4175. Association for Computa-
tional Linguistics.

Finale Doshi-Velez and Been Kim. 2017. Towards a
rigorous science of interpretable machine learning.
arXiv: Machine Learning.

Chris Dyer, Adhiguna Kuncoro, Miguel Ballesteros,
and Noah A. Smith. 2016. Recurrent neural network

grammars. In Proceedings of the 2016 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, pages 199–209, San Diego, California.
Association for Computational Linguistics.

Nouha Dziri, Sivan Milton, Mo Yu, Osmar R. Zaïane,
and Siva Reddy. 2022. On the origin of hallucina-
tions in conversational models: Is it the datasets or
the models? In Proceedings of the 2022 Conference
of the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, NAACL 2022, Seattle, WA, United States,
July 10-15, 2022, pages 5271–5285. Association for
Computational Linguistics.

Sergey Edunov, Myle Ott, Michael Auli, and David
Grangier. 2018. Understanding back-translation at
scale. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing,
pages 489–500, Brussels, Belgium. Association for
Computational Linguistics.

Akiko Eriguchi, Kazuma Hashimoto, and Yoshimasa
Tsuruoka. 2019. Incorporating source-side phrase
structures into neural machine translation. Computa-
tional Linguistics, 45(2):267–292.

Akiko Eriguchi, Yoshimasa Tsuruoka, and Kyunghyun
Cho. 2017. Learning to parse and translate im-
proves neural machine translation. arXiv preprint
arXiv:1702.03525.

Nuno Miguel Guerreiro, Elena Voita, and André F. T.
Martins. 2023. Looking for a needle in a haystack: A
comprehensive study of hallucinations in neural ma-
chine translation. In Proceedings of the 17th Confer-
ence of the European Chapter of the Association for
Computational Linguistics, EACL 2023, Dubrovnik,
Croatia, May 2-6, 2023, pages 1059–1075. Associa-
tion for Computational Linguistics.

Shilin He, Zhaopeng Tu, Xing Wang, Longyue Wang,
Michael Lyu, and Shuming Shi. 2019. Towards un-
derstanding neural machine translation with word im-
portance. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
953–962, Hong Kong, China. Association for Com-
putational Linguistics.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural Comput., 9(8):1735–
1780.

Mohit Iyyer, John Wieting, Kevin Gimpel, and Luke
Zettlemoyer. 2018. Adversarial example generation
with syntactically controlled paraphrase networks. In
Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 1 (Long Papers), pages 1875–1885, New Or-
leans, Louisiana. Association for Computational Lin-
guistics.

14104

https://doi.org/10.48550/arXiv.2203.10940
https://doi.org/10.48550/arXiv.2203.10940
https://aclanthology.org/W05-0909/
https://aclanthology.org/W05-0909/
https://aclanthology.org/W05-0909/
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://doi.org/10.18653/v1/P19-1599
https://doi.org/10.18653/v1/P19-1599
https://doi.org/10.18653/v1/2022.acl-long.286
https://doi.org/10.18653/v1/2022.acl-long.286
https://doi.org/10.18653/v1/N16-1024
https://doi.org/10.18653/v1/N16-1024
https://doi.org/10.18653/v1/2022.naacl-main.387
https://doi.org/10.18653/v1/2022.naacl-main.387
https://doi.org/10.18653/v1/2022.naacl-main.387
https://doi.org/10.18653/v1/D18-1045
https://doi.org/10.18653/v1/D18-1045
https://aclanthology.org/2023.eacl-main.75
https://aclanthology.org/2023.eacl-main.75
https://aclanthology.org/2023.eacl-main.75
https://doi.org/10.18653/v1/D19-1088
https://doi.org/10.18653/v1/D19-1088
https://doi.org/10.18653/v1/D19-1088
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.18653/v1/N18-1170
https://doi.org/10.18653/v1/N18-1170

Yoon Kim and Alexander M. Rush. 2016. Sequence-
level knowledge distillation. In Proceedings of the
2016 Conference on Empirical Methods in Natural
Language Processing, EMNLP 2016, Austin, Texas,
USA, November 1-4, 2016, pages 1317–1327. The
Association for Computational Linguistics.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In 3rd Inter-
national Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings.

Nikita Kitaev, Steven Cao, and Dan Klein. 2019. Multi-
lingual constituency parsing with self-attention and
pre-training. In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguistics,
pages 3499–3505, Florence, Italy. Association for
Computational Linguistics.

Nikita Kitaev and Dan Klein. 2018. Constituency pars-
ing with a self-attentive encoder. In Proceedings
of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 2676–2686, Melbourne, Australia. Association
for Computational Linguistics.

Philipp Koehn. 2004. Statistical significance tests for
machine translation evaluation. In Proceedings of
the 2004 Conference on Empirical Methods in Nat-
ural Language Processing , EMNLP 2004, A meet-
ing of SIGDAT, a Special Interest Group of the ACL,
held in conjunction with ACL 2004, 25-26 July 2004,
Barcelona, Spain, pages 388–395. ACL.

Olga Kovaleva, Alexey Romanov, Anna Rogers, and
Anna Rumshisky. 2019. Revealing the dark secrets
of BERT. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
4365–4374, Hong Kong, China. Association for Com-
putational Linguistics.

Ashutosh Kumar, Kabir Ahuja, Raghuram Vadapalli,
and Partha Talukdar. 2020. Syntax-guided controlled
generation of paraphrases. Transactions of the Asso-
ciation for Computational Linguistics, 8:329–345.

An Nguyen Le, Ander Martinez, Akifumi Yoshimoto,
and Yuji Matsumoto. 2017. Improving sequence to
sequence neural machine translation by utilizing syn-
tactic dependency information. In Proceedings of
the Eighth International Joint Conference on Natu-
ral Language Processing (Volume 1: Long Papers),
pages 21–29.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2019. Bart:
Denoising sequence-to-sequence pre-training for nat-
ural language generation, translation, and compre-
hension. arXiv preprint arXiv:1910.13461.

Junhui Li, Deyi Xiong, Zhaopeng Tu, Muhua Zhu, Min
Zhang, and Guodong Zhou. 2017. Modeling source
syntax for neural machine translation. In Proceed-
ings of the 55th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 688–697, Vancouver, Canada. Association for
Computational Linguistics.

Yafu Li, Yongjing Yin, Yulong Chen, and Yue Zhang.
2021. On compositional generalization of neural ma-
chine translation. In Proceedings of the 59th Annual
Meeting of the Association for Computational Lin-
guistics and the 11th International Joint Conference
on Natural Language Processing, ACL/IJCNLP 2021,
(Volume 1: Long Papers), Virtual Event, August 1-6,
2021, pages 4767–4780. Association for Computa-
tional Linguistics.

Yangming Li and Kaisheng Yao. 2021. Interpretable
NLG for task-oriented dialogue systems with hetero-
geneous rendering machines. In Thirty-Fifth AAAI
Conference on Artificial Intelligence, AAAI 2021,
Thirty-Third Conference on Innovative Applications
of Artificial Intelligence, IAAI 2021, The Eleventh
Symposium on Educational Advances in Artificial In-
telligence, EAAI 2021, Virtual Event, February 2-9,
2021, pages 13306–13314. AAAI Press.

Chin-Yew Lin. 2004. ROUGE: A package for auto-
matic evaluation of summaries. In Text Summariza-
tion Branches Out, pages 74–81, Barcelona, Spain.
Association for Computational Linguistics.

Junyang Lin, Xu Sun, Shuming Ma, and Qi Su. 2018.
Global encoding for abstractive summarization. In
Proceedings of the 56th Annual Meeting of the As-
sociation for Computational Linguistics, ACL 2018,
Melbourne, Australia, July 15-20, 2018, Volume 2:
Short Papers, pages 163–169. Association for Com-
putational Linguistics.

Chunpeng Ma, Akihiro Tamura, Masao Utiyama, Ei-
ichiro Sumita, and Tiejun Zhao. 2019. Improving
neural machine translation with neural syntactic dis-
tance. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
2032–2037.

Chunpeng Ma, Akihiro Tamura, Masao Utiyama, Ei-
ichiro Sumita, and Tiejun Zhao. 2020. Syntax-based
transformer for neural machine translation. Journal
of Natural Language Processing, 27(2):445–466.

Chunpeng Ma, Akihiro Tamura, Masao Utiyama, Tiejun
Zhao, and Eiichiro Sumita. 2018. Forest-based neu-
ral machine translation. In Proceedings of the 56th
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1253–
1263.

Richard Montague. 1974. Universal grammar. In Rich-
mond H. Thomason, editor, Formal Philosophy: Se-
lected Papers of Richard Montague, 222–247. Yale
University Press, New Haven, London.

14105

https://doi.org/10.18653/v1/d16-1139
https://doi.org/10.18653/v1/d16-1139
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://doi.org/10.18653/v1/P19-1340
https://doi.org/10.18653/v1/P19-1340
https://doi.org/10.18653/v1/P19-1340
https://doi.org/10.18653/v1/P18-1249
https://doi.org/10.18653/v1/P18-1249
https://aclanthology.org/W04-3250/
https://aclanthology.org/W04-3250/
https://doi.org/10.18653/v1/D19-1445
https://doi.org/10.18653/v1/D19-1445
https://doi.org/10.1162/tacl_a_00318
https://doi.org/10.1162/tacl_a_00318
https://doi.org/10.18653/v1/P17-1064
https://doi.org/10.18653/v1/P17-1064
https://doi.org/10.18653/v1/2021.acl-long.368
https://doi.org/10.18653/v1/2021.acl-long.368
https://ojs.aaai.org/index.php/AAAI/article/view/17571
https://ojs.aaai.org/index.php/AAAI/article/view/17571
https://ojs.aaai.org/index.php/AAAI/article/view/17571
https://aclanthology.org/W04-1013
https://aclanthology.org/W04-1013
https://doi.org/10.18653/v1/P18-2027

OpenAI. 2023. GPT-4 technical report. CoRR,
abs/2303.08774.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan,
Sam Gross, Nathan Ng, David Grangier, and Michael
Auli. 2019. fairseq: A fast, extensible toolkit for
sequence modeling. In Proceedings of the 2019 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, NAACL-HLT 2019, Minneapo-
lis, MN, USA, June 2-7, 2019, Demonstrations, pages
48–53. Association for Computational Linguistics.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
40th Annual Meeting of the Association for Compu-
tational Linguistics, July 6-12, 2002, Philadelphia,
PA, USA, pages 311–318. ACL.

Ru Peng, Zhitao Chen, Tianyong Hao, and Yi Fang.
2019. Neural machine translation with attention
based on a new syntactic branch distance. In China
Conference on Machine Translation, pages 47–57.
Springer.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. Language mod-
els are unsupervised multitask learners.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words with
subword units. In Proceedings of the 54th Annual
Meeting of the Association for Computational Lin-
guistics, ACL 2016, August 7-12, 2016, Berlin, Ger-
many, Volume 1: Long Papers. The Association for
Computer Linguistics.

Emily Sheng, Kai-Wei Chang, Prem Natarajan, and
Nanyun Peng. 2021. Societal biases in language gen-
eration: Progress and challenges. In Proceedings
of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing,
ACL/IJCNLP 2021, (Volume 1: Long Papers), Virtual
Event, August 1-6, 2021, pages 4275–4293. Associa-
tion for Computational Linguistics.

Emily Sheng, Kai-Wei Chang, Premkumar Natarajan,
and Nanyun Peng. 2019. The woman worked as
a babysitter: On biases in language generation. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing, EMNLP-IJCNLP 2019, Hong
Kong, China, November 3-7, 2019, pages 3405–3410.
Association for Computational Linguistics.

Hong Sun and Ming Zhou. 2012. Joint learning of a
dual SMT system for paraphrase generation. In The
50th Annual Meeting of the Association for Compu-
tational Linguistics, Proceedings of the Conference,
July 8-14, 2012, Jeju Island, Korea - Volume 2: Short
Papers, pages 38–42. The Association for Computer
Linguistics.

Jiao Sun, Xuezhe Ma, and Nanyun Peng. 2021. AESOP:
Paraphrase generation with adaptive syntactic control.
In Proceedings of the 2021 Conference on Empiri-
cal Methods in Natural Language Processing, pages
5176–5189, Online and Punta Cana, Dominican Re-
public. Association for Computational Linguistics.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural networks.
Advances in neural information processing systems,
27.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann
Dubois, Xuechen Li, Carlos Guestrin, Percy
Liang, and Tatsunori B. Hashimoto. 2023. Stan-
ford alpaca: An instruction-following llama
model. https://github.com/tatsu-lab/
stanford_alpaca.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, Aurelien Rodriguez, Armand Joulin, Edouard
Grave, and Guillaume Lample. 2023. Llama: Open
and efficient foundation language models.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing
systems, 30.

Xinyi Wang, Hieu Pham, Pengcheng Yin, and Graham
Neubig. 2018. A tree-based decoder for neural ma-
chine translation. In Proceedings of the 2018 Con-
ference on Empirical Methods in Natural Language
Processing, pages 4772–4777, Brussels, Belgium.
Association for Computational Linguistics.

Laura Weidinger, John Mellor, Maribeth Rauh, Conor
Griffin, Jonathan Uesato, Po-Sen Huang, Myra
Cheng, Mia Glaese, Borja Balle, Atoosa Kasirzadeh,
Zac Kenton, Sasha Brown, Will Hawkins, Tom
Stepleton, Courtney Biles, Abeba Birhane, Julia
Haas, Laura Rimell, Lisa Anne Hendricks, William
Isaac, Sean Legassick, Geoffrey Irving, and Iason
Gabriel. 2021. Ethical and social risks of harm from
language models. CoRR, abs/2112.04359.

Shuangzhi Wu, Dongdong Zhang, Nan Yang, Mu Li,
and Ming Zhou. 2017. Sequence-to-dependency neu-
ral machine translation. In Proceedings of the 55th
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 698–707,
Vancouver, Canada. Association for Computational
Linguistics.

Yikuan Xie, Wenyong Wang, Mingqian Du, and Qing
He. 2021. Transformer with syntactic position en-
coding for machine translation. In Proceedings of
the International Conference on Recent Advances in
Natural Language Processing (RANLP 2021), pages
1536–1544.

14106

https://doi.org/10.48550/arXiv.2303.08774
https://doi.org/10.18653/v1/n19-4009
https://doi.org/10.18653/v1/n19-4009
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.18653/v1/p16-1162
https://doi.org/10.18653/v1/p16-1162
https://doi.org/10.18653/v1/2021.acl-long.330
https://doi.org/10.18653/v1/2021.acl-long.330
https://doi.org/10.18653/v1/D19-1339
https://doi.org/10.18653/v1/D19-1339
https://aclanthology.org/P12-2008/
https://aclanthology.org/P12-2008/
https://doi.org/10.18653/v1/2021.emnlp-main.420
https://doi.org/10.18653/v1/2021.emnlp-main.420
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca
http://arxiv.org/abs/2302.13971
http://arxiv.org/abs/2302.13971
https://doi.org/10.18653/v1/D18-1509
https://doi.org/10.18653/v1/D18-1509
http://arxiv.org/abs/2112.04359
http://arxiv.org/abs/2112.04359
https://doi.org/10.18653/v1/P17-1065
https://doi.org/10.18653/v1/P17-1065

Baosong Yang, Derek F Wong, Lidia S Chao, and Min
Zhang. 2020a. Improving tree-based neural machine
translation with dynamic lexicalized dependency en-
coding. Knowledge-Based Systems, 188:105042.

Jian Yang, Shuming Ma, Dongdong Zhang, Zhoujun Li,
and Ming Zhou. 2020b. Improving neural machine
translation with soft template prediction. In Proceed-
ings of the 58th Annual Meeting of the Association
for Computational Linguistics, pages 5979–5989.

Aohan Zeng, Xiao Liu, Zhengxiao Du, Zihan Wang,
Hanyu Lai, Ming Ding, Zhuoyi Yang, Yifan Xu,
Wendi Zheng, Xiao Xia, Weng Lam Tam, Zixuan
Ma, Yufei Xue, Jidong Zhai, Wenguang Chen, Peng
Zhang, Yuxiao Dong, and Jie Tang. 2022. Glm-130b:
An open bilingual pre-trained model.

AK Zholkovskii and IA Mel’chuk. 1965. On a possi-
ble method and instrument for semantic synthesis.
Nauchno-tekhnicheskaya informatsiya,(6).

14107

http://arxiv.org/abs/2210.02414
http://arxiv.org/abs/2210.02414

Algorithm 1 Structural beam search
Setup: k: beam size

α: accumulation weight
dmax: maximum tree depth
ENCODER(·): source context encoder
terminated(·): termination examination function
expand(·, ·): constituent expansion function
beam_search(·, ·): standard beam search algorithm

Input: x: source sequence
1: d← 0
2: hsrc ← ENCODER(x)
3: B0 ← {(0, ⟨T ⟩)}
4: while d < dmax do
5: B ← ∅
6: for (δs, s) ∈ Bd−1 do
7: if terminated(s) then
8: B.add((δs, s))
9: continue

10: end if
11: F ← beam_search(s,hsrc)
12: for (δf ,f) ∈ F do
13: δ̂ ← αδs + (1− α)δf
14: ŝ← expand(s,f)

15: B.add((δ̂, ŝ))
16: end for
17: end for
18: Bd ← B.top(k)
19: d← d+ 1
20: end while
21: return Bdmax

A Algorithms

The scoring algorithm 7 can be rewritten with the
source context x encoded into hsrc:

score(hsrc, s,f) =

|f |∑

t=0

logpθ(ft|hsrc, s, f1:t−1)

(15)
The algorithm of structural beam search is

demonstrated in Algorithm 1, which employs the
standard beam search for autoregressive generation,
depicted in Algorithm 2. The termination function
in Algorithm 1 (i.e., terminated(·)) returns true if
the there is no remaining constituent in the input
sequence.

B Experiment Details

For NIST Zh-En, we use parts of the bitext pro-
vided within NIST’12 OpenMT† and the final train
set consists of about 1.8M sentence pairs. We ap-
ply BPE (Sennrich et al., 2016) on all datasets: the
number of BPE operations is 6K for ParaNMT-
small, and 40K for the other datasets. We imple-
ment our model using Fairseq (Ott et al., 2019).

†LDC2005T06, LDC2004T07, LDC2003E07,
LDC2000T46, LDC2000T47, LDC2000T50, LDC2003E14,
LDC2005T10, LDC2002E18, LDC2007T09, LDC2004T08

Algorithm 2 Beam search
Setup: k: beam size

tmax: maximum hypothesis length
V: target tokens set
score(·, ·, ·): scoring function (Eq. 15)

Input: s: syntax context
hsrc: source context representations

1: t← 0
2: B0 ← {(0, ⟨bos⟩)}
3: while t < tmax do
4: B ← ∅
5: for (δ,f) ∈ Bt−1 do
6: if f .last() = ⟨eos⟩ then
7: B.add((δ,f))
8: continue
9: end if

10: for f ∈ V do
11: δ ← score(hsrc, s,f ◦ f)
12: B.add((δ,f))
13: end for
14: end for
15: Bt ← B.top(k)
16: t← t+ 1
17: end while
18: return Btmax

We train the model using Adam (Kingma and Ba,
2015) optimizer. The learning rate increases to
7 · 10−4 in the first 10K steps and then anneals
exponentially. We set the weight decay as 0.01
and label smoothing as 0.1. The dropout is 0.3
for ParaNMT-small, and 0.1 for the other datasets.
The batch size is 64K tokens for ParaNMT-small,
256K for WMT’16 Ro-En and NIST Zh-En, and
512K for WMT’14 De↔En. All models are trained
for a maximum update of 300K steps unless early
stopped. We train the model using 4 V100s and in-
crease gradient accumulation steps for large batch
sizes. We choose the 5 best checkpoints based
on validation sets and average them for inference.
We set the beam width as 5 for beam search. For
machine translation, the teacher models for knowl-
edge distillation are Transformer_Base for NIST
Zh-En and WMT’16 Ro-en, and Transformer_Big
for WMT’14 De↔En.

C Model Architecture

We conduct experiments to compare different
model architectures to incorporate syntax context
on the WMT’16 Ro-En validation set. We consider
the following settings:

• Concat: concatenate the syntax context with
the source sequence, with the vanilla Trans-
former unmodified.

• Extra-attention: reuse the source encoder for
encoding syntax context and insert an extra at-

14108

Model BLEU↑ / self-BLEU↓ / iBLEU↑ METEOR↑ ROUGE-1/2/L↑ Dlex↑ Dsyn↑

BART Seq2seq (beam 1) 15.8 / 26.9 / 3.0 27.3 50.1 / 23.1 / 50.0 19.5 23.8
BART + Our Method (beam 1) 18.3 / 15.5 / 8.2 31.0 52.1 / 26.7 / 52.1 21.1 24.0

BART Seq2seq (beam 5) 17.9 / 27.0 / 4.4 28.4 51.4 / 24.8 / 51.5 19.6 24.4
BART + Our Method (beam 5) 19.0 / 15.1 / 8.8 31.3 52.3 / 27.0 / 52.5 21.3 24.7

Table 8: Experimental results on paraphrase generation (ParaNMT-small) based on BART.

Architecture # params BLEU Speed

Concat 64.2M 34.5 1.0x
Extra-attention 70.5M 34.7 0.9x
Extra-encoder 64.2M 35.3 1.1x

Table 9: Model architectures for encoding previous syn-
tax contexts.

tention layer, i.e., the syntax context attention,
into each decoder layer.

• Extra-encoder: introduce an additional en-
coder for encoding syntax context and also
uses the syntax context attention.

Empirical results are shown in Table 9. Based
on validation results, we adopt the Extra-encoder
model in all experiments except for training on
BART (Table 3), where we adopt the Concat
model.

D Experiments on PLM

In this section, we introduce our experiment set-
tings of PLM. Following previous work (Sun et al.,
2021), we use BART-base (Lewis et al., 2019) as
our base model. All models are finetuned for 10
epochs with a batch size of 64k tokens. The learn-
ing rate is 3e-5 and the linear decay schedule, as
recommended in BART’s official repository‡.

We use the Concat (Appendix C) model archi-
tecture for extending our method to BART. The
source text and the syntax context are concatenated
with a special token “<sep>”, e.g., “I ate an apple
. <sep> <NP> <VP> .”. To effectively employ our
method with BART, whose inputs are tokenized
sequences byte-level, as same as Radford et al., we
make several modifications. In the pre-processing,
we make sure our special tokens (e.g., <sep>, <c>,
<NP>, <VP>) are not split and add extra byte-level
spaces before and after the special token. Thanks to
the unused tokens in BART embeddings, we do not
need to modify the embedding matrix. Instead, we
assign our special tokens to unused token indexes.

‡https://github.com/facebookresearch/
fairseq/tree/main/examples/bart

14.5

15.5

16.5

17.5

18.5

19.5

31.5

32.0

32.5

33.0

33.5

34.0

34.5

0.0
0
0.0
1
0.0
2
0.0
4
0.0
8
0.1
6
0.3
2
0.6
4
1.2
8
2.5
6

D
_s
yn

BL
EU

Reward

BLEU
D_syn

Figure 5: Effects of reward ratio on the WMT14’De-En
validation set.

Finally, in the inference stage, we find the con-
stituency expansion causes a discrepancy between
inputs of train and test. Thus, we first detokenize
each layer’s outputs and then tokenize them back
with the same procedure in the preprocessing to
avoid such a gap.

E Generating Linearized Trees Directly

A baseline method to induce grammar simultane-
ously during generation is generating linearized
parse trees directly, i.e., training a seq2seq model
which takes in source sequences and outputs lin-
earized parse trees. We compare it with our method
on WMT’16 Ro-En. Specifically, the BLEU score
for WMT’16 Ro-En is only 27.6 compared to the
seq2seq baseline (34.1) and our method (34.9).
This can be because the additional parentheses and
constituency tags in linearized trees may deterio-
rate sequence coherence, making learning more
difficult. Our method, on the other hand, breaks
down syntax trees into level pieces to create a better
learning curriculum. Furthermore, Generating lin-
earized parse trees is much slower than the seq2seq
counterpart, since the average sequence length of
linearized tree sequences is longer (152.3 vs 28.4).
As a result, the average speed for generating lin-
earized parse trees is only 0.8 sentences/s com-
pared to 3.6 sentences/s for the seq2seq baseline.
Our method achieves an inference speed of 1.7
sentences/s under the same computing condition
(V100 GPU). Additionally, generating a linearized
parse tree is not easily interpretable or controllable,
due to the black-box nature of the sequence-to-

14109

https://github.com/facebookresearch/fairseq/tree/main/examples/bart
https://github.com/facebookresearch/fairseq/tree/main/examples/bart

Source Human Control Infilling Text Final Hypothesis

巴基斯坦政府和人民对死难者
的家属表示深切的慰问。
(English: The Government and
people of Pakistan express their
deep sympathy to the bereaved
families.)

<NP> and <NP> expressed
their deep sympathy <PP> .

<c> the pakistani government <c> the
pakistani people <c> for <NP>

the pakistani government and the pakistani people
expressed their deep sympathy for the families of the
victims .

<S> <VP> to the bereaved
family .

<c> the pakistani government and people
<c> expressed <NP>

the pakistani government and people expressed their
deep sympathy and solicitude to the bereaved family .

the government and people of
pakistan <VP> . <c> expressed <NP>

the government and people of pakistan expressed their
deep sympathy and solicitude for the families of the
victims .

老实说 , 我认为自己要比 36 岁
年轻许多。
(English: To be honest, I consider
myself much younger than 36.)

<PP> , <S> . <c> in <NP> <c> <NP> <VP> in an honest way , i think i am much younger than 36 .

to be honest , I consider <S> . <c> <NP> much younger <PP> to be honest , i consider myself much younger than 36 .

to be honest , <S> . <c> <NP> <VP> to be honest , i think i am much younger than 36 .

然而 , 这并不妨碍哈马斯作出
灵活的策略调整 , 推选独立人
士便是折中之策。
(English: That, however, does not
prevent Hamas from manoeuvring
nimbly. Voting for an independent
would be a compromise.)

that , however , does not
<VP> , voting for an
independent would be a
compromise .

<c> prevent <NP> <PP>
that , however , does not prevent hamas from making
flexible strategic adjustments , voting for an
independent would be a compromise .

that , however , <VP> . <VP>
would be a compromise . <c> does not <VP> <c> electing <NP>

that , however , does not prevent hamas from making
flexible strategic adjustments . electing an independent
person would be a compromise .

<S> , <S> <c> however , <NP> <VP> <c> <S>
<VP>

however , this does not prevent hamas from making
flexible strategic adjustments , choosing an
independent person is a compromise

Figure 6: Samples cases for fine-grained manual controls: the 4 columns denote the source Chinese sentence, the
human-annotated control, the model’s predicted infilling texts, and the final English translation.

sequence paradigm.

F Effects of Control Reward

The magnitude of the reward γ determines how
much priority is given to beam candidates that
match the syntax exemplar. We experiment with
different reward values to give a quantitative
demonstration, shown in Figure 5. It can be seen
that the control effectiveness grows with the in-
crease of the reward value until 0.64, which sug-
gests that all possible matched beam candidates are
re-ranked to the top in the search space.

G Control with Partial Syntax Template

We present 3 sample cases to demonstrate fine-
grained controls over the generation process,
shown in Figure 6. Each Chinese source sentence
is paired with 3 manual controls from three anno-
tators. The model takes in the annotated syntax
context and proceeds to obtain the respective trans-
lations.

H Human Evaluation for Paraphrase
Generation

We ask three annotators to conduct side-by-side
human evaluations and report averaged results of
their annotations. For each instance, the annotators
vote for one of the two outputs by the baseline

and our model. The outputs contain top-5 beam
candidates under beam search. The annotators are
asked to evaluate both the best candidate and the
beam results as a whole, based on the following
three aspects:

• Fidelity: Whether the best candidate is
semantics-equivalent with the input.

• Novelty: Whether the best candidate modifies
the input sentence structure.

• Diversity: Whether the generated five candi-
dates are different from each other given the
input.

14110

ACL 2023 Responsible NLP Checklist

A For every submission:
�3 A1. Did you describe the limitations of your work?

Section Limitations.

� A2. Did you discuss any potential risks of your work?
Not applicable. Left blank.

�3 A3. Do the abstract and introduction summarize the paper’s main claims?
Section Abstract and Section 1.

�7 A4. Have you used AI writing assistants when working on this paper?
Left blank.

B � Did you use or create scientific artifacts?
Not applicable. Left blank.

�3 B1. Did you cite the creators of artifacts you used?
Section 4.

� B2. Did you discuss the license or terms for use and / or distribution of any artifacts?
Not applicable. Left blank.

� B3. Did you discuss if your use of existing artifact(s) was consistent with their intended use, provided
that it was specified? For the artifacts you create, do you specify intended use and whether that is
compatible with the original access conditions (in particular, derivatives of data accessed for research
purposes should not be used outside of research contexts)?
Not applicable. Left blank.

� B4. Did you discuss the steps taken to check whether the data that was collected / used contains any
information that names or uniquely identifies individual people or offensive content, and the steps
taken to protect / anonymize it?
Not applicable. Left blank.

� B5. Did you provide documentation of the artifacts, e.g., coverage of domains, languages, and
linguistic phenomena, demographic groups represented, etc.?
Not applicable. Left blank.

�3 B6. Did you report relevant statistics like the number of examples, details of train / test / dev splits,
etc. for the data that you used / created? Even for commonly-used benchmark datasets, include the
number of examples in train / validation / test splits, as these provide necessary context for a reader
to understand experimental results. For example, small differences in accuracy on large test sets may
be significant, while on small test sets they may not be.
Section 4.

C �3 Did you run computational experiments?
Section 4 & 5.

�3 C1. Did you report the number of parameters in the models used, the total computational budget
(e.g., GPU hours), and computing infrastructure used?
Appendix B & C.

The Responsible NLP Checklist used at ACL 2023 is adopted from NAACL 2022, with the addition of a question on AI writing
assistance.

14111

https://2023.aclweb.org/
https://2022.naacl.org/blog/responsible-nlp-research-checklist/
https://2023.aclweb.org/blog/ACL-2023-policy/
https://2023.aclweb.org/blog/ACL-2023-policy/

�3 C2. Did you discuss the experimental setup, including hyperparameter search and best-found
hyperparameter values?
Section 4; Appendix B & C.

� C3. Did you report descriptive statistics about your results (e.g., error bars around results, summary
statistics from sets of experiments), and is it transparent whether you are reporting the max, mean,
etc. or just a single run?
Not applicable. Left blank.

�3 C4. If you used existing packages (e.g., for preprocessing, for normalization, or for evaluation), did
you report the implementation, model, and parameter settings used (e.g., NLTK, Spacy, ROUGE,
etc.)?
Section 5.

D �3 Did you use human annotators (e.g., crowdworkers) or research with human participants?
Section 6.4 & 6.4.

�3 D1. Did you report the full text of instructions given to participants, including e.g., screenshots,
disclaimers of any risks to participants or annotators, etc.?
Appendix G & H.

�3 D2. Did you report information about how you recruited (e.g., crowdsourcing platform, students)
and paid participants, and discuss if such payment is adequate given the participants’ demographic
(e.g., country of residence)?
Section Ethics Consideration.

�3 D3. Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? For example, if you collected data via crowdsourcing, did your instructions to
crowdworkers explain how the data would be used?
Appendix G & H.

� D4. Was the data collection protocol approved (or determined exempt) by an ethics review board?
Not applicable. Left blank.

�3 D5. Did you report the basic demographic and geographic characteristics of the annotator population
that is the source of the data?
Section Ethics Consideration.

14112

