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Abstract

Most existing text generation models follow
the sequence-to-sequence paradigm. Gener-
ative Grammar suggests that humans gener-
ate natural language texts by learning language
grammar. We propose a syntax-guided gener-
ation schema, which generates the sequence
guided by a constituency parse tree in a top-
down direction. The decoding process can be
decomposed into two parts: (1) predicting the
infilling texts for each constituent in the lexical-
ized syntax context given the source sentence;
(2) mapping and expanding each constituent
to construct the next-level syntax context. Ac-
cordingly, we propose a structural beam search
method to find possible syntax structures hierar-
chically. Experiments on paraphrase generation
and machine translation show that the proposed
method outperforms autoregressive baselines,
while also demonstrating effectiveness in terms
of interpretability, controllability, and diversity.

1 Introduction

Natural language generation (NLG), such as para-
phrase generation (Sun et al., 2021), text sum-
marization (Lin et al., 2018), machine translation
(Vaswani et al., 2017; Edunov et al., 2018), and lan-
guage models (Brown et al., 2020; OpenAI, 2023),
have shown remarkable progress in the past few
years. Most of the highest-performing NLG models
train the model based on source-target correspon-
dence and conduct autoregressive inference, which
achieves competitive empirical performances yet
deviates from a range of desirable attributes of hu-
man language generation, e.g., lack of interpretabil-
ity (Alvarez-Melis and Jaakkola, 2017; He et al.,
2019; Li and Yao, 2021).

It has been shown that humans generate lan-
guage by learning and manipulating language gram-
mar (Zholkovskii and Mel’chuk, 1965; Montague,
1974), which generative grammar (Chomsky, 1965)
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<T>

<NP> <VP>.<VP>.

he seems
<VP>.
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wrong.
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was wrong

he seems to
have <VP>.
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made <NP>.
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have made
a mistake.
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made mistakes.

looks like
<NP> <VP>.

he seems to
have made
mistakes.
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made a mistake.

…………………….……….….he seems <S>.sounds like <S>.

Figure 1: Syntax-guided generation: searching the hy-
potheses hierarchically throughout the syntax tree in a
top-down direction, starting from the root node “<T>”.
The green blocks denote the possible syntax structures
at different tree depths, the blue one denotes the external
modification, whereas the gray ones denote the finalized
hypotheses, marking the end of search paths.

considers as a finite rule set that combines words to
form grammatical sentences, thereby avoiding enu-
meration of surface sequences, which can signifi-
cantly increase data sparsity and reducing learning
efficiency (Li et al., 2021; Dankers et al., 2022). In
this process, syntax plays a crucial role, imposing
constraints on how to construct sentences. Syntax
knowledge has been found implicitly contained by
deep neural models (Kovaleva et al., 2019; Clark
et al., 2019) and also useful for NLG tasks (Yang
et al., 2020a; Sun et al., 2021; Xie et al., 2021).
However, relatively little recent work has consid-
ered explict syntax in NLG (Wang et al., 2018).

Inspired by the above psycholinguistic obser-
vation, we propose a syntax-guided generation
scheme, which generates text by following a well-
defined grammar. As shown in Figure 1, instead of
sequential generation, the model generates the sen-
tence in a hierarchically top-down manner guided
by the constituency parse tree, starting with the
root node <T>. Syntactic categories such as noun
phrases <NP> and verb phrases <VP> are inte-
grated with tokens in the generation process, and
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the model simultaneously considers multiple syn-
tax structures at each tree depth, hierarchically ex-
ploring the syntax tree for reasonable hypotheses.

Intuitively, such a generation paradigm has the
following advantages compared with autoregres-
sive generation. First, akin to the language learn-
ing process of human beings, grammar learning
breaks down non-enumerable surface sequences
into finite pieces, acting as a training curriculum.
Second, it provides an effective and interpretable
pathway to probe into the generation process. Con-
sequently, generation errors can be traced back to
specific constituent expansion at the respective tree
depth. Third, one can manipulate the generation
process by exerting versatile control at arbitrary
depths, e.g., modifying the translation of a verb
phrase and constraining the paraphrase style with
syntax templates. Forth, diverse sequences can be
generated by exploring various syntax structures
hierarchically throughout the syntax tree.

We implement the above process on Transformer
(Vaswani et al., 2017). As shown in Figure 1, the
generation process proceeds under the guidance
of syntactic grammar. Starting from the root node
“<T>”, the model recursively generates the infilling
texts (e.g., “he” and ”seems <S>”) for each con-
stituent in the current lexicalized syntax context
(e.g, “<NP> <VP>.”.), and infills each one accord-
ingly to construct the next-level lexicalized syntax
context (e.g., “he seems <S>.”). The generation
proceeds until there is no remaining constituent.
The infilling texts are predicted by a Transformer-
based model, which is trained by maximizing the
likelihood of infilling texts for each constituent in
the syntax context based on the source input. To
explore more syntactically diverse and reasonable
hypotheses during inference, we propose structural
beam search, which searches promising syntax
structures over the entire syntax tree in a top-down
manner, as shown in Figure 1.

To isolate the effect of syntax and avoid the in-
fluence of other transformation factors, we con-
duct experiments on two sequence-to-sequence
(seq2seq) tasks with semantic equivalence between
the source and target sequences: paraphrase gen-
eration and machine translation. Empirical re-
sults demonstrate that our method can generate
sequences with higher quality than the seq2seq
baselines. Quantitative analysis demonstrates that
the generation process can be interpreted effec-
tively. In addition, our method demonstrates the ca-

pability of executing control from both syntax tem-
plates and fine-grained manual modifications. Fi-
nally, we show the diversity advantage through both
automatic evaluation and human evaluation. We
release the code on https://github.com/
yafuly/SyntacticGen.

2 Related Work

Syntax as Extra Input. A line of work incorpo-
rates syntax knowledge as extra input to boost task
performance. In paraphrase generation, Iyyer et al.
(2018), Chen et al. (2019), Kumar et al. (2020)
and (Sun et al., 2021) additionally encode a con-
stituency tree to produce controllable paraphrases.
For machine translation, researchers utilize syntac-
tic information to boost the neural machine trans-
lation system using syntactic encoders (Li et al.,
2017; Ma et al., 2018; Eriguchi et al., 2019; Ma
et al., 2020; Yang et al., 2020a), position encod-
ing (Ma et al., 2019; Xie et al., 2021), attention
mechanism (Chen et al., 2018; Peng et al., 2019),
and auxiliary training objectives (Ma et al., 2019).

Syntax for Generation Guidance. Different
from the above work, we focus on guiding genera-
tion explicitly following syntactic grammar. Typ-
ically, Aharoni and Goldberg (2017) and Le et al.
(2017) learn the mapping from sequences to lin-
earized constituency trees to improve machine
translation. Eriguchi et al. (2017) proposes a
hybrid decoder with RNNG (Dyer et al., 2016)
to jointly learn parse actions and word predic-
tions. Wu et al. (2017) and Wang et al. (2018)
design a syntactic tree decoder based on LSTM
(Hochreiter and Schmidhuber, 1997), with an ex-
tra rule decoder. Yang et al. (2020b) introduce a
syntax-guided soft target template as extra prompts
in Transformer. Different from their work, our
method leverages Transformer strengths and breaks
down the sequence-to-sequence generation process
into a hierarchically top-down generation guided
by the syntax tree.

3 Method

3.1 Baseline Transformer

Transformer models the correspondence between
the source sequence x = {x1, . . . , x|x|} and the tar-
get sequence y = {y1, . . . , y|y|} in an end-to-end
fashion. The Transformer encoder transforms the
discrete source sequence x into a continuous repre-
sentation, which the Transformer decoder utilizes
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Figure 2: Method illustration: the left part demonstrates the construction of the training triplet (i.e., (x, sd,fd))
based on the constituency parse tree; the right part denotes the architecture of the neural decoder, which takes in the
German source sentence x and the syntax context s2 as input, and predicts the infilling text f2.

to generate the target sequence. The conditional
probability p(y|x) can be factorized in an autore-
gressive way:

pθ(y|x) =
|y|∏

t=1

pθ(yt|x, y1:t−1), (1)

where θ denotes the model parameters.
Given a source-target training set D =

{xi,yi}||D|
i=1, the model is optimized by minimiz-

ing the cross-entropy (CE) loss:

LD
ce = −

|D|∑

i=1

T∑

t=1

log pθ(y
i
t|xi, yi1:t−1). (2)

3.2 Syntax-guided Generation
In this section, we introduce syntax-guided gener-
ation, which generates texts by hierarchically ex-
panding constituents in syntax contexts throughout
the syntax tree, while also leveraging the strengths
of Transformer. In general, the generation process
can be decomposed into two stages: (1) neural gen-
eration: the neural decoder (Section 3.2.2) gener-
ates the infilling sequences based on the source se-
quence and the syntax context; (2) constituent ex-
pansion: predicted infilling sequences are mapped
and filled into each constituent in the syntax context
accordingly (Section 3.2.3), forming the next-level
syntax context. To facilitate parallelism during
training, we decompose the sequence-to-sequence
dataset to a triplet set, where the neural decoder
is optimized to maximize the probability of the
infilled sequence (e.g., "<c> I <c> ate <NP> .")
given the lexicalized syntax context (e.g., "<NP>
<VP> ."), as shown in Figure 2.

3.2.1 Triplet Construction
Given a target sequence y, the corresponding con-
stituency parse tree of depth |T| can be composed

by a set of labeled spans T:

T = {Td}||T|d=1 = {{(ak, bk, d, lk)}||Td|
k=1}|

|T|
d=1,

(3)
where ak and bk represent the k-th constituent
span’s fencepost positions at depth d, and lk rep-
resents the constituent label. Our model is op-
timized to predict the next-level span sets Td

given the previous one and the source input, i.e.,
pθ(Td|Td−1,x).

Given the set of labeled spans at depth d,
i.e., Td, we transform the target sequence into
a lexicalized syntax sequence of length |sd|:
sd = {sd;1, sd;2, . . . , sd;|sd|}, by keeping the lex-
ical tokens and replacing the constituent spans
with corresponding labels. For instance, the se-
quence “I ate an apple .” is transformed to
s2 ={<NP>,<VP>,.} at depth 2, and is transformed
to s3 ={I,ate,<NP>,.} at depth 3, as shown in Fig-
ure 2. The alignment between s2 and s3 can be
modeled as a text-infilling task. For example, the
{<NP>}, {<VP>} and at depth 2 are replaced by
{I} and {ate <NP>} at depth 3, respectively. To
generate the whole s3 based on s2 in one pass, we
concatenate all the infilling texts with a special to-
ken “<c>”, yielding an infilling sequence f2 =
{<c>,I,<c>,ate,<NP>}.

Similarly for each syntax context sd, we collect
the respective infilling texts for each constituent in
the lexicalized sequence at depth d+1, and concate-
nate them to construct the target infilling sequence
of length |fd|: fd = {fd;1, fd;2, . . . , fd;|fd|}. In
this way, a triplet is constructed for a source-target
sequence pair at depth d: {(x, sd,fd)}. We tra-
verse the target syntax tree in level-order to obtain
the full set Φ of training triplets for a training in-
stance:

Φ = {Φd}||T|−1
d=1 = {(x, sd,fd)}||T|−1

d=1 . (4)

Given a sequence-to-sequence training set D =
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{xi,yi}||D|
i=1, we go through the full training set to

construct the complete triplet set Ψ:

Ψ = {Φi}||D|
i=1 = {(xj , sj ,f j)}|

∑|D|
i=1 |Φi|

j=1 . (5)

3.2.2 Neural Decoder
Given a triplet instance Ψj , we construct the neu-
ral decoder based on Transformer to model the
generative probability pθ(f

j |xj , sj). The neural
decoder takes the source sequence and the lexi-
calized syntax context as input and generates the
corresponding infilling texts, as shown in Figure 2.

Besides the encoder that encodes source context,
we introduce an extra Transformer encoder, i.e.,
syntax context encoder, to encode the lexicalized
syntax context into a representation. On top of self-
attention and source context attention, we insert an
extra attention layer (syntax context attention) into
each decoder layer to incorporate syntax contexts,
as shown in the right part of Figure 2.

Similarly, the probability of the infilling se-
quence can be factorized as:

pθ(f |x, s) =
|f |∏

t=1

pθ(ft|x, s, f1:t−1). (6)

We define the scoring function for an infilling
sequence as the sum of the log probabilities:

score(x, s,f) =

|f |∑

t=1

log pθ(ft|x, s, f1:t−1). (7)

We adopt the standard cross-entropy loss (CE
loss) to optimize our model, where the loss for the
j-th triplet in the training set Ψ can be written as:

Lj
ce = −

|fj |∑

t=1

log pθ(f
j
t |xj , sj , f j

1:t−1), (8)

and the CE loss across the whole triple set Ψ be-
comes:

LΨ
ce =

|Ψ|∑

j=1

Lj
ce. (9)

3.2.3 Generation Process
Given a source sequence, our model generates the
target sequence in a top-down manner which is
grounded on syntactic grammar rules. As shown
in Figure 2, the neural decoder first encodes the
source sequence x into the source context represen-
tation hsrc, which remains fixed and can be reused

throughout the generation process. Initially, the
neural decoder generates the infilling sequences
t0 given x and s0 ={<T>}, based on Equation
6. Then the model proceeds with the generation
process via iteratively generating infilling texts and
expanding constituents.

At each iteration step (i.e., tree depth), the neural
decoder generates the infilling sequence fd for the
syntax context sd:

fd = argmax
f ′

pθ(f
′|x, sd) (10)

Then the constituent expansion function yields the
next-level syntax context given the syntax context
and the infilling sequences predicted by the neural
decoder:

sd+1 = expand(sd,fd). (11)

Specifically, we first separate the infill-
ing sequences by the special separator “<c>”
into a group of infilling texts, e.g., split-
ing f2 ={{<c>,I,<c>,ate,<NP>}} to {{I},{ate
<NP>}}. Then we fill in each of the infilling texts
into the corresponding constituent in the syntax
context s2 to obtain the syntax context at the fol-
lowing level, e.g., s3={I,ate,<NP>,.}. The syntax
context encoder encodes the updated syntax context
sd+1 and starts the next iteration. The remaining
decoding process loops between these two stages,
until there is no constituent label in the syntax con-
text, or a maximum tree depth is reached, as shown
in Figure 2.

As the model behavior on expanding con-
stituents over the entire syntax tree is completely
accessible, the generation process can be effec-
tively interpreted, as shown in Section 6.2. More-
over, manual modifications can be directly incor-
porated into the expansion process for each con-
stituent throughout the syntax tree (Section 6.3).
Finally, more than one syntax structure can be con-
sidered simultaneously at each tree depth, enabling
searching for hypotheses of better syntactical diver-
sity(Section 6.4).

3.2.4 Structural Beam Search
By default, our model selects the best infilling texts
greedily in each iteration. We introduce structural
beam search to explore the hypothesis space for
a more accurate and diverse generation. Similar
to standard beam search (Sutskever et al., 2014),
structural beam search maintains a beam width of
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<NP> <VP> .
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<NP> just <VP> .

he seems
to <VP> .

he seems
<S> , <NP> .

looks like he
made <NP> .

looks like
he was wrong .

he seems
to have <VP> .

he seems
to be wrong .

looks like he
made a mistake .

looks like he
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he seems to
have made <NP> .

he seems to have
made <NP> <PP> .

he seems to have
made a mistake .

he seems to have
made mistakes .

d=0 d=1 d=2 d=3 d=4 d=5 d=6 d=7 d=8

Figure 3: A real example of our model generating a paraphrase given the source sequence “it seems like he has
made a mistake.”, under the structural beam search of width 2. Diverse syntax structures are explored during the
generation, e..g, “<VP>.”, “<NP> <VP>.”, and “did <NP> <VP>?”.

candidates at each iteration. Thanks to explicitly
traversing the constituency parse tree during infer-
ence, our method is able to search promising syntax
structures throughout the syntax tree in a top-down
manner. We show a real example of our model
generating a paraphrase in Figure 3.

At each level, we apply standard beam search
for neural generation and keep top k infilling texts
along with their scores, computed by Equation 7.
Taking previous predictions into consideration, we
introduce a moving average mechanism to trade
off confidence between the predictions from lower
levels and the current-level prediction. Specifically,
suppose si is the i-th syntax context in the k-width
beam at the current depth, with an accumulated
score of δsi ; and f j;si is the j-th infilling sequence
candidate from the neural generation beam given
the syntax context si, with a score of δfj;si

. A
beam of next-level syntax contexts is constructed,
by filling in the current syntax context with the
corresponding infilling sequences:

sik+j = expand(si,f j;si). (12)

The updated score for each of the next-level syn-
tax contexts in the beam is given by:

δik+j = αδsi + (1− α)δfj;si
, (13)

where α is a hyper-parameter (accumulation
weight) that determines how much weight is put on
predictions at lower levels. Then the beam is fur-
ther pruned by their updated scores to maintain the
beam width. For example, the first two candidate
syntax contexts are selected at depth 2 in Figure 3.
Algorithm implementation details can be referred
to in Appendix A.

4 Experiment Setup

Datasets For paraphrase generation, we experi-
ment on ParaNMT-small (Chen et al., 2019), which

contains 500K sentence-paraphrase pairs for train-
ing, 500 for validation, and 800 for testing. Both
validation and test sets are provided with human-
annotated sentence exemplars from which syn-
tax information can be extracted for controlling
paraphrase generation. For machine translation,
we use NIST Chinese-English (Zh-En), WMT’16
Romanian-English (Ro-En), WMT’14 English-
German (De-En), and WMT’14 English-German
(En-De). For WMT datasets, we follow the offi-
cial split for validation and testing. For NIST Zh-
En, we use MT06 as the validation set and choose
MT02, MT03, MT04, MT05, and MT08 as the test
sets. For all datasets, we use Berkeley Parser (Ki-
taev and Klein, 2018; Kitaev et al., 2019) to obtain
constituency parse trees and use the most frequent
constituents (e.g., <NP>, <VP>, <PP> and <S>)
for syntactic guidance.

Model Settings For Transformer baselines, we
adopt the Transformer_Base configuration which
consists of a 6-layer encoder and decoder. For our
model, we keep the 6-layer source context encoder,
and set the number of layers for both the syntax
context encoder and the decoder as 3, resulting
in a similar model size with Transformer_Base.
The accumulation weight α is as 0.8 for structural
beam search based on validation experiments. For
machine translation, we adopt sequence-level dis-
tillation (Kim and Rush, 2016) for both our model
and the corresponding baseline Transformer. More
details are shown in Appendix B.

Evaluation We use the BLEU score (Papineni
et al., 2002) to evaluate machine translation perfor-
mance. For paraphrase generation, we also adopt
ROUGE (Lin, 2004) and METEOR (Banerjee and
Lavie, 2005) as reference-based metrics. Besides,
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Model BLEU↑ / self-BLEU↓ / iBLEU↑ METEOR↑ ROUGE-1/2/L↑ Dlex↑ Dsyn ↑

Copy 18.5 / 100 / -17.1 28.8 50.6 / 23.2 / 47.7 0.0 0.0
Gold 100.0 / 18.6 / 64.4 100.0 100.0 /100.0 / 100.0 20.7 32.6

without Syntax Control

SCPN (Iyyer et al., 2018) 12.1 / - / - 23.3 35.7 / 15.1 / 32.9 - -
AESOP (Sun et al., 2021) 15.0 / - / - 26.1 47.0 / 21.3 / 47.3 - -

Transformer (beam 1) 15.2 / 28.2 / 2.2 29.5 49.8 / 23.6 / 49.2 17.4 19.8
Our Method (beam 1) 18.6 / 15.2 / 8.5 30.8 51.1 / 26.3 / 51.3 21.6 24.4
Transformer (beam 5) 17.6 / 33.8 / 2.2 31.1 51.9 / 26.0 / 51.0 16.2 18.1
Our Method (beam 5) 19.3 / 16.4 / 8.6 31.5 51.8 / 27.0 / 52.2 21.5 25.1

with Human-annotated Syntax Control

CGEN (Chen et al., 2019) 13.6 /- /- 24.8 44.8 / 21.0 / 48.3 - -
SGCP-F (Kumar et al., 2020) 15.3 / - / - 25.9 46.6 / 21.8 / 49.7 - -
SGCP-R (Kumar et al., 2020) 16.4 / - / - 28.8 49.4 / 22.9 / 50.3 - -
AESOP-F (Sun et al., 2021) 20.4 / - /- 30.0 52.0 / 27.8 / 55.3 - -

Our Method 20.9 / 10.5 / 13.0 33.3 54.1 / 29.7 / 55.3 22.6 27.7

Table 1: Experimental results on paraphrase generation (ParaNMT-small).

Model NIST Zh-En WMT16 WMT14
MT02 MT03 MT04 MT05 MT08 avg Ro-En En-De De-En

Transformer (beam 1) 48.9 49.2 50.7 49.3 41.4 47.9 33.9 27.9 30.7
Our Method (beam 1) 50.8 51.8 51.9 51.7 42.2 49.7 34.4 28.6 31.8
Transformer (beam 5) 49.8 50.1 51.1 50.1 42.3 48.7 34.1 28.3 31.3
Our Method (beam 5) 51.1 52.4 52.4 52.1 43.1 50.2 34.9 28.7 32.2

Table 2: Experimental results (BLEU score) on machine translation benchmark datasets. The result of our method
is statistically significant compared to the corresponding Transformer baseline with p < 0.05 (Koehn, 2004).

Model iBLEU↑ Dlex↑ Dsyn↑
BART 4.4 19.6 24.4

BART + Our Method 8.8 21.3 24.7

Table 3: Results for training on BART, compared with
sequence-to-sequence BART for paraphrase generation.

we report iBLEU (Sun and Zhou, 2012):

iBLEU = r · BLEU(hypothesis, reference)

−(1− r) · BLEU(hypothesis, source),

which evaluates the generation fidelity with nov-
elty to the source sentence considered*. Following
Bandel et al. (2022), we consider two reference-
free metrics: (1) lexical diversity score, i.e., Dlex,
which is the normalized character-level minima
edit distance between the bag-of-words; and (2)
syntax diversity score, i.e., Dsyn, which is the nor-
malized tree edit distance. Both scores measure
generated paraphrases with the source sequences
unless specified.

5 Results

Paraphrase We compare our method with the
baselines and previous work on syntax-control para-
phrase generation. Another two baselines are also

*r is set as 0.7.

listed, i.e., copy the source input and use the refer-
ence as the output. The results are shown in Table 1.
For paraphrase generation without syntax control
(the center section in Table 1), our method achieves
higher performance than the seq2seq Transformer,
in both greedy and beam search settings. Typically,
our method under greedy decoding obtains com-
parable results with the Transformer under beam
search, and even outperforms under some metrics.
The advantage of our method becomes larger for
metrics such as iBLEU, Dlex, and Dsyn, which
consider generation novelty compared with the
source input. For example, compared with Trans-
former (beam 5), our method (beam 5) gives a
much lower self-BLEU score (16.4 v.s. 33.8) and
higher diversity scores (21.5 v.s. 16.2 for lexi-
cal diversity and 25.1 v.s. 18.1 for syntax diver-
sity), indicating better generation diversity and con-
tributing to a significant improvement on iBLEU
(8.6 v.s. 2.2). With annotated exemplars (the
lower section in Table 1), our model obtains further
improvement over the non-exemplar setting and
achieves better performance compared to previous
work which utilizes full syntactic parse.

We extend our method to the pre-trained lan-
guage model (PLM) setting and present the result
in Table 3 (Details in Appendix A). It can be seen
from the table that the utilization of BART (Lewis
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et al., 2019) improves the generation diversity for
the sequence-to-sequence model significantly. De-
spite the narrowed gap, our model outperforms the
seq2seq counterpart in terms of iBLEU and lexical
diversity by a considerable margin.

Machine Translation As shown in Table 2, our
method achieves consistent performance (BLEU
score) improvement over the Transformer base-
line. The improvement is larger for the greedy
setting (+1.5 BLEU scores on average), compared
with the beam search setting (+1.2). This indi-
cates that using syntax to guide and constrain gen-
eration yields more reasonable and high-quality
hypotheses than the greedy autoregressive genera-
tion, and thus relies less on search algorithms (e.g.,
beam search). Note that compared with the English-
oriented datasets, our model obtains a smaller per-
formance improvement on WMT’14 En-De. This
can be because the German parser is less accurate
than the English one (92.1 v.s. 96.3 for F1 score),
resulting in a training set with lower quality.

6 Analysis

We first discuss the influence of grammar quality,
then we understand the potential advantages of our
method from three perspectives, i.e., interpretabil-
ity, controllability, and diversity.

6.1 The Influence of Grammar Quality
Intuitively, learning syntactic grammar of higher
quality results in better generation performance,
e.g., the advantage of our method on English-
oriented datasets is larger than the German-oriented
one. To further explore the influence of grammar
quality, we randomly replace a certain ratio of the
constituent labels with a random one to simulate a
less accurate parser. We conduct experiments on
the WMT’16 Ro-En dataset. By injecting noise of
ratios of 0.2 and 0.4, the model performance de-
teriorates from 34.9 to 34.6 and 32.3 accordingly,
indicating the quality of syntactic grammar exerts a
large influence on model’s generation performance.

6.2 Interpretability
We evaluate the model’s interpretability based on
its capability of providing explanations in under-
standable terms to a human (Doshi-Velez and Kim,
2017), i.e., whether it generates texts following
language grammar. We trace each constituent ex-
pansion during generation and compare the model-
induced tree with the tree parsed by a benchmark

Dataset Precision Recall F1 Score

ParaNMT-small 96.0% 98.4 % 97.2%
NIST Zh-En 96.6% 96.8% 96.7%

WMT’16 Ro-En 93.5% 94.2% 93.9%
WMT’14 De-En 95.7% 96.3% 96.0%
WMT’14 En-De 84.4% 95.4% 89.6%

Table 4: The quantitative evaluation of the models’ in-
terpretability.

Dataset BLEU ↑ Dref
syn ↓

w/o w w/o w

ParaNMT-small 19.3 24.9(+5.6) 25.7 17.2(-8.5)
NIST (ref-0) 28.0 30.3(+2.3) 25.1 19.2(-5.9)
NIST (ref-1) 27.3 29.3(+2.0) 25.5 20.1(-5.4)
NIST (ref-2) 25.7 28.5(+2.8) 25.4 18.3(-7.1)
NIST (ref-3) 26.1 28.1(+2.0) 25.7 20.1(-5.6)

WMT’16 Ro-En 35.0 35.8(+0.8) 18.3 15.9(-2.4)
WMT’14 De-En 32.2 35.3(+3.1) 19.6 14.0(-5.6)
WMT’14 En-De 28.7 30.6(+1.9) 28.9 26.3(-2.6)

Table 5: Controllable generation using golden syntax
exemplars. NIST (ref-i) denotes the merged test sets
with the i-th reference. A lower Dref

syn denotes higher
syntactic similarity with the reference.

parser, e.g., Berkeley Parser. Specifically, we use
the Berkeley parser to parse the same generated
hypotheses by our model and treat the correspond-
ing parsing results as golden parses. Quantitative
results (Figure 4) show that our model achieves
an average F1 score of 94.6 , which demonstrates
the generation process highly corresponds to the
syntactic grammar and thus can be effectively inter-
preted. Note that the score for WMT’14 En-De is
lower (89.0), possibly due to the less accurate Ger-
man parser for constructing the syntactic grammar,
as discussed in Section 6.1.

6.3 Controllability
Control with Complete Syntax Template To
leverage control signals from delexicalized syntax
templates (e.g., “(S (NP) (VP (NP)))” for the se-
quence “I ate an apple.”), we introduce a reward γ
into Equation 13:

δik+j = αδsi + (1− α)δfj;si
+ γ. (14)

If the updated syntax context sik+j matches the
corresponding template pattern at depth d+ 1, the
γ is a positive value otherwise 0. For example, the
syntax context “<NP> <VP>” in Figure 3 matches
the pattern “((NP)(VP))” at depth 2. Intuitively, the
reward encourages the model to favor beam candi-
dates that match the syntax template. We set the
reward value as 0.32 based on validation results
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(Appendix F). The testset of ParaNMT-small is pro-
vided with human-annotated exemplars and we use
it to control generation, with results shown in Ta-
ble 1. More generally, golden templates can be
derived by parsing the reference sentences for each
dataset with a parser (e.g., the Berkeley Parser). We
present the results in Table 5. Guided by the refer-
ence syntax template, our model obtains consistent
improvement in terms of hypothesis similarity with
references, which is reflected by the decreased syn-
tax edit distance to the references, i.e., Dref

syn. For
the multi-reference dataset NIST Zh-En, our model
can generate translations of different styles which
are prompted by alternative syntax templates from
multiple references.

Control with Partial Syntax Template We fur-
ther explore whether the model can handle fine-
grained arbitrary controls. Specifically, we ask
three annotators to modify the intermediate syn-
tax contexts output by the model, based on the
source input. 100 instances are randomly selected
from the NIST Zh-En test set and each annota-
tor gives different modifications for each instance.
The modified contexts are fed to the model to pre-
dict the infilling texts. We then ask the annotators
to evaluate whether their controls (i.e., modifica-
tions) are safely responded to by the model. We
show some of the control examples in Appendix
G. The average control success rate is 81%, which
demonstrates the capability of our model to handle
arbitrary fine-grained controls.

6.4 Diversity
Beam Diversity We expect the model to gener-
ate diverse hypotheses under beam search, while
also maintaining generation quality. To this end,
we measure the model’s beam diversity by com-
puting two average scores: (1) the average of the
mutual diversity scores of every two of the beam
candidates, i.e., Dbeam

lex and Dbeam
syn ; (2) the average

generation quality of the beam candidates, mea-
sured by BLEU scores. The results for paraphrase
generation are shown in Table 6. In terms of gen-
eration quality, our model generates consistently
better beam candidates on average than the baseline
model. Besides, we can see that structural beam
search can yield more diverse beam candidates, in-
dicated by the higher mutual diversity (i.e., Dbeam

lex

and Dbeam
syn ) among beam candidates.

Effects of Accumulation Weight A larger accu-
mulation weight (α in Eq. 13) indicates a larger

ParaNMT-small
Model avg BLEU/iBLEU Dbeam

lex ↑ Dbeam
syn ↑

Transformer 15.0/1.6 12.6 11.2
Our Method 16.9/7.1 15.0 12.6

Table 6: Beam diversity measured by the average gen-
eration quality and the average mutual diversity among
the beam candidates.
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Figure 4: Effects of accumulation weights.

weight on previous decisions when re-ranking the
newly updated beam candidates. As a result, early
determined syntax structures are less likely to be
surpassed throughout the whole structural beam
search. On the contrary, a smaller α encourages the
model to explore promising candidates at higher
levels, and can therefore find more diverse hypothe-
ses. We explore the effects of α with results shown
in Figure 4. As the weight grows smaller, the model
generates sequences of better syntactic diversity,
i.e., Dsyn. However, an overly small weight de-
teriorates generation quality (iBLEU), which can
be caused by the model’s overconfidence in local
predictions without considering the predictions of
syntax contexts at lower levels. Such deterioration
is also seen for overly large weights (>0.95), due
to limited exploration at higher levels.

Human Evaluation We further conduct a hu-
man evaluation to evaluate generation quality and
diversity on paraphrase generation. We ask three
annotators to vote for one of the two candidates: hy-
potheses from the seq2seq baseline and our method.
The annotators are required to decide, which one is
better by considering Fidelity, Novelty, and Diver-
sity (See Appendix H for details). The results are
shown in Table 7. As can be seen from the table,
our method achieves much better generation nov-
elty and beam diversity compared with the baseline,
while maintaining semantic fidelity, which further
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Model Fidelity Novelty Diversity

Transformer 50.2% 29.6 % 29.0%
Our Method 49.8% 70.4% 71.0%

Table 7: Human evaluation on paraphrase generation.

validates the results of the automatic evaluation.

7 Conclusion

We proposed a syntax-guided generation paradigm,
which leverages the strengths of Transformer and
generates sequences by hierarchically expanding
constituents in the lexicalized syntax contexts
throughout the syntax tree. The neural decoder was
trained by maximizing the likelihood of the infill-
ing texts for each constituent in the syntax contexts
given the source sequence. Moreover, we proposed
the structural beam search to better explore the hy-
pothesis space. Empirical results demonstrated the
advantage of generation quality over the seq2seq
baseline, and also the effectiveness in terms of in-
terpretability, controllability, and diversity.

Our method can be seen as a step towards ex-
plicit modelling of psycholinguistic structures dur-
ing neural text generation , helping the model to
have a degree of control over what it intends to gen-
erate, which can potentially address salient issues
of current neural NLG, such as hallucination (Guer-
reiro et al., 2023; Dziri et al., 2022) and ethical
issues (Sheng et al., 2019, 2021; Weidinger et al.,
2021), if semantics, pragmatics, and other factors
are also integrated.

Limitations

Despite the competitive performance, there are sev-
eral limitations of this work: (1) As discussed in
Section 6.1, the generation performance relies on
the parser performance, which is strong enough
for English but still less satisfactory for other lan-
guages. Dedicated methods need to be considered
to compensate for the weak parser performance if
we want to extend our method to more languages.
(2) In this work, we consider two NLG tasks with
semantic equivalence to testify if the proposed
method can convey the source semantics accurately
by following the target syntactic grammar. Other
tasks such as summarization and dialogue genera-
tion can also be tested, where the semantics are not
equivalent between the source and target. (3) To
train the neural decoder parallelly, we break down
the source-target dataset into a triple set. However,

the global dependency of the syntax parse tree is
not considered, which can deteriorate generation
performance. (4) Due to the recursive encoding of
the syntax contexts, our model’s inference speed is
approximately half that of the seq2seq counterpart
(Appendix E). (5) Future work should include ex-
periments on large language models (Brown et al.,
2020; OpenAI, 2023; Zeng et al., 2022; Touvron
et al., 2023; Taori et al., 2023). to further demon-
strate the effectiveness of our method beyond pre-
trained language models.
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Algorithm 1 Structural beam search
Setup: k: beam size

α: accumulation weight
dmax: maximum tree depth
ENCODER(·): source context encoder
terminated(·): termination examination function
expand(·, ·): constituent expansion function
beam_search(·, ·): standard beam search algorithm

Input: x: source sequence
1: d← 0
2: hsrc ← ENCODER(x)
3: B0 ← {(0, ⟨T ⟩)}
4: while d < dmax do
5: B ← ∅
6: for (δs, s) ∈ Bd−1 do
7: if terminated(s) then
8: B.add((δs, s))
9: continue

10: end if
11: F ← beam_search(s,hsrc)
12: for (δf ,f) ∈ F do
13: δ̂ ← αδs + (1− α)δf
14: ŝ← expand(s,f)

15: B.add((δ̂, ŝ))
16: end for
17: end for
18: Bd ← B.top(k)
19: d← d+ 1
20: end while
21: return Bdmax

A Algorithms

The scoring algorithm 7 can be rewritten with the
source context x encoded into hsrc:

score(hsrc, s,f) =

|f |∑

t=0

logpθ(ft|hsrc, s, f1:t−1)

(15)
The algorithm of structural beam search is

demonstrated in Algorithm 1, which employs the
standard beam search for autoregressive generation,
depicted in Algorithm 2. The termination function
in Algorithm 1 (i.e., terminated(·)) returns true if
the there is no remaining constituent in the input
sequence.

B Experiment Details

For NIST Zh-En, we use parts of the bitext pro-
vided within NIST’12 OpenMT† and the final train
set consists of about 1.8M sentence pairs. We ap-
ply BPE (Sennrich et al., 2016) on all datasets: the
number of BPE operations is 6K for ParaNMT-
small, and 40K for the other datasets. We imple-
ment our model using Fairseq (Ott et al., 2019).

†LDC2005T06, LDC2004T07, LDC2003E07,
LDC2000T46, LDC2000T47, LDC2000T50, LDC2003E14,
LDC2005T10, LDC2002E18, LDC2007T09, LDC2004T08

Algorithm 2 Beam search
Setup: k: beam size

tmax: maximum hypothesis length
V: target tokens set
score(·, ·, ·): scoring function (Eq. 15)

Input: s: syntax context
hsrc: source context representations

1: t← 0
2: B0 ← {(0, ⟨bos⟩)}
3: while t < tmax do
4: B ← ∅
5: for (δ,f) ∈ Bt−1 do
6: if f .last() = ⟨eos⟩ then
7: B.add((δ,f))
8: continue
9: end if

10: for f ∈ V do
11: δ ← score(hsrc, s,f ◦ f)
12: B.add((δ,f))
13: end for
14: end for
15: Bt ← B.top(k)
16: t← t+ 1
17: end while
18: return Btmax

We train the model using Adam (Kingma and Ba,
2015) optimizer. The learning rate increases to
7 · 10−4 in the first 10K steps and then anneals
exponentially. We set the weight decay as 0.01
and label smoothing as 0.1. The dropout is 0.3
for ParaNMT-small, and 0.1 for the other datasets.
The batch size is 64K tokens for ParaNMT-small,
256K for WMT’16 Ro-En and NIST Zh-En, and
512K for WMT’14 De↔En. All models are trained
for a maximum update of 300K steps unless early
stopped. We train the model using 4 V100s and in-
crease gradient accumulation steps for large batch
sizes. We choose the 5 best checkpoints based
on validation sets and average them for inference.
We set the beam width as 5 for beam search. For
machine translation, the teacher models for knowl-
edge distillation are Transformer_Base for NIST
Zh-En and WMT’16 Ro-en, and Transformer_Big
for WMT’14 De↔En.

C Model Architecture

We conduct experiments to compare different
model architectures to incorporate syntax context
on the WMT’16 Ro-En validation set. We consider
the following settings:

• Concat: concatenate the syntax context with
the source sequence, with the vanilla Trans-
former unmodified.

• Extra-attention: reuse the source encoder for
encoding syntax context and insert an extra at-
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Model BLEU↑ / self-BLEU↓ / iBLEU↑ METEOR↑ ROUGE-1/2/L↑ Dlex↑ Dsyn↑

BART Seq2seq (beam 1) 15.8 / 26.9 / 3.0 27.3 50.1 / 23.1 / 50.0 19.5 23.8
BART + Our Method (beam 1) 18.3 / 15.5 / 8.2 31.0 52.1 / 26.7 / 52.1 21.1 24.0

BART Seq2seq (beam 5) 17.9 / 27.0 / 4.4 28.4 51.4 / 24.8 / 51.5 19.6 24.4
BART + Our Method (beam 5) 19.0 / 15.1 / 8.8 31.3 52.3 / 27.0 / 52.5 21.3 24.7

Table 8: Experimental results on paraphrase generation (ParaNMT-small) based on BART.

Architecture # params BLEU Speed

Concat 64.2M 34.5 1.0x
Extra-attention 70.5M 34.7 0.9x
Extra-encoder 64.2M 35.3 1.1x

Table 9: Model architectures for encoding previous syn-
tax contexts.

tention layer, i.e., the syntax context attention,
into each decoder layer.

• Extra-encoder: introduce an additional en-
coder for encoding syntax context and also
uses the syntax context attention.

Empirical results are shown in Table 9. Based
on validation results, we adopt the Extra-encoder
model in all experiments except for training on
BART (Table 3), where we adopt the Concat
model.

D Experiments on PLM

In this section, we introduce our experiment set-
tings of PLM. Following previous work (Sun et al.,
2021), we use BART-base (Lewis et al., 2019) as
our base model. All models are finetuned for 10
epochs with a batch size of 64k tokens. The learn-
ing rate is 3e-5 and the linear decay schedule, as
recommended in BART’s official repository‡.

We use the Concat (Appendix C) model archi-
tecture for extending our method to BART. The
source text and the syntax context are concatenated
with a special token “<sep>”, e.g., “I ate an apple
. <sep> <NP> <VP> .”. To effectively employ our
method with BART, whose inputs are tokenized
sequences byte-level, as same as Radford et al., we
make several modifications. In the pre-processing,
we make sure our special tokens (e.g., <sep>, <c>,
<NP>, <VP>) are not split and add extra byte-level
spaces before and after the special token. Thanks to
the unused tokens in BART embeddings, we do not
need to modify the embedding matrix. Instead, we
assign our special tokens to unused token indexes.

‡https://github.com/facebookresearch/
fairseq/tree/main/examples/bart
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Figure 5: Effects of reward ratio on the WMT14’De-En
validation set.

Finally, in the inference stage, we find the con-
stituency expansion causes a discrepancy between
inputs of train and test. Thus, we first detokenize
each layer’s outputs and then tokenize them back
with the same procedure in the preprocessing to
avoid such a gap.

E Generating Linearized Trees Directly

A baseline method to induce grammar simultane-
ously during generation is generating linearized
parse trees directly, i.e., training a seq2seq model
which takes in source sequences and outputs lin-
earized parse trees. We compare it with our method
on WMT’16 Ro-En. Specifically, the BLEU score
for WMT’16 Ro-En is only 27.6 compared to the
seq2seq baseline (34.1) and our method (34.9).
This can be because the additional parentheses and
constituency tags in linearized trees may deterio-
rate sequence coherence, making learning more
difficult. Our method, on the other hand, breaks
down syntax trees into level pieces to create a better
learning curriculum. Furthermore, Generating lin-
earized parse trees is much slower than the seq2seq
counterpart, since the average sequence length of
linearized tree sequences is longer (152.3 vs 28.4).
As a result, the average speed for generating lin-
earized parse trees is only 0.8 sentences/s com-
pared to 3.6 sentences/s for the seq2seq baseline.
Our method achieves an inference speed of 1.7
sentences/s under the same computing condition
(V100 GPU). Additionally, generating a linearized
parse tree is not easily interpretable or controllable,
due to the black-box nature of the sequence-to-
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Source Human Control Infilling Text Final Hypothesis

巴基斯坦政府和人民对死难者
的家属表示深切的慰问。
(English: The Government and 
people of Pakistan express their 
deep sympathy to the bereaved 
families.)

<NP> and <NP> expressed 
their deep sympathy <PP> .

<c> the pakistani government <c> the 
pakistani people <c> for <NP>

the pakistani government and the pakistani people 
expressed their deep sympathy for the families of the 
victims .

<S> <VP> to the bereaved 
family .

<c> the pakistani government and people 
<c> expressed <NP>

the pakistani government and people expressed their 
deep sympathy and solicitude to the bereaved family .

the government and people of 
pakistan <VP> . <c> expressed <NP>

the government and people of pakistan expressed their 
deep sympathy and solicitude for the families of the 
victims .

老实说 , 我认为自己要比 36 岁
年轻许多。
(English: To be honest, I consider 
myself much younger than 36.)

<PP> , <S> . <c> in <NP> <c> <NP> <VP> in an honest way , i think i am much younger than 36 .

to be honest , I consider <S> . <c>  <NP> much younger <PP> to be honest , i consider myself much younger than 36 .

to be honest , <S> . <c> <NP> <VP> to be honest , i think i am much younger than 36 .

然而 , 这并不妨碍哈马斯作出
灵活的策略调整 , 推选独立人
士便是折中之策。
(English: That, however, does not 
prevent Hamas from manoeuvring
nimbly. Voting for an independent 
would be a compromise.)

that , however , does not 
<VP> , voting for an 
independent would be a 
compromise .

<c> prevent <NP> <PP>
that , however , does not prevent hamas from making 
flexible strategic adjustments , voting for an 
independent would be a compromise .

that , however , <VP> . <VP> 
would be a compromise . <c> does not <VP> <c> electing <NP>

that , however , does not prevent hamas from making 
flexible strategic adjustments . electing an independent 
person would be a compromise .

<S> , <S> <c> however , <NP> <VP> <c> <S> 
<VP>

however , this does not prevent hamas from making 
flexible strategic adjustments , choosing an 
independent person is a compromise

Figure 6: Samples cases for fine-grained manual controls: the 4 columns denote the source Chinese sentence, the
human-annotated control, the model’s predicted infilling texts, and the final English translation.

sequence paradigm.

F Effects of Control Reward

The magnitude of the reward γ determines how
much priority is given to beam candidates that
match the syntax exemplar. We experiment with
different reward values to give a quantitative
demonstration, shown in Figure 5. It can be seen
that the control effectiveness grows with the in-
crease of the reward value until 0.64, which sug-
gests that all possible matched beam candidates are
re-ranked to the top in the search space.

G Control with Partial Syntax Template

We present 3 sample cases to demonstrate fine-
grained controls over the generation process,
shown in Figure 6. Each Chinese source sentence
is paired with 3 manual controls from three anno-
tators. The model takes in the annotated syntax
context and proceeds to obtain the respective trans-
lations.

H Human Evaluation for Paraphrase
Generation

We ask three annotators to conduct side-by-side
human evaluations and report averaged results of
their annotations. For each instance, the annotators
vote for one of the two outputs by the baseline

and our model. The outputs contain top-5 beam
candidates under beam search. The annotators are
asked to evaluate both the best candidate and the
beam results as a whole, based on the following
three aspects:

• Fidelity: Whether the best candidate is
semantics-equivalent with the input.

• Novelty: Whether the best candidate modifies
the input sentence structure.

• Diversity: Whether the generated five candi-
dates are different from each other given the
input.
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