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Abstract

Many tasks in natural language processing re-
quire the extraction of relationship informa-
tion for a given condition, such as event argu-
ment extraction, relation extraction, and task-
oriented semantic parsing. Recent works usu-
ally propose sophisticated models for each task
independently and pay less attention to the com-
monality of these tasks and to have a unified
framework for all the tasks. In this work, we
propose to take a unified view of all these tasks
and introduce TAGPRIME to address relational
structure extraction problems. TAGPRIME is
a sequence tagging model that appends prim-
ing words about the information of the given
condition (such as an event trigger) to the in-
put text. With the self-attention mechanism
in pre-trained language models, the priming
words make the output contextualized repre-
sentations contain more information about the
given condition, and hence become more suit-
able for extracting specific relationships for the
condition. Extensive experiments and analyses
on three different tasks that cover ten datasets
across five different languages demonstrate the
generality and effectiveness of TAGPRIME.

1 Introduction

There are many tasks in natural language process-
ing (NLP) that require extracting relational struc-
tures from texts. For example, the event argument
extraction task aims to identify event arguments
and their corresponding roles for a given event trig-
ger (Huang et al., 2022; Wang et al., 2019). In
entity relation extraction, the model identifies the
tail-entities and head-entities that forms specific
relations (Wei et al., 2020; Yu et al., 2020). In task-
oriented semantic parsing, the model predicts the
slots and their semantic roles for a given intent in an

*The authors contribute equally.

utterance (Tiir et al., 2010; Li et al., 2021). These
tasks are beneficial to a wide range of applications,
such as dialog systems (Liu et al., 2018), question
answering (Yasunaga et al., 2021), and narrative
generation (Chen et al., 2019a). Prior works usu-
ally design models to specifically address each of
the tasks (Sun et al., 2019; Miwa and Bansal, 2016;
Hanet al., 2019; Fu et al., 2019; Zhang et al., 2018).
However, less attention is paid to the commonality
among these tasks and having a unified framework
to deal with them and provide a strong baseline for
every task.

In this work, we take a unified view of these NLP
tasks. We call them relational structure extraction
(RSE) tasks and formulate them as a unified task
that identifies arguments to a given condition and
classifies their relationships. The condition could
be a textual span, such as an event trigger for event
argument extraction, or a concept, such as an intent
for task-oriented semantic parsing.

We present TAGPRIME, a simple, unified, and
strong model, which follows a sequence tagging
paradigm with a priming technique, which is pro-
posed by Fincke et al. (2022). TAGPRIME in-
herits the strength of sequence tagging models
to unifiedly address RSE by converting the re-
lational structure into a sequence of predictions
by sequentially labeling tokens in the input pas-
sage. TAGPRIME further improves this frame-
work’s performance by better incorporating infor-
mation about the given condition via priming. Tra-
ditional sequence tagging models usually leverage
learnable feature embeddings to incorporate infor-
mation about the given condition before the tags
are assigned, as illustrated in Figure 1(a). With
the priming mechanism, TAGPRIME augments the
input text with condition-specific contexts, as illus-
trated in Figure 1(b) & (c). The main merit of the
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Figure 1: Illustrations of different models running on an instance for relation extraction, where the target is to
predict the relations between the named entities. (a) Sequence tagging model with conditional features: A
conventional sequence tagging model that embeds conditional information by adding learnable features to the output
representation from a pre-trained language model. In the shown example, the conditional features contain two
parts: one is the token embedding representing the conditional word “military”, and the other is an entity type
embedding. (b) TAGPRIME with condition priming: The conditional information is further applied to the input
sequence to induce the output representation from the pre-trained language model to become condition-aware. (c)
TAGPRIME with condition & relationship priming: Our approach that further append the verbalized relationship
to TAGPRIME with condition priming model. For this case, the goal of the tagging model is to make predictions
specific to the relationship type in the input. We omit CRF layers after MLP layers in this figure for better readability.

priming technique comes from the nature of the
self-attention mechanism in pre-trained language
models. Augmenting input text with condition-
specific contexts makes the sentence representa-
tions condition-specific directly. Thus, it unlocks
the capability of sequence tagging methods for re-
lational structure extraction better than the com-
monly used feature embedding approach, as shown
in Section 5.

Our contributions can be summarized as follows.
(1) We take a unified view of NLP tasks that re-
quires extracting relational structures, including
end-to-end event extraction, end-to-end relation ex-
traction, and task-oriented semantic parsing. Then,
we present TAGPRIME, a unified sequence tagging
model with priming that can serve as a strong base-
line to various relational structure extraction prob-
lems. (2) Thorough experiments on three different
tasks show that TAGPRIME achieves competitive
performance than the current state-of-the-art on ten
datasets in five different languages. (3) We propose

a novel efficient approximation to speed up TAG-
PRIME during inference time without sacrificing
too much performance.

Our code will be publicly accessible at ht tps:
//github.com/PlusLabNLP/TagPrime.

2 Related Work

Many natural language processing applications
require extracting relational structures, including
event extraction, relation extraction, coreference
resolution, etc. The prevalence of these applica-
tions makes us hard to exhaustively list them in this
short summary, hence, we mainly focus on related
works for the applications we experiment on.

Event extraction. Early works in event extrac-
tion mostly consider a pipelined approach (Nguyen
and Grishman, 2015; Wang et al., 2019; Yang et al.,
2019) to deal with event extraction. Some follow-
up works argue that pipelined design leads to error
propagation issues and hence propose end-to-end
approaches to better capture dependencies between
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each prediction (Lin et al., 2020; Li et al., 2013;
Nguyen et al., 2016; Hsu et al., 2022b; Lu et al.,
2021; Huang and Peng, 2021). However, recently,
some empirical studies (Hsu et al., 2022b; Zhong
and Chen, 2021; Fincke et al., 2022) also show that
when an abundant amount of data is used to learn
representations for each pipelined task, it is hard
to conclude that joint learning approaches always
provide a stronger result. This aligns with our dis-
covery in experiments — even though we apply a
pipelined approach with a simple sequence tagging
framework on event extraction, with the help of
priming to learn more condition-aware contextual-
ized representation, we can still achieve very strong
performance on multiple datasets.

Relation extraction. End-to-end relation extrac-
tion can usually be solved using two categories of
approaches. The first one is to directly perform
joint inference on named entities and their rela-
tion(s) (Zheng et al., 2017; Wang and Lu, 2020;
Katiyar and Cardie, 2017; Sun et al., 2019; Miwa
and Bansal, 2016; Fu et al., 2019). The second
category is to perform a pipeline that first extracts
named entities, and then performs relation classi-
fication (Wu and He, 2019; Hsu et al., 2022a; Lyu
and Chen, 2021; Peng et al., 2020; Zhou and Chen,
2021a; Lu et al., 2022), which assumes that both the
head-entity and tail-entity are given. Yet, in our uni-
fied formulation for relational structure extraction
tasks, we extract tail-entities and their correspond-
ing relation types for a given head-entity, which is
more similar to a less frequently studied framework
called cascading approaches (Wei et al., 2020; Yu
et al., 2020). Despite being a less popular formu-
lation to deal with end-to-end relation extraction,
TAGPRIME presents a strong performance com-
pared to prior studies, showcasing the practicality
and effectiveness of our unified formulation.

Task-oriented semantic parsing. Task-oriented
semantic parsing, which focuses on intent classi-
fication and slot filling, has a long history of de-
velopment (Tiir et al., 2010; Gupta et al., 2018;
Li et al., 2021; Zhang et al., 2018; Louvan and
Magnini, 2020). Recently, some more advanced
neural network-based approaches have been pro-
posed, such as MLP-mixer (Fusco et al., 2022)
or sequence-to-sequence formulation (Desai et al.,
2021). Among them, JointBERT (Chen et al.,
2019b), a sequence-tagging-based model that is
trained to jointly predict intent and extract slots,

serves as a widely-used baseline due to its simplic-
ity. Our approach benefits from the same simplicity
as JointBERT and can further improve its perfor-
mance.

3 Method

We first introduce our view to unify RSE problems
and then discuss how TAGPRIME approaches this
problem under a unified framework of sequence
tagging model with priming.

3.1 A Unlified Formulation of RSE

Given an input text x = [z1, =2, ..., T,] and a con-
dition ¢, The RSE tasks identify a list of spans
s¢ = [s, 5, ..., sf] and their corresponding rela-
tionships or attributes r® = [r{, 7§, ..., rf] towards
the condition ¢, where r{ € A and A is the set
of all possible relationships or attributes. Many
NLP tasks can be formulated as an RSE task. We
showcase how this formulation can be applied to
event extraction, entity relation extraction, and task-

oriented semantic parsing below.

End-to-end event extraction. End-to-end event
extraction aims to extract events from given
texts (Ma et al., 2020; Hsu et al., 2022b; Yang
et al., 2019). An event contains a trigger, which is
the textual span that best represents the occurrence
of an event, and several arguments, which are the
participants involved in the event with different ar-
gument roles. We consider a pipeline solution —
after the event triggers are identified, an argument
extraction model extracts the event arguments and
their corresponding roles for each given event trig-
ger. Under the RSE formulation, the condition c
is the given event trigger, and the target spans s©
and the relationships r¢ are the arguments and their
argument roles, respectively.

End-to-end relation extraction. Relation extrac-
tion identifies entities and their relations from texts,
and it is usually solved by pipeline approaches —
first extracting named entities and then predicting
relations for each entity-pair (Wu and He, 2019;
Zhong and Chen, 2021). Under the new formula-
tion, an RSE model is used to predict tail-entities
and the relations for each extracted named entity
that serves as the head-entity. For example, in
Figure 1(b), we extract the tail-entities (“Iragi”
and “base”) and their relation (“Part-Whole” and
“ART”) for the head-entity, “military”. In this way,
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each given head-entity is the condition ¢, and the
extracted tail-entities are s, with relations, r®.

Task-oriented semantic parsing. Task-oriented
semantic parsing aims to classify the intent and
parse the semantic slots in an utterance (to a task-
oriented dialog system) (Li et al., 2021; Gupta et al.,
2018). To fit into our formulation, we first predict
the intent and then use a relational structure extrac-
tion model to predict the slots (s) as well as their
semantic roles (r¢) for the given intent (c).

3.2 Sequence Tagging Model for RSE

We hereby introduce the typical way of applying
a sequence tagging model to unifiedly solve re-
lational structure extraction. The goal of our se-
quence tagging model for relational structure ex-
traction is to predict the BIO-tag sequence y =
[Y1, Y2, ..., Yn], Where each y; is the corresponding
tag for each token x; in the input text. The BIO-
tag sequence can then be decoded to represent the
extracted spans s° (and their relationships r°).
Specifically, given an input text, we obtain the
contextualized representation z; for each token z;
by passing the passage to a pre-trained language
model.! To embed the information of the condi-
tion ¢, one commonly-used technique is to add
conditional features to z; (Ma et al., 2020; Wei
et al., 2020; Yang et al., 2019; Yu et al., 2020), as
shown in Figure 1(a). For example, in Ma et al.
(2020), they use a token embedding of the given
event trigger word and a learnable event type fea-
ture as the conditional features for the task of event
argument extraction. In such case, the feature of
c will contain the contextualized word representa-
tion z;, if x; is the token that represents the given
condition, i.e., event trigger. In our experimental
setup, if the given condition can be represented as
an input span, we will include the span embeddings
as the conditional features together with the type
embeddings, such as the cases for event extraction
and relation extraction. If the condition is only a
concept, such as the task-oriented semantic pars-
ing case, the conditional features will only contain
type embeddings. Augmented with these condi-
tional features, the final representation for token
x; is further fed into multi-layer perceptrons and
a conditional random field (CRF) layer (Lafferty
et al., 2001) to predict the BIO-tag sequence y, as

'Tf a token x; is split into multiple word pieces, we use the
average embeddings of all its word pieces to be z;, following
the practice of Lin et al. (2020).

illustrated in Figure 1(a).

3.3 TAGPRIME

TAGPRIME follows the sequence tagging paradigm
but utilizes the priming technique for better lever-
age information about the input condition.

Condition Priming. Motivated by previous work
(Fincke et al., 2022), we consider priming to inject
the information of the condition c to further im-
prove the sequence tagging model. The priming
mechanism informs the model of the conditional
information by directly appending conditional in-
formation to the input text. However, unlike Fincke
et al. (2022) that uses an integer string to represent
features in a categorical style, we use a natural-
language-styled indicator to better exploit the se-
mantics of the condition. The indicators can be ob-
tained by verbalizing the conditional information.
Take Figure 1(b) as an example, when extract-
ing the tail-entities and the relationships for the
“military” head-entity (condition c), we first verbal-
ize the entity type of “military”, i.e., from “Org”
to “Organization”. Then, the string “military” and
“Organization” are appended to the input text, which
serves as the information about the condition c.
The priming technique leverages the self-
attention mechanism in pre-trained language mod-
els and makes the token representation z; condition-
aware. Hence, the representation of every z; is
more task-specific than the one in the model de-
scribed in Section 3.2. More precisely, for tagging
models without priming, the representation z; usu-
ally captures more general information that focuses
on the context of input text. For models with prim-
ing, the representation z; is affected by the addi-
tional verbalized words when computing attention.
Hence, z; becomes more task-specific and more
suitable for addressing the task (Zheng and Lap-
ata, 2022; Zhong and Chen, 2021). Additionally,
the priming method can be easily combined with
conditional features described in Section 3.2. More
discussion on this will be shown in Section 5.

Relationship Priming. The same idea of con-
dition priming can also be extended to relation-
ship. Specifically, we decompose a relational struc-
ture extraction task into several extraction subtasks,
each of them only focusing on one single relation-
ship r (r € A). Similar to the condition priming,
we verbalize the relationship information and ap-
pend related strings to the input text as well. There-
fore, the representation z; is aware of the relation-
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ship r and specific for predicting spans with rela-
tionship r to the condition c.

For example, in Figure 1(c), for the given rela-
tionship “Part-Whole”, we first verbalized it into
“is part of ”. Then, the string “is part of ” is appended
to the input text together with the condition priming
strings. The BIO-tag sequence can be decoded into
those tail-entities s¢ that form “Part-Whole” rela-

tionship(s) with the given head-entity “military”.

Discussion. A similar idea of appending tokens
in the pre-trained language model’s input to affect
the output text representation has also been lever-
aged in Zhou and Chen (2021b); Zhong and Chen
(2021). Yet, different from their works that only
focus on relation classification and apply instance-
specific information, our TAGPRIME with relation-
ship priming method focuses on using task-specific
information, because we decompose relational ex-
traction into sub-tasks. We want that different task-
specific representation can be learned for different
sub-tasks, hence proposing relationship priming.
An underlying advantage of TAGPRIME with re-
lationship priming is its ability to handle cases con-
taining multi-relationships. After we decompose a
relational structure extraction task into several ex-
traction subtasks, we do not perform any filtering
to address conflict relationship predictions between
the same condition and extracted span. This is to en-
large our model’s generality to different scenarios.

4 Experiments

To study the effectiveness of TAGPRIME, we con-
sider three NLP tasks: (1) end-to-end event extrac-
tion, (2) end-to-end relation extraction, and (3) task-
oriented semantic parsing. All the results are the
average of five runs with different random seeds.

4.1 End-to-End Event Extraction

Datasets. We consider the two most widely-used
event extraction datasets, ACE-2005 (Doddington
et al., 2004) and ERE (Song et al., 2015). For
ACE-2005 (ACEO05-E), we experiment on the En-
glish and Chinese portions and keep 33 event types
and 22 roles, as suggested in previous works (Wad-
den et al., 2019; Hsu et al., 2022b). For ERE, we
consider the English and Spanish annotations and
follow the preprocessing of Lin et al. (2020) to
keep 38 event types and 21 roles.

Baselines. We consider the following end-to-end
event extraction models, including DyGIE++ (Wad-

den et al., 2019), TANL (Paolini et al., 2021),
Text2Event (Lu et al., 2021), OnelE (Lin et al.,
2020), and DEGREE (Hsu et al., 2022b). Since
TAGPRIME requires trigger predictions, we simply
take the trigger predictions made by a simple se-
quence tagging model trained with multi-tasking
on trigger detection and named entity recognition.

For TAGPRIME, DyGIE++, and OnelE, we con-
sider BERT-large (Devlin et al., 2019) for ACEO5-E
(en) and ERE (en), and consider XLM-RoBERTa-
large (Conneau et al., 2020) for ACEOS-E (zh) and
ERE (es). For generation-based models, we con-
sider BART-large (Lewis et al., 2020) for DEGREE,
T5-base (Raffel et al., 2020) for TANL, and T5-
large (Raffel et al., 2020) for Text2Event, as sug-
gested by their original papers.

Implementation details. The followings are the
training details for all baselines:

* DyGIE++ (Wadden et al., 2019): we use the
released training script® with the default param-
eters.

* TANL (Paolini et al., 2021): we report the num-
bers from the original paper.

* Text2Event (Lu et al., 2021): we report the
numbers from the original paper.

e OnelE (Lin et al., 2020): we use the released
training script’ with the default parameters.

* DEGREE (Hsu et al., 2022b): we report the
numbers from the original paper.

* TAGPRIME (ours): We fine-tune pre-trained
language models with the dropout rate being
0.2. We use AdamW optimizer. For parame-
ters that are not pre-trained we set the learning
rate to 1073 and the weight decay to 10~3. For
parameters that are not pre-trained we set the
learning rate to 10~° and the weight decay to
10~5. We consider the linear scheduler with a
warm-up, where the warm-up epoch is 5. The
number of epochs is 90. The training batch size
is set to 6. For conditional token features and
learnable features, the dimension is set to 100.
It takes around 6 hours to train with a NVIDIA
RTX A6000 with 48GB memory.

Evaluation metrics. Following previous works
(Wadden et al., 2019; Lin et al., 2020), we measure
the correctness of arguments based on whether the
offsets of the argument span match or not. We

https://github.com/dwadden/dygiepp
*http://blender.cs.illinois.edu/
software/oneie/
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Model ACEOQ5-E (en) ACEOQ5-E (zh) ERE (en) ERE (es)
Tri-C Arg-I1 Arg-C|Tri-C Arg-I Arg-C|Tri-C Arg-I Arg-C|Tri-C Arg-l Arg-C

DyGIE++" (Wadden et al., 2019) 69.7 530 488 | 723 63.0 593 | 580 514 48.0 | 658 492 46.6
TANL (Paolini et al., 2021) 68.4 50.1 47.6 - - - 547 46.6 432 - - -
Text2Event (Lu et al., 2021) 71.9 - 53.8 - - - 59.4 - 48.3 - - -
OnelE* (Lin et al., 2020) 747 592 56.8 | 733 634 605 | 57.0 50.1 465 | 66.5 545 522
DEGREE (Hsu et al., 2022b) 73.3 - 55.8 - - - 57.1 - 49.6 - - -
TAGPRIME w/ Cond. Priming 746 60.0 568 | 719 632 605 |573 521 493 | 663 552 526
TAGPRIME w/ Cond. & Rela. Priming | 74.6 59.8 583 | 719 64.7 624 | 573 524 499 | 663 551 53.6

Table 1: Results of end-to-end event extraction. All values are micro F1-score, and we highlight highest scores
with boldface. TAGPRIME with conditional and relationship priming achieves more than 1.4 Arg-C F1-score
improvements in three out of four datasets. *We reproduce the results using their released code.

consider argument identification F1-score (Arg-I),
which cares about only the offset correctness, and
argument classification F1-score (Arg-C), which
cares about both offsets and the role types. We
also report trigger classification F1-score (Tri-C),
although it is not our main focus as the triggers
are provided via other models and we just use their
predictions to simulate the end-to-end scenarios.

Results. Table 1 shows the results of end-to-end
event extraction on various datasets and languages.
Although simple, TAGPRIME surprisingly has de-
cent performance and achieves better results than
the state-of-the-art models in terms of argument F1-
scores. We attribute the good performance to the
design of priming, which leverages the semantics of
the condition and makes the representations more
task-specific. It is worth noting that considering
relationship priming further improves the results,
which again shows the importance of task-specific
representations.

4.2 End-to-End Relation Extraction

Datasets. We consider two popular end-to-
end relation extraction datasets, ACE(04 and
ACEQO5 (Doddington et al., 2004), denoted as
ACEO0O4-R and ACEO5-R. Both datasets consider 7
named entity types and 6 different relations. We fol-
low the same procedure in Zhong and Chen (2021)
to preprocess the data and split the datasets. We
refer readers to their papers for more details about
the datasets.

Baselines. We compare to the following end-to-
end relation extraction models: Table-Sequence
(Wang and Lu, 2020), PEN (Yan et al., 2021), and
Cascade-SRN (both late fusion and early fusion)
(Wang et al., 2022). Additionally, we consider
PURE (Zhong and Chen, 2021), which also takes
a pipelined approach to solve end-to-end relation

extraction. To fairly compare with prior works, we
use PURE’s named entity predictions on the test
set for TAGPRIME to perform relational structure
extraction.* In order to be consistent with our other
tasks, we adopt the single sentence setting (Zhong
and Chen, 2021) for our model. However, we also
list baselines with cross-sentence settings, such as
PURE’s and UniRE (Wang et al., 2021)’s results
with cross-sentence context as input. All the mod-
els use ALBERT-xxlarge-v1 (Lan et al., 2020) as
the pre-trained language models.

Implementation details. The followings are the
training details for all baselines:

* Table-Sequence (Wang and Lu, 2020): we re-
port the numbers from the original paper.

* Cascade-SRN (Wang et al., 2022): we report
the numbers from the original paper.

* PURE (Zhong and Chen, 2021): we report the
numbers from the original paper.

* PFN (Yan et al., 2021): we report the numbers
from the original paper.

* UniRE (Wang et al., 2021): we report the num-
bers from the original paper.

* TAGPRIME (ours): We fine-tune pre-trained
language models with the dropout rate being
0.2. We use AdamW optimizer. For parame-
ters that are not pre-trained we set the learning
rate to 1073 and the weight decay to 10~3. For
parameters that are not pre-trained we set the
learning rate to 2 x 1075 and the weight decay
to 1075, We consider the linear scheduler with
a warm-up, where the warm-up epoch is 5. The
number of epochs is 30. The training batch size
is set to 32. For conditional token features and
learnable features, the dimension is set to 100.

*We get PURE’s named entity recognition predictions by
retraining PURE’s named entity recognition model.
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Model

Table-Sequence (Wang and Lu, 2020)
PEN (Yan et al., 2021)

Cascade-SRN (late fusion) (Wang et al., 2022)
Cascade-SRN (early fusion) (Wang et al., 2022)

PURE (Zhong and Chen, 2021)
PURE?® (Zhong and Chen, 2021)
UniRE® (Wang et al., 2021)

ACEO5-R ACEO04-R
Ent Rel Rel+ | Ent Rel Rel+
89.5 676 643 | 88.6 633 596
89.0 - 66.8 | 89.3 - 62.5
89.4 - 65.9 - - -
89.8 - 67.1 - - -
89.7 69.0 656 | 88.8 64.7 602
909 694 670 | 90.3 66.1 622
90.2 - 66.0 | 89.5 - 63.0

TAGPRIME w/ Cond. Priming
TAGPRIME w/ Cond. & Rela. Priming

89.6 69.7 673 |89.0 652 61.6
89.6 704 68.1 | 89.0 66.2 623

Table 2: Results of end-to-end relation extraction. All values are micro F1-score with the highest value in boldface.
TAGPRIME achieves the best performance in ACE0S5-R and competitive results on ACE04-R despite we get slightly
lower entity scores compared to PFN. ®indicates the use of cross-sentence context information.

It takes around 20 hours to train with a NVIDIA
RTX A6000 with 48GB memory.

Evaluation metrics. We follow the standard eval-
uation setting with prior works (Bekoulis et al.,
2018; Zhong and Chen, 2021) and use micro F1-
score as the evaluation metric. For named entity
recognition, a predicted entity is considered as a
correct prediction if its span and the entity type are
both correct. We denote the score as “Ent” and re-
port the scores even though it is not our main focus
for evaluation. For relation extraction, two evalu-
ation metrics are considered: (1) Rel: a predicted
relation is considered as correct when the bound-
aries of head-entity span and tail-entity span are
correct and the predicted relation type is correct; (2)
Rel+: a stricter evaluation of Rel, where they addi-
tionally required that the entity types of head-entity
span and tail-entity must also be correct.

Results. The results of end-to-end relation extrac-
tion are presented in Table 2. From the table, we
observe that TAGPRIME has the best performance
on ACEOQ5-R and outperforms most baselines on
ACEO4-R. This shows the effectiveness of TAG-
PRIME. Similar to the results of event extraction,
considering relationship priming makes the rep-
resentations more relationship-aware and leads to
performance improvement.

4.3 Task-Oriented Semantic Parsing
Datasets. We choose MTOP (Li et al., 2021), a
multilingual dataset on semantic parsing for task-
oriented dialog systems. We specifically consider
data in English (en), Spanish (es), French (fr), and
German (de).

Baselines. We consider JointBERT (Chen et al.,
2019b), the commonly used baseline for task-

oriented semantic parsing. We directly use the
predicted intents by JointBERT as the condition of
TAGPRIME for a fair comparison. Both TAGPRIME
and JointBERT are trained with XLM-RoBERTa-
large (Conneau et al., 2020). Unlike event extrac-
tion and relation extraction, the condition of task-
oriented semantics parsing (intent) does not include
the word span, therefore, only a type feature em-
bedding is contained in the conditional features for
TAGPRIME in this experiment.

Implementation details. The followings are the
training details for all baselines:

¢ JointBERT (Chen et al., 2019b): we use the
training script® with the default parameters.

* TAGPRIME (ours): We fine-tune pre-trained
language models with the dropout rate being
0.2. We use AdamW optimizer. For parame-
ters that are not pre-trained we set the learning
rate to 10~3 and the weight decay to 10~3. For
parameters that are not pre-trained we set the
learning rate to 10~ and the weight decay to
107°. We consider the linear scheduler with
warm-up, where the warm-up epoch is 5. The
number of epochs is 90. The training batch size
is set to 6. For conditional token features and
learnable features, the dimension is set to 100.
It takes around 4 hours to train with a NVIDIA
RTX A6000 with 48GB memory.

Evaluation metrics. We following MTOP (Li
et al., 2021) to consider slot identification (Slot-I)
and slot classification (Slot-C) Fl-scores. Even
though we focus on the performance of slot filling,
we also report the intent classification accuracy.

Results. As demonstrated in Table 3, TAGPRIME

Shttps://github.com/monologg/JointBERT
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Model MTOP (en) MTOP (es) MTOP (fr) MTOP (de)
Intent Slot-I Slot-C | Intent Slot-I Slot-C | Intent Slot-I Slot-C | Intent Slot-I Slot-C

JointBERT (Li et al., 2021) 96.7 - 92.8
JointBERT (reproduced) 97.1 942 927

95.2 - 89.9 | 94.8 - 883 | 95.7 - 88.0
96.6 91.6 89.5

958 902 877 | 965 892 876

TAGPRIME + Cond. Priming
TAGPRIME + Cond. & Rela. Priming

97.1 948 934
97.1 947 935

96.6 91.6 903 | 958 90.6 886 | 965 89.6 879
96.6 91.8 90.7

958 90.6 89.1 | 965 895 88.1

Table 3: Results of task-oriented semantic parsing. Intend scores are measured in accuracy(%) and slot scores are

micro-F1 scores. The highest value is in bold.

Case Cond. Rela. ACEO5-E (en) | ACEOS-E (zh) | MTOP (es) MTOP (fr) | ACEO5-R (en) | ACEO4-R (en) Average
Feat. Prim. | Feat. Prim.| Arg-I Arg-C | Arg-I Arg-C | Slot-I Slot-C | Slot-I Slot-C| Rel Rel+ | Rel Rel+
1 X X X X | 578 542 | 602 572 |91.8 902 | 905 884 | 678 655 | 622 589 69.1
2 4 X X X | 581 553 | 604 581 |92.0 904 | 906 886 |675 652 |618 584 69.4
3 X v X X 596 567 | 620 597 |91.8 904 | 90.7 888 | 69.6 672 | 647 60.7 70.6
4 v 4 X X 160.0 568 |632 605 |91.6 903 | 906 887 | 697 673 |652 616 70.9
5 4 X v X | 573 553 | 614 594 | 917 905 | 902 885 | 680 656 | 61.6 583 69.6
6 X 4 X v/ | 593 576 | 630 612 |91.7 905 | 905 889 | 70.6 682 | 66.0 622 71.4
7 v 4 X v/ 1598 583 | 647 624 | 918 90.7 | 90.6 89.1 | 704 68.1 | 66.2 62.3 71.8
8 v 4 v v/ 1597 580 | 643 624 | 915 904 |90.6 89.1 | 705 68.1 | 658 622 71.7

Table 4: The ablation study results for three different tasks. The average column calculates the average scores of the
stricter evaluation metrics (i.e, Arg-C, Slot-C, and Rel+) for each dataset. From the table, we demonstrate priming
technique is the key attribute that make our sequence tagging model stronger than models with learnable features,
which is the typical way of using sequence tagging models for relational structure extraction.

achieves a better performance than the baselines.
Again, considering relationship priming leads to
further improvement. It is worth noting that TAG-
PRIME is effective for different languages, which
shows the generality of TAGPRIME.

4.4 Summary

We show the superiority of TAGPRIME on three dif-
ferent tasks (including ten different datasets across
five different languages). Although being a unified
and simple model, the results suggest that TAG-
PRIME can achieve competitive results for tasks
requiring extracting relational structures.

5 Analysis

In this section, we study two questions: (1) What is
the effectiveness of priming techniques compared
to learnable features? (2) Relationship priming
boosts the performance of TAGPRIME, but the task
decomposition could slightly slow down the infer-
ence speed. Can we mitigate this issue?

To answer the first question, we conduct ablation
experiments on sequence tagging models using dif-
ferent combinations of learnable features or/and
adding information through the priming technique
(Section 5.1). For the second question, we propose
a simple modification to TAGPRIME so that we can
flexibly control the number of layers to fuse prim-
ing information to contextualized representations.

The modified TAGPRIME can serve as an efficient
approximation of TAGPRIME (Section 5.2).

5.1 Ablation Study

We focus on the setting where we alter the choices
on how to include the type information of the con-
dition c and the relationship information 7. Table 4
demonstrates our experimental results.
Comparing the first four cases in Table 4, we
observe that the addition of type features is use-
ful in general, and using the priming technique is
a more effective way to incorporate conditional
information. For models in case 5 to case 8, the
relationship decomposition formulation described
in Section 3.3 is applied. Comparing case 2 to
case 5, we can see that simply applying the re-
lationship decomposition formulation for solving
relational structure extraction does not lead to im-
provements if the way to embed the relationship r
is only through learnable features. However, com-
paring case 3 to case 6 and case 4 to case 7, we
show that the relationship priming approach makes
the representation z; well capture the attribute of
the queried relationship, thus, better exploiting the
advantage of the relationship decomposition for-
mulation and gaining improvements. Note that we
conducted preliminary experiments that use pre-
trained language models’ representations of the
same verbalized token to be the initialization of the
learnable type feature embedding, but the method
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Figure 2: The illustration of our efficient approximation
of TAGPRIME, which separates the pre-trained language
models into two halves to enable parallel encoding in
TAGPRIME, leading to faster inference.

shows similar results with the random initializa-
tion, hence, we stick to random initialization on the
learnable type features.

5.2 Efficient approximation of TAGPRIME

To make TAGPRIME to inference faster, we per-
form two modifications to TAGPRIME: (1) We first
separate the pre-trained language model, which
contains L layers, into two halves — one with the
first k layers, the other one is the remaining layers.
(2) We copy the first half of the language model
to another module. When an input passage is fed
into the model. We use the original first half to
encode the input text as well as the verbalized con-
dition, and we use the copied first half to encode
the verbalized relation. Finally, the encoded repre-
sentations will be fed into the second half layers, as
illustrated in Figure 2. The value of k is adjustable,
where when k = 0, it represents the TAGPRIME
with condition and relationship priming, and when
k = L, it is TAGPRIME with condition priming.

Since the encoding stage of the input text and
the verbalized relationship is separated, we can
accelerate the inference time of our modified TAG-
PRIME through parallel encoding. More precisely,
our modified TAGPRIME can aggregate instances
that share the same passage and verbalized condi-
tion. For those instances, TAGPRIME only needs to
perform the encoding once on their input passage
part,® and paired with several separated embedded
verbalized relationships, which could be parallelly
encoded together.

We conduct experiments on the ACEOS-E (en)

The string of verbalized relationship is usually much
shorter than the input passage, hence, in most cases, the major
part of the input for an instance is the input text and which
requires more computations.

Trend Speed
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Figure 3: Analysis about the performance influence and
inference speed impact of our efficient approximated
TAGPRIME when the sharing layers vary. The blue line
is the argument classification F1 score and the red line
is the inference speed curve.

dataset to test our modification. In order to bet-
ter analyze the results and isolate the influence
from the pipelined errors, we report the results
on the event argument extraction when gold event
triggers are given. The experimental results are
shown in Figure 3. First, we investigate the per-
formance influence of our modification. We find
that when £ < 10, the performance of our modified
TAGPRIME is strong in general and is comparable
with TAGPRIME with the condition and relation-
ship priming. To compare the efficiency of the
model, we benchmark the inference time by per-
forming inference on the whole testing dataset fifty
times and calculate the average speed, which is
measured by checking how many instances can be
processed per second. The red line in Figure 3
shows the results. We observe that for our modi-
fied TAGPRIME with k = 10, its inference speed
is around 30% faster than the TAGPRIME with the
condition and relationship priming, but they per-
form similarly.

6 Conclusion

In this work, we take a unified view of tasks requir-
ing extracting relational structures and present TAG-
PRIME, a simple, unified, effective, and general
sequence tagging model. The key idea is applying
priming, a small trick to make the representations
task-specific by appending condition-related and
relationship-related strings to the input text. Our ex-
perimental results demonstrate that TAGPRIME is
general to different tasks in various languages and
can serve as a strong baseline for future research
on relational structure extraction.
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Limitations

As we point out in Section 5, one of the limitations
in TAGPRIME is the inference speed. When we
perform TAGPRIME with condition and relation-
ship priming, we requires more turns of sequence
tagging processes than typical sequence tagging
models. Observing this, we propose a simple way
to mitigate such issue and increase the inference
speed with only a small performance drop. Despite
such effort, it is still slightly slower than the model
requires only one pass of sequence labeling.

The other potential limitation of our method is
that we assume the condition and relationship can
be verbalized. However, in practice, there could
be cases that the verbalization is hard to be done.
Considering this, we do conduct preliminary exper-
iments of applying TAGPRIME with special tokens
priming rather than verbalized tokens. However,
our preliminary results show that such method’s
performance is less stable and weaker than we can
achieve with TAGPRIME.

Ethics Considerations

TAGPRIME fine-tunes the pre-trained language
models (Devlin et al., 2019; Lan et al., 2020). There
have been works showing the potential bias in pre-
trained language models. Although with a low pos-
sibility, especially after our finetuning, it is possible
for our model to make counterfactual, and biased
predictions, which may cause ethical concerns. We
suggest carefully examining those potential issues
before deploying the model in any real-world ap-
plications.
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A Detailed Results

Table 5, 6, and 7 lists the detailed results (mean
and standard deviation) of TAGPRIME.

Model ACEO5-E (en) ACEOQS5-E (zh) ERE (en) ERE (es)
Arg-1 Arg-C Arg-1 Arg-C Arg-1 Arg-C Arg-1 Arg-C
DyGIE++" (Wadden et al., 2019) 53.0 48.8 63.0 59.3 514 48.0 49.2 46.6
TANL (Paolini et al., 2021) 50.1 47.6 - - 46.6 432 - -
Text2Event (Lu et al., 2021) - 53.8 - - - 48.3 - -
OnelE* (Lin et al., 2020) 59.2 56.8 63.4 60.5 50.1 46.5 54.5 522
DEGREE (Hsu et al., 2022b) - 55.8 - - - 49.6 - -
TAGPRIME w/ Cond. Priming 60.0+0.47 56.8+0.54 | 63.2+0.74 60.5+0.73 | 52.14+0.15 49.3+0.28 | 55.2+0.79 52.6+1.11
TAGPRIME w/ Cond. & Rel. Priming | 59.8+0.53 58.3+0.67 | 64.7+0.88 62.4+0.85 | 52.4+0.41 49.9+0.60 | 55.1+0.80 53.6+0.83

Table 5: Detailed results of end-to-end event extraction (mean=std). All values are micro Fl-score, and we
highlight the highest scores with boldface. *We reproduce the results using their released code.

Model ACEO5-R ACEO04-R

Rel Rel+ Rel Rel+
Table-Sequence (Wang and Lu, 2020) 67.6 64.3 63.3 59.6
PFN (Yan et al., 2021) - 66.8 - 62.5
Cascade-SRN (late fusion) (Wang et al., 2022) - 65.9 - -
Cascade-SRN (early fusion) (Wang et al., 2022) - 67.1 - -
PURE (Zhong and Chen, 2021) 69.0 65.6 64.7 60.2
PURE® (Zhong and Chen, 2021) 69.4 67.0 66.1 62.2
UniRE® (Wang et al., 2021) - 66.0 - 63.0
TAGPRIME w/ Cond. Priming 69.7+0.73 67.3+0.61 | 65.2+1.56 61.6+1.65
TAGPRIME w/ Cond. & Rela. Priming 70.4+0.64 68.1+0.64 | 66.2+1.51 62.3+1.19

Table 6: Detailed results of end-to-end relation extraction (mean=std). All values are micro Fl-score with
the highest value in bold. Note that in ACE04-R, the experiment was conducted and evaluated through 5-fold
cross-validation, hence the variance is slightly larger compared to ACE05-R, which fixes the test set for every run
with a different random seed. “indicates the use of cross-sentence context information.

Model Slot-I  Slot-C | Slot-I  Slot-C | Slot-I  Slot-C | Slot-I  Slot-C

JointBERT (Li et al., 2021) - 92.8 - 89.9 - 88.3 - 88.0
JointBERT (reproduced) 94.2 92.7 91.6 89.5 90.2 87.7 89.2 87.6

TAGPRIME + Cond. Priming ‘94.8i0.27 93.4+0.30 | 91.640.43 90.3+0.15 | 90.6+0.22 88.6+0.24 | 89.6+0.15 87.9+0.07

‘ MTOP (en) ‘ MTOP (es) ‘ MTOP (fr) ‘ MTOP (de)

TAGPRIME + Cond. & Rela. Priming | 94.7+0.07 93.5+0.13 | 91.8+0.16 90.7+0.14 | 90.6+0.36 89.1+0.35 | 89.5+0.34 88.1+0.36

Table 7: Detailed results of task-oriented semantic parsing (mean=std). Intend scores are measured in accuracy(%)
and slot scores are micro-F1 scores. The highest value is in bold.
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