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Abstract

Toxic content is a global problem, but most
resources for detecting toxic content are in En-
glish. When datasets are created in other lan-
guages, they often focus exclusively on one
language or dialect. In many cultural and ge-
ographical settings, however, it is common
to code-mix languages, combining and inter-
changing them throughout conversations. To
shine a light on this practice, and enable more
research into code-mixed toxic content, we in-
troduce SOA, a new multilingual dataset of on-
line attacks. Using the multilingual city-state
of Singapore as a starting point, we collect a
large corpus of Reddit comments in Indone-
sian, Malay, Singlish, and other languages, and
provide fine-grained hierarchical labels for on-
line attacks. We publish the corpus with rich
metadata, as well as additional unlabelled data
for domain adaptation. We share comprehen-
sive baseline results, show how the metadata
can be used for granular error analysis, and
demonstrate the benefits of domain adaptation
for detecting multilingual online attacks.

Content warning: This article contains illus-
trative examples of toxic content.

1 Introduction

Toxic content, such as hate speech and abuse, is a
global problem, but most resources for detecting
toxic content are in English (Vidgen and Derczyn-
ski, 2020; Poletto et al., 2021; Röttger et al., 2022a).
This makes it difficult to develop effective models
for detecting toxic content in other languages, and
as a consequence, non-English speakers across the
world are less protected against toxic content.

New datasets and models for non-English lan-
guages often focus exclusively on one language
or dialect. In many cultural and geographical set-
tings, however, languages and dialects are often
code-mixed, i.e., combined or used interchange-
ably within a conversation or even a single utter-

*Work completed at Rewire.

ance (Gibbons, 1987; Rijhwani et al., 2017). So
far, this practice has received very limited atten-
tion in toxic content research, with most work on
code-mixed content focusing on Hinglish, which
is a mix of Hindi and English (e.g. Mathur et al.,
2018a; Bohra et al., 2018; Sengupta et al., 2022).

In this article, we take a step towards address-
ing this issue by introducing SOA, a new multilin-
gual dataset of Singapore-centered online attacks.
Singapore is a multilingual city-state in Southeast
Asia, with five million inhabitants from a wide
range of ethnic, religious, and cultural backgrounds.
Singapore’s official languages are English, Malay,
Singaporean Mandarin and Tamil, but many other
languages are widely spoken, including the code-
mixed Singlish language and Indonesian, which is
closely related to Malay. Using the r/Singapore sub-
reddit as a starting point, we collect a large corpus
of Reddit comments in Indonesian, Malay, Singlish
and other languages. We select 15,000 comments
for annotation with a diverse set of sampling meth-
ods. We provide fine-grained hierarchical labels
for online attacks, as well as language identifica-
tion, from trained, native-speaking annotators. We
also publish rich metadata, such as timestamps,
anonymised user IDs and source subreddit for all
comments, and make available the complete unla-
belled pool of 3,196,400 comments that the labelled
data was sampled from.

For the new dataset, we share comprehensive
baseline results for a suite of mono- and multi-
lingual models, finding that Indonesian models
adapted to Twitter data perform best out-of-the-box.
We show how the rich metadata we provide can be
leveraged for more granular error analysis, finding
that the advantages of the Indonesian models over
multilingual models stem from the language distri-
bution in our data. Finally, we demonstrate how
the unlabelled pool of comments we provide can
be used for adapting models to the domain of our
data, finding that this domain adaptation creates
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clear performance benefits, especially for models
not pre-trained on any social media data.

Overall, we make two main research contribu-
tions. 1) We publish a new dataset for multilingual
online attacks in under-resourced languages with
fine-grained hierarchical labels, rich metadata and
additional resources. 2) We provide comprehensive
baseline results, and demonstrate how metadata and
additional resources can be used to evaluate and im-
prove classification models. Together, we hope that
these contributions will enable more research into
code-mixed toxic content for under-resourced lan-
guages, and thus serve to improve how non-English
speakers across the world are protected online.1

2 Taxonomy of Online Attacks

Research into toxic online content and its auto-
mated detection is marred by definitional chal-
lenges, with much disagreement about the exact
characteristics of core concepts (Vidgen et al.,
2019; Banko et al., 2020; Röttger et al., 2022). Fol-
lowing Poletto et al. (2021), we use toxicity as an
umbrella term for various kinds of disruptive on-
line content, with online attacks being a particular
type of toxic content. Other types of toxic con-
tent include spam, sexually explicit language or
the use of profanity. We define online attacks as
content that directs anger, aggression or malicious-
ness at an identifiable target. This includes insults,
threats, and inciting harm and violence, and being
overtly abusive. A range of entities, individuals
and groups can be targeted by an attack. Related
concepts include abuse, which is a subset of on-
line attacks directed at just individuals or groups,
and hate speech, which is commonly defined as
a subset of online attacks directed at groups with
protected characteristics, such as race, gender or
sexual orientation (Röttger et al., 2021).

The taxonomy of online attacks, which we in-
troduce in this article and use for data annotation,
is hierarchical and comprises two levels. The first
level is binary, indicating whether content is an
online attack based on our definition. If an online
attack is present, the second level lists the poten-
tial targets of the attack, split into 1) individuals,
2) social groups, 3) the media, 4) institutions and
government, and 5) other. Table 1 shows more de-
tails on each target, as well as example content. An
online attack can have one or multiple targets.

1All data, annotation guidelines and code are available at
github.com/rewire-online/singapore-online-attacks.

As it relates to other taxonomies of toxic content,
our hierarchical setup takes inspiration from how
Zampieri et al. (2019) classify offensive language.
Talat et al. (2017) and Vidgen et al. (2021), like us,
also differentiate between attacks targeting persons
and attacks targeting groups. Vidgen et al. (2019)
also separate out attacks against institutions. Our
taxonomy is also more general, compared to work
that focuses on specific targets of attacks, such as
women (Guest et al., 2021; Zeinert et al., 2021),
Muslims (Vidgen and Yasseri, 2020), or trans peo-
ple (Lu and Jurgens, 2022).

3 Dataset

3.1 Data Collection

We collected all data from Reddit, a large online
forum where discussions are organised into subred-
dits dedicated to particular topics or communities,
via a public API (Baumgartner et al., 2020). To
identify subreddits that are most relevant to the
languages spoken in Singapore, we used a snow-
ball sampling approach. We first identified the
1,000 users who made the most comments on the
r/Singapore subreddit between August 2021 and
August 2022. For each of these users, we collected
their 1,000 most recent comments and extracted the
name of the subreddit each comment was posted
to, resulting in a list of circa 11,000 unique subred-
dits. This list was then filtered to subreddits which
contained keywords related to Singapore as well as
Singaporean languages in their names (e.g., “Sing”,
“SG”, “Malay”, “Indo”, etc.). From this filtered list
we manually selected the most relevant subreddits.
This yielded a final list of 104 subreddits.

For each of the 104 subreddits, we collected all
comments written before September 1st 2022, re-
sulting in a total of 16,966,812 comments. Most
of these comments were in English, reflecting Red-
dit’s overall language bias. Since our project fo-
cuses on content written in Singaporean languages,
such as Malay, Indonesian and Singlish, we used
the Python language detection tool lingua to iden-
tify content which contained these languages. For
each comment, lingua assigns a match probability
to each of a set of specified languages. Identify-
ing code-mixed content proved difficult, because it
would often be predicted with high confidence as
just one language, particularly English. We found
that those comments that were predicted as Indone-
sian first and Malay second, or vice versa, were
most likely to fit our language scope. Selecting only
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Target Definition Examples

Individuals An identifiable individual that is either di-
rectly addressed or referred to.

“F*ck you dude”, “Closed
minded idiots”, “He is a fool
and a wh*re”

Social Groups A group defined by protected characteristics
such as race, gender or sexual orientation.

“The rapist is a black, typical be-
haviour”, “Just like a pervert, he
bats for both sides”

Media Journalists, media organisations, and the
media as a concept.

“Journos can s*ck my c*ck”,
“the media are infidels and sa-
tan worshippers”

Institutions & Govt. Governments, official bodies, regulators,
political bodies and political parties.

“Loong is a dangerous man, our
PM is fricking n*nce”, “Stupid
goverment”

Table 1: The four specified targets of online attacks in our taxonomy. Examples are in English, to be illustrative.
This does not reflect the language distribution in our dataset, where English is excluded through filtering.

those comments resulted in a pool of 3,196,400
comments. From this pool, we selected 15,000
comments for model training and evaluation, using
three sampling strategies.

1) Keyword sampling We sampled the first
9,000 comments using a keyword-search approach,
to increase the proportion of online attacks in our
dataset. For this purpose, we created a list of 229
attack-related key terms in Indonesian, Malay and
Singlish with support from our native-speaking an-
notators. For instance, “bondol” is a Malay word
that means “loony” in English, “chao” is a Singlish
word which means “smelly”, and “makan tai” is
an Indonesian phrase which means “eat sh*t”. We
then filtered the unlabelled pool of 3,196,400 com-
ments to include only those comments containing
at least one keyword. This resulted in 138,361 com-
ments, from which we sampled at equal rates using
each keyword to obtain 9,000 comments.

2) Active learning We sampled the next 5,000
comments using two rounds of active learning. Ac-
tive learning is a sampling method, whereby an
initial model selects further entries for annotation
that are expected to be particularly informative to
it. This method has been shown to be effective for
toxic content detection (Markov et al., 2022; Kirk
et al., 2022). In the first round of active learning,
we fine-tuned an initial XLM-R model (Conneau
et al., 2020) on the 9,000 comments collected with
keyword sampling, and ran inference with it over
100,000 random comments from the unlabelled

pool. Then, we selected 3,000 comments – 1,500
comments about which the model was most un-
certain, to address gaps in model coverage, and
1,500 comments for which the model was maxi-
mally certain they were online attacks, to address
potential false positive issues. We trained another
XLM-R model on the now-total 12,000 comments,
and repeated the process, sampling another 1,000
comments of each type, so that in total we collected
5,000 comments with active learning. While the
outcome of the active learning process is somewhat
contingent on the model used for it, we found that
complementing keyword-based sampling with this
method resulted in more diverse data, which we
expect to be useful for any model.

3) Random sampling We sampled a final 1,000
comments randomly from the unlabelled pool, so
that we could have a portion of the test set that re-
flects a more realistic distribution of online attacks
(see experimental setup in §4.1). In the dataset, we
specify for each comment which sampling method
was used to select it.

3.2 Data Annotation

We recruited a team of 14 annotators through Up-
work, a crowdworking platform. All annotators
were screened using a set of example annotation
questions, and then onboarded and trained for our
annotation task. We also asked all annotators to
complete a short survey about themselves. 11 of
the annotators are Indonesian, two are Malaysian
and one declined to give this information. All an-
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notators primarily resided in the country of their
nationality. Annotators could enter their ethnic-
ity as free-text. Two identified as Chinese, two as
Malay, two as Gorontalo, and two as Asian. One
identified as Minang, one as Javanese, one as being
from Flores, and one from Sumatra. One anno-
tator identified as mixed and another declined to
give this information. All annotators were interme-
diate or fluent in English, and 12 were native, or
near-native, in Indonesian. Six were intermediate
or better in Malay, and many could speak other
languages such as Japanese, Javanese, Korean and
Tagalog. Ten of the annotators identify as women
and four as men. Eight of the annotators are aged
18-29 years old and six are 30-39 years old.

Each annotator worked independently, labelling
comments assigned to them according to exten-
sive annotation guidelines based on our taxonomy
of online attacks (§2). The annotators labelled
whether comments contained an online attack or
not, and if they did, they selected the target(s) of
the attack. They also labelled the language(s) in
which each comment was written. The 15,000 com-
ments were annotated in six batches, with 10-14
annotators working on each batch. Annotation was
prescriptive (Röttger et al., 2022), in the sense that
we tasked annotators with applying the guidelines
rather than their subjective beliefs. Each comment
was annotated by three annotators. We make all
annotations with anonymised annotator IDs avail-
able for each comment in order to enable further
analysis of human label variation (Plank, 2022).

For the primary binary attack label, there was
3/3 agreement on 49.4% of comments, and 2/3
agreement on the rest. Fleiss’ Kappa is 0.314.

For the language label, there was 3/3 agree-
ment on 70.2% of comments. 3.9% of comments
had three-way disagreement on the language label,
which we resolved through expert annotation.

Throughout the annotation process, we followed
guidelines by Davani et al. (2022) to protect the
wellbeing of our annotators. Annotators were com-
pensated at a rate of $16 per hour, well above the
living wage in their countries of residence.

3.3 Descriptive Statistics

Attack 6,173 comments (41.2%) were majority-
labelled as containing an attack, while 8,827 com-
ments (58.8%) were majority-labelled as not con-
taining an attack. Of the 6,173 attacks, based on
majority labels, 4,356 attacks (70.6%) target an

individual, 534 (8.7%) target a social group, 428
(6.9%) target an institution, 78 (1.3%) target the
media, and 14 (0.2%) were labelled with another
target in a free text field (e.g. “Animal”, “Con-
venience Store”, and “Place”). For 1,199 attacks
(19.4%), there is no majority agreement on a target.

Language 12,212 comments (81.4%) were
majority-labelled as Indonesian, followed by 1,635
comments (10.9%) labelled as Malay and 218 com-
ments (1.5%) were majority-labelled as Singlish.
The remaining 688 (4.6%) comments were marked
as containing one of dozens of other languages
spoken in or around Singapore, such as Javenese
and Hokkien Chinese, and code-mixed combina-
tions thereof. This imbalance is created by our
language filtering, which favours Indonesian and
Malay – the two languages being very similar (see
Section 3.1). Both languages often code-mix with
English (e.g. “Straight outta horror movie, jan-
gan2 kerasukan makhluk halus”). For details on
the language distribution, see Appendix A.1

Subreddit The 15,000 comments in our labelled
datasets are from 26 different subreddits, out of
104 subreddits initially selected for data collection.
A large majority of 12,561 comments (83.7%) is
from the r/indonesia subreddit, followed by 1,389
comments (9.3%) from r/malaysia, 272 comments
(1.8%) from r/malaygonewild and 239 comments
(1.6%) from r/singapore. This skewed distribution
is a consequence of our sampling methods and our
language filtering, which did not explicitly account
for subreddit sources. As a result, the largest sub-
reddits with the most activity in in-scope languages,
like r/indonesia, are most represented in our data.
For details, see Appendix A.2

Time The oldest comment in our labelled dataset
is from May 2011, and the most recent from Au-
gust 31st 2022, which is the end of our sampling
period. Most comments were written in more re-
cent years, with 3,672 comments (24.5%) from
2022, 4,142 comments (27.6%) from 2021, and
3,028 comments (20.2%) from 2020. By contrast,
only 293 comments (2.0%) were written before
2017. This reflects general growth trends in Reddit
activity.2 For details, see Appendix A.3

Authorship We replace comment author names
with alphanumeric IDs. The 15,000 comments in
our labelled dataset were written by 5,307 different

2See, for example, https://subredditstats.com/r/indonesia.
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authors. 3,303 authors (62.2%) wrote just a single
comment in the dataset. 763 authors (14.4%) wrote
two comments, and 376 authors (7.1%) wrote three.
70 authors (1.3%) wrote ten or more comments,
with 179 being the largest number of comments
from a single author. For details, see Appendix A.4

4 Experiments

4.1 Experimental Setup
We show results for three sets of experiments.
The task is always the binary distinction between
content containing or not containing an online at-
tack. Our primary goal is not to develop a best-
performing classifier for our task, but rather to pro-
vide baseline results and demonstrate the useful-
ness of the additional resources and metadata we
share along with the labelled dataset.

Model Parameters We use the same standard pa-
rameters across all models we evaluate. In training,
the learning rate is 1e-05, and the batch size 16.
The maximum input length is 256 tokens, which
affects less than 1% of our data. We train for a
maximum of 10 epochs, with early stopping based
on development set cross-entropy loss, and a pa-
tience of three epochs. None of the models trained
for more than six epochs. We do not perform any
further hyperparameter optimisation.

Data Splits We split the 15,000 labelled com-
ments into 10,000 comments for model training,
2,000 for validation and 3,000 for testing. The
3,000 comments for testing include all 1,000 com-
ments selected with random sampling, to reflect a
more realistic distribution of online attacks (§3.1).
The test set therefore contains 945 comments
(31.8%) labelled as online attacks.

Preprocessing For all comments, we collapse
whitespaces, and remove linebreaks and HTML
artefacts. We replace user mentions in the format
of ’u/username’ with a [USR] token, and URLs
with a [URL] token.

Evaluation Metrics We use macro F1 as an over-
all measure of performance, and evaluate perfor-
mance on attacks, i.e. the positive class, based on
precision and recall, given as percentages.

4.2 Baseline Models
For our baseline experiments, we evaluate six mod-
els. Three models are multilingual models, cho-
sen for their widespread use and/or competitive

performance on toxic content detection tasks (see
e.g. Röttger et al., 2022a): mBERT (Devlin et al.,
2019), XLM-R (Conneau et al., 2020), and XLM-T
(Barbieri et al., 2021), which is XLM-R adapted to
the Twitter domain through continued pre-training.
Two models are monolingual Indonesian models,
chosen because of the large amount of Indonesian
content in our labelled dataset, and the high simi-
larity between Indonesian and Malay: IndoBERT
(Koto et al., 2020), and IndoBERTweet (Koto et al.,
2021), which is IndoBERT adapted to Twitter, anal-
ogous to XLM-T and XLM-R.3 Finally, we trans-
late the train, validation and test set to English us-
ing the Google Translate API, and evaluate a mono-
lingual English DeBERTA-v3 model (He et al.,
2021). None of the models are case sensitive.

In addition to the six models, we show results
for three naive baselines: one model that always
predicts attack, one that never predicts attack, and
one that predicts each label with equal probability.
All results are shown in Table 2.

Model Prec. Rec. Macro F1

mBERT 61.9 58.9 71.3
XLM-R 65.8 68.2 75.6
XLM-T 71.0 68.0 77.9

IndoBERT 65.4 64.0 74.3
IndoBERTweet 73.8 68.2 79.1

DeBERTa 73.1 49.6 72.1

Always attack 31.8 100 24.1
Never attack 0.0 0.0 40.5
Equal prob. 31.8 50.0 48.3

Table 2: Baseline results. Precision and recall are for
attacks, i.e. the positive class. Best model performance
is highlighted in bold (excl. naive baselines).

We find that the Twitter-adapted models perform
best overall, with 79.0 macro F1 for IndoBERTweet
and 77.8 for XLM-T. Adaptation has a larger ef-
fect on the IndoBERT models (4.8 points differ-
ence) than on the XLM models (2.2 points differ-
ence). Precision on attacks is generally higher than
recall across models, except for XLM-R, where
precision is 65.8 and recall is 68.2. The worst-
performing model is mBERT, with 71.3 macro F1.
The DeBERTa model trained and evaluated on auto-

3Wilie et al. (2020) introduce another model also called
IndoBERT, which we do not test in this article but would
expect to give similar results.
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translated data performs second-worst, with recall
below the 50% from random guessing. The naive
baselines perform strictly worse than all other mod-
els in terms of macro F1 and precision on attacks.

4.3 Error Analysis

Each comment in our dataset comes with rich meta-
data, which includes the comment language, times-
tamp, anonymised user ID, and the subreddit that
the comment was posted to. This metadata can
be used to perform fine-grained error analysis and
diagnose specific model strengths and weaknesses.
To demonstrate this, we analyse the predictions of
XLM-T and IndoBERTweet, the two strongest base-
line models, across different languages. Table 3
shows macro F1 scores for the different languages
in our 3,000-comment test set.

Language n XLM-T IndoT

Indonesian 2,476 77.1 78.9
Malay 276 80.1 78.6
English + Indo. 94 74.1 74.4
Singlish 38 71.9 71.9
English 37 100 82.6
English + Malay 19 84.2 72.5
Other 50 76.2 74.0

Table 3: Macro F1 for XLM-T and IndoBERTweet on
the 3,000-comment test set, split by comment language.
Best model performance is highlighted in bold.

We find that the IndoBERTweet model, which
performs best overall (Table 2), outperforms XLM-
T on Indonesian and code-mixed Indonesian con-
tent, but falls behind on Malay, English and Other
languages. “Jadi gini mbak, rasanya k*ntol saya
pengen saya cekek deh liat mbak soalnya mbak
ngomongnya dah kek k*ntol”, for example, is cor-
rectly identified as an online attack by IndoBER-
Tweet, but not by XLM-T. “You sure, I used to be
quite effeminate in sekolah rendah and got called
p*ndan too.”, on the other hand, is classified cor-
rectly an non-attack by XLM-T and misclassified
by IndoBERTweet.

Further, we can leverage the secondary labels,
which specify for all online attacks which target is
attacked, for error analysis. Table 4 shows accuracy
on the 945 online attacks in our 3,000-comment
test set, split by the five different target categories.4

4We show accuracy because all comments we test on here
are online attacks, i.e. belong to the same class.

Target n XLM-T IndoT

Individual 679 70.3 72.5
Social Group 81 70.4 65.4
Institution 69 78.3 73.9
Media 11 72.7 63.6
Other 4 75.0 100

Table 4: Accuracy for XLM-T and IndoBERTweet on
the 945 attacks in the test set, split by attack target. Best
model performance is highlighted in bold.

We find that the IndoBERTweet model, which
has the best precision and recall on attacks overall
(Table 2), actually performs worse than XLM-T
on all attack targets except for attacks on individ-
uals, which are by far the most common type of
attack in our dataset, and “other” targets, which are
extremely rare. “Damkar gak mau menanggapi
panggilan darurat dan malah ngehalu ujungnya
bakal gantian mereka yang dibakar massa”, for
example, which attacks an institution (the fire de-
partment), is misclassified by IndoBERTweet but
not XLM-T. “b*debah ini yg komen, sy bikin meme
OG sendiri’’, on the other hand, attacks a person,
and is classified correctly by IndoBERTweet while
being misclassified by XLM-T.

4.4 Domain Adaptation

We also provide a large unlabelled pool of
3,196,400 comments along with the 15,000 labelled
comments (§3.1). These unlabelled comments can
be used to adapt pre-trained language models to
the specific domain of our data through continued
pre-training. This approach to domain adaptation
has been found to improve model performance on
a wide variety of downstream tasks (e.g. Alsentzer
et al., 2019; Lee et al., 2020; Gururangan et al.,
2020; Röttger and Pierrehumbert, 2021).

We randomly sample 100,000 comments for do-
main adaptation from the unlabelled pool, and then
continue pre-training each of our baseline mod-
els on these comments for one epoch with default
hyperparameters on a masked language modelling
objective.5 Then, we fine-tune these newly-adapted
models in the same way as our baseline models. We
show macro F1 comparisons in Table 5, and more
detailed results in Appendix B.

We find that all models benefit from domain

5We exclude the DeBERTa model because it would require
translation of the larger unlabelled pool of comments.
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Model Baseline Adapted Change

mBERT 71.3 74.0 +2.7
XLM-R 75.6 76.9 +1.3
XLM-T 77.9 77.6 -0.2

IndoBERT 74.3 77.5 +3.3
IndoBERTweet 79.1 79.9 +0.9

Table 5: Macro F1 for domain-adapted models com-
pared to baselines. Best model performance is high-
lighted in bold, positive changes in blue, and negative
changes in red. Change is in percentage points.

adaptation, except for XLM-T. Weaker models, like
mBERT (+2.7 macro F1), tend to benefit more than
stronger models, like XLM-R (+1.3 macro F1).
Further, models already adapted to social media
data from Twitter have very little benefit from do-
main adaptation with Reddit data (IndoBERTweet,
+0.9 macro F1), or even suffer a slight performance
decrease (XLM-T, -0.2 macro F1).

5 Discussion

The results for our baseline models suggest clear
benefits from model scale for detecting online at-
tacks in our dataset. XLM-R is much like mBERT,
but it has more model parameters and was pre-
trained on a larger corpus. Accordingly, it performs
much better than mBERT.

Our results also show the benefits of adapting
models to social media data, even if adaptation
data and task data come from different social me-
dia platforms. XLM-R and XLM-T, like IndoBERT
and IndoBERTweet, are the same, except for addi-
tional pre-training on Twitter data. In our baseline
results (Table 2), this adaptation has a clear posi-
tive effect, with the adapted models outperforming
all others. In our own domain adaptation experi-
ments (Table 5), however, models that were already
adapted to Twitter data did not substantially benefit
from further adaptation with Reddit data. This sug-
gests that most of the benefit of adaptation comes
from capturing language use that is shared between
Twitter and Reddit. On the other hand, we per-
form our own domain adaptation experiments with
just 100,000 Reddit comments, whereas XLM-T
and IndoBERTweet, respectively, are adapted with
198 million and 26 million tweets. On our dataset,
XLM-R adapted with our Reddit comments per-
forms roughly on par with XLM-T (Table B). This
suggests that, even if large amounts of Twitter data
are as useful for adaptation, it may be more efficient

to learn from Reddit, the target platform.
Multilingual models do not appear to have an

advantage over Indonesian monolingual models for
our dataset. This can likely be explained by Indone-
sian content making up most of the dataset (§3.3),
and other languages in the dataset, like Malay and
Singlish, sharing a lot of similarity with Indonesian.
As we found in our error analysis, the monolin-
gual Indonesian IndoBERTweet model outperforms
XLM-T, the strongest multilingual model, on In-
donesian content (Table 3), but performs worse on
most other languages. This aligns with evidence on
the curse of multilinguality (Conneau et al., 2020;
Pfeiffer et al., 2022), which describes the trade-
off between language coverage and monolingual
performance for fixed model sizes.

Overall, the dataset appears to be moderately
challenging for models, with performance differ-
ences between baselines that align with general in-
tuition and other research. However, there are also
some limitations to our dataset and experiments,
which we discuss in a separate Section following
the Conclusion below.

6 Related Work

6.1 Multilingual Toxic Content Detection

Most resources for detecting toxic content focus
on English only (Vidgen and Derczynski, 2020;
Poletto et al., 2021; Röttger et al., 2022a), which
mirrors an overall imbalance in natural language
processing (Joshi et al., 2020). More recently,
researchers have started to create more multilin-
gual toxic content datasets, which usually con-
sist of an English portion and separate portions in
other languages. Basile et al. (2019), for example,
collect Spanish and English hate speech against
women and immigrants from Twitter. Modha et al.
(2021) provide datasets for offensive language in
English, Hindi and Marathi (see also Mandl et al.,
2019, 2020). Ousidhoum et al. (2019) collect hate
speech in English, French and Arabic, using sep-
arate sets of keywords. Röttger et al. (2022b) cre-
ate functional test suites for hate speech detection
models in ten different languages. By contrast,
we create a single dataset, which includes a vari-
ety of languages (§3.3), and we explicitly filtered
out English-only content, which is already well-
represented in the research. We use a single sam-
pling method to collect multilingual data from mul-
tilingual communities, rather than collecting data
in different languages from different communities.
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6.2 Cross-Lingual Toxic Content Detection

Another closely-related stream of research focuses
on cross-lingual toxic content detection, where
large multilingual language models are first fine-
tuned on a resource-rich source language – often
English – and then applied to another target lan-
guage. This is relevant to our work, as our dataset
contains large amounts of content in some lan-
guages, like Indonesian, and relatively little con-
tent in many other languages, like Singlish (see
Appendix A.1). For detecting toxic content, like
online attacks, research has generally found that
some target language content is necessary for good
performance, but very little data goes a long way
(Leite et al., 2020; Stappen et al., 2020; Nozza,
2021; Bigoulaeva et al., 2021; Pelicon et al., 2021;
Röttger et al., 2022a). Therefore, we would expect
our dataset to be a useful resource for the wide
range of languages and dialects that it covers, even
if it only contains a few entries in some languages.

6.3 Code-Mixed Toxic Content

Code-mixed toxic content, where languages are
combined and used interchangeably within con-
versations or single utterances, has received little
research attention. Most work so far focuses on
Hinglish, which is a mix of English and Hindi.
Mathur et al. (2018b) and Mathur et al. (2018a)
each create a dataset of offensive tweets in Hinglish,
and train baseline models by first translating con-
tent to English, which resembles our translation
baseline (§4.2). Kapoor et al. (2019) use the dataset
released by Mathur et al. (2018b) to train stronger
LSTM models. Bohra et al. (2018) create a dataset
of Hinglish tweets labelled for hate speech. Kumar
et al. (2018) annotate Hinglish content from Twit-
ter and Facebook for aggression. Sengupta et al.
(2022) train and evaluate simple transformer mod-
els across several of these datasets. By contrast,
to our knowledge, we introduce the first dataset
for code-mixed Singaporean languages, including
Singlish as well as Indonesian and Malay content
that borrows English words.

6.4 Toxic Content in Singaporean languages

Among the languages we focus on in this article,
only Indonesian has received some dedicated atten-
tion in toxic content research. Alfina et al. (2017)
share a small dataset of 520 Indonesian Twitter
posts labelled for hate speech, along with base-
line models. Pratiwi et al. (2018) create a dataset

of 1,200 Indonesian Instagram comments, also la-
belled for hate speech. Ibrohim and Budi (2018)
label 2,500 Indonesian tweets for abuse. Ibrohim
and Budi (2019) then combine and expand the pre-
vious three datasets, and provide results for simple
baseline models such as a random forest classifier.
Similarly, Elisabeth et al. (2020) use the Ibrohim
and Budi (2018) dataset, and provide additional
annotations for implicit hate. Our dataset contains
a large amount of Indonesian comments – more
than any of the existing Indonesian datasets – but it
also contains content in Malay, Singlish and other
regional dialects, like Javanese. To our knowledge,
our dataset is the first in toxic content research to
cover these language.6

7 Conclusion

Online attacks and other forms of toxic content
are a global problem. This is not reflected in
the available resources for detecting toxic content,
which are mostly in English. As a consequence,
non-English models for toxic content detection are
less effective, and non-English speakers across the
world are less protected from toxic content. When
non-English resources are created, they often focus
on single languages. By contrast, in this article, we
focused on multilingual code-mixed content.

We introduced a dataset of multilingual online
attacks, using Reddit community of the multilin-
gual city-state of Singapore as our starting point for
data collection. From the unlabelled data we col-
lected, which covers Indonesian, Malay, Singlish
and other languages, we sampled 15,000 comments
for annotation using diverse sampling methods. We
provided fine-grained hierarchical labels for online
attacks, and also shared rich metadata as well as
the unlabelled pool of 3,196,400 comments along
with the labelled data.

We shared comprehensive baseline results for
the new dataset, finding strong out-of-the-box per-
formance for multilingual and monolingual Indone-
sian models adapted to Twitter data. We conducted
an error analysis, using language metadata and sec-
ondary attack labels to gain granular insights into
model performance. Finally, we showed how the
unlabelled data we provide can be used for domain
adaptation, showing that this particularly benefits
models not already adapted to social media data.

To our knowledge, our toxic content dataset and

6For a similar non-toxic resource relevant to Indonesian
dialects, see the NusaX corpus (Winata et al., 2023).
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experiments are the first for code-mixed Singa-
porean languages. With our contributions, we hope
to enable more research into code-mixed toxic con-
tent, especially for such under-resourced language
settings. This research is needed to develop more
effective models for multilingual toxic content de-
tection, and therefore to improve how billions of
non-English are protected online.
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Limitations

Dataset All our data was sampled from a single
social media platform, over a long but static time
span. This limits the generalisability of models
trained on our dataset, and the conclusions that can
be drawn from model performance on our dataset.

Our sampling methods did not account for lan-
guage and subreddit information. Therefore, the
language and subreddit distributions in our labelled
dataset are extremely skewed, broadly matching
the distributions in our unlabelled pool. Most com-
ments are in Indonesian, and from the r/Indonesia
subreddit. While other languages and subreddits
are represented, this still increases the specificity
of our dataset, and limits the scope of our insights.

Despite the prescriptive annotation process and
the training of native-speaking annotators, disagree-
ment on the attack labels in our dataset is high. This
suggests that there are many challenging cases in
our dataset, as annotators tend to agree on more
extreme cases (Salminen et al., 2019). The dis-
agreement also likely creates some inconsistencies
in the majority labels, which limits optimal model
performance on the dataset.

Experiments The primary goal of our experi-
ments was to 1) provide useful baseline results, and
2) demonstrate how the additional resources and
metadata, which we share along with the labelled
dataset, can be used to further improve the detec-
tion of multilingual online attacks. Therefore, we
did not focus on optimising the performance of the
models we trained and evaluated. It is very possi-
ble, that the same models we used could be more
effective with different hyperparameters.

We also did not re-run our experiments for many
different random seeds, which limits our ability to
test for statistically significant differences in perfor-
mance. Initial experiments did not reveal much ran-
domness in performance, which is expected given
the relatively large size of our labelled training set.
Further, we see relatively large differences in per-
formance across models, and the differences match
clear intuitions.

Ethical Considerations

Annotator Wellbeing As outlined in §3.2, we
followed guidelines by Davani et al. (2022) to pro-
tect the wellbeing of our annotators. Annotators
were clearly informed about the nature of the an-
notation task before commencing their work. They
completed their work in batches, on their own
schedules, and could decide to withdraw from the
work at any point. Compensation for annotators
was well above the living wage in their countries
of residence, at $16 per hour. We do not release
identifiable information about our annotators.

Data Privacy We used Reddit data made publicly
available via the Pushshift API (Baumgartner et al.,
2020) rather than scraping any new data ourselves.
Comment author usernames are anonymised by
replacing them with alphanumeric IDs.

Environmental Impact We only trained a hand-
ful of models in our experiments, and did not per-
form any hyperparameter tuning. Relative to the
concerns raised around the environmental costs of
pre-training large language models (Strubell et al.,
2019; Henderson et al., 2020; Bender et al., 2021),
or even larger-scale fine-tuning with hyperparame-
ter tuning, we therefore consider the environmental
costs of our work to be relatively minor.
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A Additional Descriptive Statistics

A.1 Language Distribution
The 15,000 comments in our labelled dataset com-
prise 69 unique combinations of languages.

Language n % of Data

Indonesian 12,212 81.4
Malay 1,635 10.9
Indonesian and English 396 2.6
Singlish 218 1.5
Malay and English 131 0.9
Javanese 92 0.6
English 85 0.6
Sundanese 46 0.3
Javanese and Indonesian 23 0.2
Sundanese and Indonesian 20 0.1
Chinese 11 0.1
Other 121 4.0

Table 6: Distribution of languages and language combi-
nations for the 15,000 comments in our labelled dataset.
Languages or language combinations present in fewer
than 10 comments, such as Hokkien Chinese, Arabic
and Russian, are combined as ‘Other’.

A.2 Subreddit Distribution
The 15,000 comments in our labelled dataset come
from 26 different subreddits.

Subreddit n % of Data % Attacks

indonesia 12,561 83.7 39.7
malaysia 1,389 9.3 51.1
malaygonewild 272 1.8 61.4
singapore 239 1.6 26.8
MalaysGoneWild 201 1.3 54.2
Ajar_Malaysia 89 0.6 23.6
MalaysianFappers 49 0.3 57.1
malaysians 35 0.2 37.1
NegarakuMalaysia 35 0.2 37.1
SeksiArtisMalaysia 24 0.2 79.2
SingaporeRaw 20 0.1 35.0
malaysiasecretlab 17 0.1 64.7
MalaysNSFW 15 0.1 60.0
IndoR4R 13 0.1 7.7
NSFW_Malaysia 11 0.1 63.6
askSingapore 8 0.1 12.5
SGExams 6 0.0 16.7
Other 11 0.4 25.0

Table 7: Subreddit distribution for the 15,000 comments
in our labelled dataset. Subreddits from which we sam-
pled fewer than 5 comments are combined as ‘Other’

A.3 Temporal Distribution
The earliest comment in the labelled dataset was
published on May 19th 2011, and the most recent

comment on August 31st 2022.

Year n % of Data % Attacks

2022 3,672 24.5 38.7
2021 4,142 27.6 39.6
2020 3,028 20.2 42.1
2019 2,084 13.9 40.9
2018 1,076 7.2 46.7
2017 705 4.7 51.9
2016 101 0.7 44.6
2015 113 0.8 39.8
2014 61 0.4 32.8
2013 10 0.1 30.0
2012 5 0.0 60.0
2011 3 0.0 66.7

Table 8: Distribution of the 15,000 labelled comments
across years covered by the dataset.

A.4 Author Distribution
The most active author in our labelled dataset of
15,000 comments made 179 comments. This anal-
ysis is based on anonymised author IDs.

Comments Users % of Users

1 3,303 62.2
2 763 14.4
3 376 7.1
4 194 3.7
5 150 2.8
6 105 2.0
7 63 1.2
8 46 0.9
9 36 0.7
10+ 70 1.3

Table 9: Distribution of comment counts for the 5,307
users contributing to the labelled dataset.

A.5 Attack Types
6,173 (41.15%) out of 15,000 comments were
majority-labelled as containing an online attack.

Attack Target n % of Attacks

Person 4,356 70.6
Media 78 1.3
Social Group 534 8.7
Institution 428 6.9
Other 14 0.2

Table 10: Distribution of attack types for the 6,173
comments labelled attacks. An attack type is assigned if
a majority of annotators selected it for a given comment.
Comments can be assigned multiple attack types.
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B Domain Adaptation Results

Model Prec. Rec. Macro F1

mBERT 61.7 (+4.5) 61.7 (+2.8) 74.0 (+2.7)

IndoBERT 68.1 (+4.6) 68.1 (+4.1) 77.5 (+3.2)
IndoBERTweet 67.8 (+2.5) 67.8 (-0.4) 79.9 (+0.9)

XLM-R 67.0 (+3.7) 67.0 (-1.2) 76.9 (+1.3)
XLM-T 66.4 (+0.8) 66.4 (-1.6) 77.6 (-0.2)

Table 11: Domain adaption results for extended pretrain-
ing on 100,000 Reddit comments. Change, compared
to baselines (Table 2), is in percentage points.

C Community Context Results

Each comment in our dataset comes with rich
metadata, which includes the comment timestamp,
anonymised user ID and the source subreddit that
the comment was posted to. Different subred-
dits will have different community guidelines and
moderation practices, which can result in differ-
ent propensities to share online attacks (see Fig-
ure 7). We also expect topical and semantic vari-
ation across online communities more generally
(Del Tredici and Fernández, 2017). Therefore, we
hypothesised that this kind of community context,
as captured by information about the source subred-
dit of each comment, could be leveraged to improve
classification.

To test this hypothesis for each of our base-
line models, we take a simple approach using a
support vector machine (SVM). For a given com-
ment and a given baseline model, the input features
for the SVM are 1) the prediction of the baseline
model, and 2) the identity of the subreddit that
the comment was posted to, encoded in a one-hot
vector. Since the distribution of comments across
subreddits in our dataset is heavily skewed (see Ap-
pendix A.2), we collapse all subreddits from which
there are ten or fewer comments in our dataset into
a single category. The SVM is then trained on the
same training set and evaluated on the same test
set as our baseline models. We use default param-
eters for the SVM, as given by the scikit-learn
Python package, and training time is negligible.
Results are shown in Table 12.

We find that adding community context as an
additional feature using our SVM method does not
improve model performance compared to the per-
formance baselines. Performance differences are
small, and mostly negative. Our hypothesis is that

Model Baseline Context Change

mBERT Base 71.3 71.4 +0.1
XLM RoBERTa Base 75.6 75.2 -0.4
Twitter XLM RoBERTa Base 77.9 77.3 -0.6
IndoBERT Base 74.3 73.3 -1.0
IndoBERTweet Base 79.1 78.7 -0.3

Table 12: Macro F1 for community context models
compared to baselines. Best model performance is high-
lighted in bold, positive changes in blue, and negative
changes in red. Change is in percentage points.

this negative result can mainly be attributed to the
uneven distribution of subreddits in our dataset.
Over 90% of labelled comments come the largest
two subreddits (see Table 7). These two subred-
dits also have a similar rate of attacks (39.7% for
r/indonesia and 51.1% for r/malaysia), which re-
sembles the average proportion of attacks in the
overall dataset (41.2%). As a consequence, the ad-
ditional community context information will have
minimal impact on the classifier’s decision bound-
ary. For the less-represented subreddits, on the
other hand, the SVM will struggle to establish a
better decision boundary than that based on text
alone because of data scarcity. And even if the
context-aware model did make better predictions
on comments from less-represented subreddits, the
impact on overall performance would be minimal.
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