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Abstract

This paper presents a whitening-based con-
trastive learning method for sentence embed-
ding learning (WhitenedCSE), which combines
contrastive learning with a novel shuffled group
whitening. Generally, contrastive learning pulls
distortions of a single sample (i.e., positive sam-
ples) close and push negative samples far away,
correspondingly facilitating the alignment and
uniformity in the feature space. A popular alter-
native to the “pushing” operation is whitening
the feature space, which scatters all the sam-
ples for uniformity. Since the whitening and
the contrastive learning have large redundancy
w.r.t. the uniformity, they are usually used sep-
arately and do not easily work together. For the
first time, this paper integrates whitening into
the contrastive learning scheme and facilitates
two benefits. 1) Better uniformity. We find
that these two approaches are not totally redun-
dant but actually have some complementarity
due to different uniformity mechanism. 2) Bet-
ter alignment. We randomly divide the feature
into multiple groups along the channel axis and
perform whitening independently within each
group. By shuffling the group division, we de-
rive multiple distortions of a single sample and
thus increase the positive sample diversity. Con-
sequently, using multiple positive samples with
enhanced diversity further improves contrastive
learning due to better alignment. Extensive ex-
periments on seven semantic textual similarity
tasks show our method achieves consistent im-
provement over the contrastive learning base-
line and sets new states of the art, e.g., 78.78%
(+2.53% based on BERTbase) Spearman corre-
lation on STS tasks.1

1 Introduction

This paper considers self-supervised sentence rep-
resentation (embedding) learning. It is a funda-
mental task in language processing (NLP) and can

†Corresponding author.
1Our code will be available at https://github.com/

SupstarZh/WhitenedCSE.

(a) bert (b) bert+contrastive

(c) bert+SGW+contrastive (d) positive distribution

Figure 1: The uniformity gradually improves in the deep
embedding of (a) bert, (b) bert + contrastive, and (c) bert
+ SGW + contrastive, i.e., the proposed WhitenedCSE.
Meanwhile, in (d), the positive samples after SGW (red)
obtain higher diversity than the original bert features
(green). Using these diverse positive samples for con-
trastive learning, the proposed WhitenedCSE achieves
better alignment.

benefit a wide range of downstream tasks (Qiao
et al., 2016; Le and Mikolov, 2014; Lan et al., 2019;
Logeswaran and Lee, 2018). Two characteristics
matter for sentence embeddings, i.e., uniformity (of
the overall feature distribution) and alignment (of
the positive samples), according to a common sense
in deep representation learning (Wang and Isola,
2020). Alignment expects minimal distance be-
tween positive pairs, while uniformity expects the
features are uniformly distributed in the representa-
tion space in overall. From this viewpoint, the pop-
ular masked language modeling (MLM) (Devlin
et al., 2018; Liu et al., 2019; Brown et al., 2020b;
Reimers and Gurevych, 2019) is not an optimal
choice for sentence embedding: MLM methods do
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not explicitly enforce the objective of uniformity
and alignment and thus do not quite fit the objective
of sentence representation learning.

To improve the uniformity as well as the align-
ment, there are two popular approaches, i.e., con-
trastive learning and post-processing. 1) The con-
trastive learning methods (Yan et al., 2021; Gao
et al., 2021; Kim et al., 2021; Wang et al., 2021)
pulls similar sentences close to each other and
pushes dissimilar sentences far-away in the latent
feature space. Pulling similar sentences close di-
rectly enforces alignment, while pushing dissimi-
lar sentences apart implicitly enforces uniformity
(Wang and Isola, 2020). 2) In contrast, the post-
processing methods mainly focus on improving the
uniformity. They use normalizing flows (Li et al.,
2020) or whitening operation (Su et al., 2021)) to
project the already-learned representations into an
isotropic space. In other words, these methods scat-
ter all the samples into the feature space and thus
improve the uniformity.

In this paper, we propose a whitening-based con-
trastive learning method for sentence representa-
tion learning (WhitenedCSE). For the first time, we
integrate whitening into the contrastive learning
scheme and demonstrate substantial improvement.
Specifically, WhitenedCSE combines contrastive
learning with a novel Shuffled Group Whitening
(SGW). Given a backbone feature, SGW randomly
divides the feature into multiple groups along the
channel axis and perform whitening independently
within each group. The whitened features are then
fed into the contrastive loss for optimization.

Although the canonical whitening (or group
whitening) is only beneficial for uniformity, SGW
in WhitenedCSE improves not only the uniformity
but also the alignment. We explain these two bene-
fits in details as below:

• Better uniformity. We notice that the pushing
effect in contrastive learning and the scattering ef-
fect in the whitening have large redundancy to each
other, because they both facilitate the uniformity.
This redundancy is arguably the reason why no
prior literature tries to combine them. Under this
background, our finding i.e., these two approaches
are not totally redundant but actually have some
complementarity is non-trivial. We think such com-
plemenetarity is because these two approaches have
different uniformity mechanism and will discuss
the differences in Section 3.2.3. In Fig. 1, we ob-
serve that while the contrastive learning (Fig. 1 (b))

already improves the uniformity over the original
bert features (Fig. 1 (a)), applying whitening (Fig. 1
(c)) brings another round of uniformity improve-
ment.
• Better alignment. In the proposed Whitened-

CSE, SGW is featured for its shuffled grouping
operation, i.e., randomly dividing a backbone fea-
ture into multiple groups before whitening. There-
fore, given a same backbone feature, we may repeat
SGW multiple times to get different grouping re-
sults, and then different whitened features. These
“duplicated” features are different from each other
and thus increase the diversity of positive samples,
as shown in Fig. 1 (d). Using these diverse positive
samples for contrastive learning, WhitenedCSE im-
proves the alignment.

Another important advantage of SGW is: since
it is applied onto the backbone features, it incurs
very slight computational overhead for generating
additional positive samples. This high efficiency
allows WhitenedCSE to increase the number of
positive samples (more than common setting of
2) in a mini-batch with little cost. Ablation study
shows that the enlarged positive-sample number
brings a further benefit.

Our contributions are summarized as follows:
(1) We propose WhitenedCSE for the self-

supervised sentence representation learning task.
WhitenedCSE combines the contrastive learning
with a novel Shuffled Group Whitening (SGW).

(2) We show that through SGW, WhitenedCSE
improves not only the uniformity but also the align-
ment. Moreover, SGW enables efficient multi-
positive training, which is also beneficial.

(3) We evaluate our method on seven semantic
textual similarity tasks and seven transfer tasks. Ex-
perimental results show that WhitenedCSE brings
consistent improvement over the contrastive learn-
ing baseline and sets new states of the art.

2 Related Work

2.1 Sentence Representation Learning

As a fundamental task in natural language process-
ing, sentence representation learning has been ex-
tensively studied. Early works mainly based on
bag-of-words (Wu et al., 2010; Tsai, 2012) or con-
text prediction tasks (Kiros et al., 2015; Hill et al.,
2016), etc. Recently, with the advent of pretrained
language model (Devlin et al., 2018; Liu et al.,
2019; Brown et al., 2020a), many works tend to
directly use PLMs, such as BERT (Devlin et al.,
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2018), to generate sentence representations. How-
ever, some studies (Ethayarajh, 2019; Yan et al.,
2021) found that directly use the [CLS] represen-
tation or the average pooling of token embeddings
at the last layer will suffer from anisotropy prob-
lem, i.e., the learned embeddings are collasped into
a small area. To alleviate this problem, BERT-
flow (Li et al., 2020) adopts a standardized flow
transformation while BERT-Whitening (Su et al.,
2021) adopts a whitening transformation, both
of them transform the representation space to a
smooth and isotropic space. Most recently, con-
trastive learning (Chen et al., 2020; Gao et al.,
2021) has become a powerful tool to obtain the
sentence representations.

2.2 Contrastive Learning
Contrastive learning (Chen et al., 2020; He et al.,
2020) has achieved great success in sentence rep-
resentation learning tasks (Gao et al., 2021; Yan
et al., 2021; Kim et al., 2021; Wang et al., 2021).
It pulls semantically similar samples together, and
pushes the dissimilar samples away, which can be
formulated as:

Lcl = −log
esim(hi,h

∗
i )/τ

∑n
j=1 e

sim(hi,h∗
j )/τ

(1)

where τ is a temperature hyperparameter, h∗
i ,

h∗
j are the positive sample and negative sam-

ples respectively. Recently, alignment and uni-
formity (Wang and Isola, 2020) are proposed to
measure the quality of representations. Alignment
measures whether the distance between positive
samples is close, while uniformity measures the
dispersion of embedding in vector space. A typi-
cal method called SimCSE (Gao et al., 2021) uses
dropout as a feature-wise data augmentation to con-
struct the positive sample, and randomly sample
negatives from the batch, which can achieve a great
balance between alignment and uniformity. Some
new works further improved the quality of sen-
tence representations based on SimCSE, such as
ESimCSE (Wu et al., 2021), MixCSE (Zhang et al.,
2022a) and VaSCL (Zhang et al., 2021b), each of
them proposed a new data augmentation strategy to
construct the positive pair. Besides, DCLR (Zhou
et al., 2022) focus on optimizing the strategy of
sampling negatives, and ArcCSE (Zhang et al.,
2022b) optimized the objective function, etc. In
this paper, we find that contrastive learning can be
further combined with whitening to obtain better
sentence representations.

2.3 Whitening Transformation

In computer vision, recent works (Ermolov et al.,
2021; Zhang et al., 2021c; Hua et al., 2021) use
whitening transformation as an alternative method
to the "pushing negatives away" operation in con-
trastive learning to disperse the data uniformly
throughout the spherical space (i.e., the feature
space), and then pull the positive samples together ,
which have achieved great success in unsupervised
representation learning.

Whitening (aka., sphering) is a common trans-
formation that transforms a set of variables into a
new set of isotropic variables, and makes the co-
variance matrix of whitened variables equal to the
identity matrix. In natural language processing, Su
et al. (2021) use whitening as a post-processing
method to alleviate the anisotropic problem in pre-
trained language models. In this paper, we use
whitening as an explicit operation to further im-
prove the uniformity of the representation space,
and further explore the potential of whitening in im-
proving alignment, so as to obtain a better sentence
representation model.

3 Methods

In this section, we first describe the overall architec-
ture of WhitenedCSE and then present the details
of all the modules, including the shuffled group
whitening module and the new contrastive learning
module.

3.1 General Framework

As shown in Fig. 2, WhitenedCSE has three major
components:
• An BERT-like encoder , which we use to ex-

tract features from native sentences, and take the
[CLS] token as our native sentence representations.
• Shuffled-group-whitening module, we use it

as a complementary module to contrastive learning
to further improve the uniformity and alignment of
the representation space.
• Multi-positives contrastive module, in this

module, we pull distortions of the representations
close and push the negative samples away in the
latent feature space.

Specifically, given a batch of sentences X,
WhitenedCSE use the feature encoder fθ(xi, γ) to
map them to a higher dimensional space, where γ
is a random mask for dropout (Gao et al., 2021),
then we take the [CLS] output as the native sen-
tence representations. After this, we feed the na-
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Figure 2: Method overview. In the middle column, WhitenedCSE consists of three components, i.e., 1) An BERT-
like encoder for generating the backbone features from input samples, 2) A Shuffled Group Whitenning (SGW)
module for scattering the backbone features and augmenting the positive feature diversity, and 3) A multi-positive
contrastive loss for optimizing the features. In the left column, when the mini-batch flows through these three
components sequentially, the feature space undergoes “anisotropy” → “good uniformity + augmented positives” →
“pulling close the positives”. The right column illustrates the SGW module in details. Specifically, SGW randomly
shuffles the backbone feature along the axis and then divides the feature into multiple groups. Afterwards, SGW
whitens each group independently and re-shuffles the whitened feature. Given a single backbone feature, we repeat
the SGW process several times so as to generate multiple positive features.

tive sentence representations to the shuffled-group-
whitening (SGW) module, in this module we ran-
domly dividing each sentence representation into
multiple groups along the axis, then we operate
group whitening on each group. We repeat SGW
multiple times to get different grouping results, and
then different whitened representations. These "du-
plicated" features are different from each other. Fi-
nally, we use multi-positives contrastive loss func-
tion to pull one representation and all its corre-
sponding augmentations together, and push it away
from others. We will discuss feasible loss function
in Section 3.3, and present our final form of loss
function.

3.2 From Whitening to SGW
3.2.1 Preliminaries for Whitening
Given a batch of normalized sentence representa-
tions Z ∈ RN×d, the whitening transformation can
be formulated as:

H = ZTW (2)

where H ∈ Rd×N is the whitened embeddings

and W ∈ Rd×d is the whitening matrix. We
denote the covariance matrix of ZZT as Σ. the
goal of whitening is to make the covariance ma-
trix of HHT equal to the identity matrix I, i.e.,
WΣWT = I. There are many different whitening
methods, such as PCA (Jégou and Chum, 2012),
ZCA (Bell and Sejnowski, 1997), etc. Group
whitening use ZCA as its whitening method to pre-
vent the stochastic axis swapping (Huang et al.,
2018).2.

ZCA Whitening. The whitening matrix of ZCA
whitening transformation can be formulated as:

WZCA = UΛ−1/2UT (3)

where U ∈ Rd×d is the stack of eigenvector of
cov(Z,ZT), and Λ is the correspond eigenvalue
matrix. U and Λ are obtained by matrix decompo-
sition. Therefore, Eq. 2 becomes:

H = ZTUΛ−1/2UT (4)

2stochastic axis swapping can drastically change the data
representation from one batch to another such that training
never converges (Huang et al., 2018).
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Group Whitening. Since whitening module needs
a large batch size to obtain a suitable estimate for
the full covariance matrix, while in NLP, large
batch size can be detrimental to unsupervised con-
trastive learning. To address this problem, we
use group whitening (Huang et al., 2018), which
controls the extent of whitening by decorrelating
smaller groups. Specifically, give a sentence repre-
sentation of dimension d, group whitening first
divide it into k groups (Z0,Z1, ...,Zk−1), i.e.,
Zk ∈ RN× d

k and then apply whitening on each
group. That is:

H = concat(ZiW
ZCA
i ), i ∈ [0, k) (5)

3.2.2 Shuffled Group Whitening
In order to further improve the quality of the sen-
tence representation model, we proposed shuffled-
group-whitening (SGW). We randomly divide the
feature into multiple groups along the channel axis,
and then perform ZCA whitening independently
within each group. After whitening, we do a re-
shuffled operation to recover features to their orig-
inal arrangement. The process can be formulated
as:

H = shuffled−1(GW(shuffled(ZT))) (6)

This can bring two benefits. One is that it can
avoid the limitation that only adjacent features can
be put into the same group, so as to better decor-
relation and then achieve better uniformity in the
representation space. Another is that it brings a
disturbance to samples, we can use it as a data aug-
mentation method. Specifically, we repeat SGW
multiple times and we can get different grouping
results and then different whitened features. These
"duplicated" features are different from each other,
and thus increase the diversity of postive samples.

3.2.3 Connection to contrastive learning
We find that whitening and contrastive learning are
not totally redundant but actually have some com-
plementarity is non-trivia. Specifically, whitening
decorrelates features through matrix decomposi-
tion, and makes the variance of all features equal to
1, that is, to project features into a spherical space.
The "pushing" operation in contrastive learning is
to approach a uniform spherical spatial distribution
step by step through learning/iteration. Therefore,
conceptually, whitening and contrastive learning
are redundant in optimizing the uniformity of the

representation space. However, contrastive learn-
ing achieves uniformity by widening the distance
between positive samples and all negative samples,
but there is no explicit separation between nega-
tive samples. Whitening is the uniform dispersion
of the entire samples, so there is complementarity
between them. That is, whitening can supplement
the lack of contrastive learning for the "pushing"
operation between negative samples.

3.3 Multi-Positive Contrastive Loss
Since we get multi-positive samples from SGW
module, however, the original contrastive loss in
Eq. 1 is unable to handle multiple positives. We
provide two possible options of contrastive loss
which can adapt multi-positives. Given m positive
samples, the objective function can be formulated
as:

L1 = −λm

m∑

p=1

log
esim(hi,h

+
i,p)/τ

∑N
j=1 e

sim(hi,h
+
j )/τ

(7)

L2 = − log
m∑

p=1

λme−sim(hi,h
+
i,p)/τ

∑N
j=1 e

sim(hi,h
+
j )/τ

(8)

where λm is a hyperparameter, it controls the
impact of each positive. Eq. 7 puts the summa-
tion over positives outside of the log while Eq. 8
puts the sum of positives inside the log. It should
be noted that in Eq. 8, there is a negative sign
before the sum of positives, without it, the Eq. 8
will conduct hard mining, which means the maxi-
mum of

∑m
p=1 e

sim(hi,h
+
i,p)/τ is mainly determined

by max(e−sim(hi,h
+
i,p)/τ ). If we add the negative

sign, the loss function will be committed to punish
the items with less similarity, which is good for
bringing all positive samples closer to the anchor
samples. In our framework, we adopt Eq. 7 as our
final loss function because it can achieve better
performance.

4 Experiments

4.1 Experiment Setup
In this section, We evaluate our method on seven
Semantic Textual Similarity(STS) tasks and seven
transfer tasks. We use the SentEval (Conneau and
Kiela, 2018) toolkit for all of tasks.

Datasets. Semantic Textual Similarity(STS)
tasks consist of seven tasks: STS 2012–
2016 (Agirre et al., 2012, 2013, 2014, 2015, 2016),
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Model STS12 STS13 STS14 STS15 STS16 STS-B SICK-R Avg.

GloVe embeddings (avg.) 55.14 70.66 59.73 68.25 63.66 58.02 53.76 61.32
BERTbase (first-last avg.) 39.70 59.38 49.67 66.03 66.19 53.87 62.06 56.70
BERTbase-flow 58.40 67.10 60.85 75.16 71.22 68.66 64.47 66.55
BERTbase-whitening 57.83 66.90 60.90 75.08 71.31 68.24 63.73 66.28
IS-BERTbase 56.77 69.24 61.21 75.23 70.16 69.21 64.25 66.58
CT-BERTbase 61.63 76.80 68.47 77.50 76.48 74.31 69.19 72.05
ConSERTbase 64.64 78.49 69.07 79.72 75.95 73.97 67.31 72.74
SimCSE-BERTbase 68.40 82.41 74.38 80.91 78.56 76.85 72.23 76.25
DCLR-BERTbase 70.81 83.74 75.11 82.56 78.44 78.31 71.59 77.22
ArcCSE-BERTbase 72.08 84.27 76.25 82.32 79.54 79.92 72.39 78.11
∗ WhitenedCSE-BERTbase 74.03 84.90 76.40 83.40 80.23 81.14 71.33 78.78

ConSERTlarge 70.69 82.96 74.13 82.78 76.66 77.53 70.37 76.45
SimCSE-BERT large 70.88 84.16 76.43 84.50 79.76 79.26 73.88 78.41
DCLR-BERT large 71.87 84.83 77.37 84.70 79.81 79.55 74.19 78.90
ArcCSE-BERTlarge 73.17 86.19 77.90 84.97 79.43 80.45 73.50 79.37
∗ WhitenedCSE-BERTlarge 74.65 85.79 77.49 84.71 80.33 81.48 75.34 79.97

RoBERTabase (first-last avg.) 40.88 58.74 49.07 65.63 61.48 58.55 61.63 56.57
RoBERTabase-whitening 46.99 63.24 57.23 71.36 68.99 61.36 62.91 61.73
DeCLUTR-RoBERTabase 52.41 75.19 65.52 77.12 78.63 72.41 68.62 69.99
SimCSE-RoBERTabase 70.16 81.77 73.24 81.36 80.65 80.22 68.56 76.57
DCLR-RoBERTabase 70.01 83.08 75.09 83.66 81.06 81.86 70.33 77.87
∗ WhitenedCSE-RoBERTabase 70.73 83.77 75.56 81.85 83.25 81.43 70.96 78.22

Table 1: Sentence embedding performance on STS tasks. We use the Spearman correlation to measure the relevance
between gold annotations and scores predicted by sentence representations, we show the best performance in bold.

STS Benchmark (Cer et al., 2017) and SICK-
Relatedness (Marelli et al., 2014). Each sample in
those datasets has two sentences and a manually an-
notated similarity score from 0 to 5 to measure their
similarity. The transfer tasks include MR (Pang and
Lee, 2005), CR (Hu and Liu, 2004), SUBJ (Pang
and Lee, 2004), MPQA (Wiebe et al., 2005), SST-
2 (Socher et al., 2013), TREC (Voorhees and Tice,
2000), MRPC (Dolan and Brockett, 2005). In this
tasks, we use a logistic regression classifier trained
on top of the frozen sentence embeddings.

Baseline and competing methods. We compare
WhitenedCSE against several classic methods on
Semantic Textual Similarity datasets, i.e., GloVe
embeddings (Pennington et al., 2014), average
BERT embeddings from the last layer (Devlin
et al., 2018), BERT-flow (Li et al., 2020), BERT-
whitening (Su et al., 2021), IS-BERT (Zhang et al.,
2020), CT (Carlsson, 2021), ConSERT (Yan et al.,
2021), SimCSE (Gao et al., 2021), as well as
some most recent state-of-the-art methods, i.e.,
MixCSE (Zhang et al., 2022a), ArcCSE (Zhang
et al., 2021a), DCLR (Zhou et al., 2022).

Among these methods, SimCSE may be viewed
as our direct baseline, because WhitenedCSE may
be viewed as being transformed from SimCSE by
adding the SGW and replacing the dual-positive
contrastive loss with multi-positive contrastive loss.

Therefore, when conduct ablation study, we use
SimCSE as our baseline.

Implementation details. We use the output of the
MLP layer on top of the [CLS] as the our sentence
representation. The MLP layer is consist of three
components, which are a shuffled group whitening
module, a 768 × 768 linear layer and a activation
layer. Following SimCSE (Gao et al., 2021), we use
1× 106 randomly sampled sentences from English
Wikipedia as our training corpus. We start from pre-
trained checkpoints of BERT (Devlin et al., 2018)
and RoBERTa (Liu et al., 2019). At training time,
we set the learning rate as 3e-5, the batch size as 64.
We train our model for 1 epoch with temperature
τ = 0.05. For BERT-base and BERT-large, we set
the number of group size as 384, for RoBERTa-
base and RoBERTa-large, we set the number of
group size as 256. We set the number of positives
as 3 for all of models. We evaluate the model every
125 training steps on the development set of STS-
B, and keep the best checkpoint for evaluation on
test sets. We conduct our experiments on two 3090
GPUs.

4.2 STS tasks

We conduct experiments on 7 semantic textual sim-
ilarity(STS) tasks, and use SentEval toolkit (Con-
neau and Kiela, 2018) for evaluation. We use the
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Model MR CR SUBJ MPQA SST TREC MRPC Avg.

GloVe (avg.) 77.25 78.30 91.17 87.85 80.18 83.00 72.87 81.52
Skip-thought 76.50 80.10 93.60 87.10 82.00 92.20 73.00 83.50
Avg. BERT embeddings 78.66 86.25 94.37 88.66 84.40 92.80 69.54 84.94
BERT-[CLS]embedding 78.68 84.85 94.21 88.23 84.13 91.40 71.13 84.66
IS-BERTbase 81.09 87.18 94.96 88.75 85.96 88.64 74.24 85.83
SimCSE-BERTbase 81.18 86.46 94.45 88.88 85.50 89.80 74.43 85.81
MoCoSE-BERTbase 81.07 86.43 94.76 89.70 86.35 84.06 75.86 85.46
ArcCSE-BERTbase 79.91 85.25 99.58 89.21 84.90 89.20 74.78 86.12
∗ WhitenedCSE-BERTbase 81.31 86.33 96.15 89.78 86.08 89.74 75.43 86.40

SimCSE-BERTlarge 85.36 89.38 95.39 89.63 90.44 91.80 76.41 88.34
MoCoSE-BERTlarge 83.71 89.07 95.58 90.26 87.96 84.92 76.81 86.90
ArcCSE-BERTlarge 84.34 88.82 99.58 89.79 90.50 92.00 74.78 88.54
∗ WhitenedCSE-BERTlarge 85.54 89.70 96.16 89.57 90.74 92.21 76.78 88.67

Table 2: Sentence embeddings performance on transfer tasks. We use the accuracy to measure the performance, and
report the best in bold.

Spearman’s correlation coefficient as our evalua-
tion metrics. The Spearman’s correlation uses a
monotonic equation to evaluate the correlation of
two statistical variables, it varies between -1 and 1
with 0 implying no correlation, and the closer the
value is to 1, the closer the two statistical variables
are to positive correlation.

Tab. 1 shows the evaluation results on 7 STS
tasks, from which we can see that WhitenedCSE
achieves competitive performance. Compared
with SimCSE (Gao et al., 2021), WhitenedCSE
achieves 2.53 and 1.56 points of improvement
based on BERTbaseand BERTlarge. It also raise
the performance from 76.57% to 78.22 % base
on RoBERTabase. Compared with recent works,
WhitenedCSE also achieves the best performance
in most of the STS tasks.

4.3 Transfer tasks

We also conduct experiments on 7 transfer tasks,
and use SentEval toolkit (Conneau and Kiela, 2018)
for evaluation. For each task, we train a logistic
regression classifier on top of the frozen sentence
embeddings and test the accuracy on the down-
stream task. In our experiment settings, we do not
include models with auxiliary tasks, i.e., masked
language modeling, for a fair comparison.

Tab. 2 shows the evaluation results. Compar-
ied with the SimCSE (Gao et al., 2021) base-
line, WhitenedCSE achieves 0.59 and 0.33 ac-
curacy improvement on average results based on
BERTbaseand BERTlarge. Compared with recent
works, WhitenedCSE also achieves the best perfor-
mance in most of the transfer tasks, which further
demonstrates the effectiveness of our method.

(a) alignment (b) uniformity

Figure 3: The alignment loss and the uniformity loss of
WhitenedCSE and SimCSE. For both measures, lower
number are better.

4.4 Alignment and Uniformity
In order to further quantify the improvement in
uniformity and alignment of WhitenedCSE, we fol-
low SimCSE (Gao et al., 2021), and use alignment
loss and uniformity loss (Wang and Isola, 2020) to
measure the quality of representations. Alignment
is used to measure the expected distance between
the embeddings of the positive pairs, and can be
formulated as:

ℓalign = E
(x,x+)∼ppos

∥f(x)− f(x+)∥2 (9)

while uniformity measures how well the embed-
dings are uniformly distributed in the representa-
tion space:

ℓuniform = log E
x,y

i.i.d.∼ pdata

e−2∥f(x)−f(y)∥2 (10)

We calculate the alignment loss and uniformity
loss every 125 training steps on the STS-B devel-
opment set. From Fig. 3, we can see that compared
with SimCSE, WhitenedCSE performs better both
on the alignment measure and the uniformity mea-
sure. We also find that the uniformity of our models
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is well optimized at the beginning and remains sta-
ble throughout the training process. This further
confirms that our method can improve the quality
of sentence representation more effectively.

5 Ablation Analysis

In this section, we further investigate the effective-
ness of our proposed model WhitenedCSE. For all
experiments, we use BERTbase as our base model,
and evaluate WhitenedCSE on the STS tasks unless
otherwise specified.

5.1 Shuffling augments the positive samples

We prove theoretically and practically that SGW
can be regarded as an effective data augmentation.
We know different whitening transformations will
get different whitened results, but all of them are
representations for the same sample, so they can
be regarded as positive samples for each other.
In WhitenedCSE, we operate randomly shuffled
on feature dimension, and divide the representa-
tions along the feature dimension into k groups.
Since each time we use a different permutation,
we can get a different representations Z and the
corresponding whitening matrix W, We find it can
be written as a form of feature-wise disturbance
Z∗ = Z+ ϵ:

Z∗ = Z+ (WZCA − 1)Z

= Z+ (UΛ−1/2UT − 1)Z
(11)

Here, we treat (UΛ−1/2UT − 1)Z as a perturba-
tion ϵ on the feature dimension. Thus, in Whitened-
CSE, we use it as a data augmentation and generate
more diverse positive samples. From Tab.4, we can
see that, shuffling plays a very important role in the
performance of the model.

5.2 The importance of Group Whitening

Recently, Su et al. (2021) directly apply whitening
on the output of the BERT and have achieved re-
markable performance at the time. This lead us to
think whether whitening can be directly applied to
the output of contrastive learning model to further
improve the uniformity of the model representation
space.

We consider two different whitening methods:
PCA Whitening and ZCA Whitening. The differ-
ence between them is that ZCA Whitening uses
an additional rotation matrix to rotate the PCA
whitened data back to the original feature space,

Whitening strategy STS-Avg.

None (unsup. SimCSE) 76.25

PCA-whitening 68.55
ZCA-whitening 72.11
Group-whitening 77.47
Shuffled-Group-whitening 78.78

Table 3: Performance comparison using different
whitening methods on the test set of seven semantic
textual similarity tasks. (Spearman’s correlation).

which can make the transformed data closer to the
original input data.

WZCA = UrotateW
PCA (12)

We use the in-batch sentence representations to
calculate the mean value x̄ and the covariance ma-
trix σ, and use the momentum to estimate the over-
all mean value µ and covariance matrix Σ.

µn = βµn−1 + (1− β)x̄n−1

Σn = βΣn−1 + (1− β)σn−1
(13)

As the results shown in the Tab. 3, we found that
directly applying the whitening transformation on
contrastive learning models is detrimental to the
performance. we attribute this to two reasons: (1)
small batch size may not provide enough samples
to obtain a suitable estimate for the full covari-
ance matrix. (2) The covariance matrix obtained
by high-dimensional features is not necessarily a
positive definite matrix (maybe a semi-positive def-
inite matrix), which may leads to errors in matrix
decomposition. To alleviate this problem, we use
the group whitening to control the extent of whiten-
ing. From Tab. 3 we can see that group whitening
can significantly improve the performance.

5.3 Hyperparameters Analysis
For hyperparameters analysis, we want to explore
the sensitivity of WhitenedCSE to these parame-
ters. Concretely, we study the impact of the group
size, the number of positive samples. We evalu-
ate our model with varying values, and report the
performances on the seven STS tasks.

The influence of group size. In WhitenedCSE, we
divide the representation into k groups. However,
we know the size of group controls the degree of
whitening, and has a great effect on the effective-
ness of WhitenedCSE, so we carry out an exper-
iment with k varying from 32 to 384. As shown
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Group Size 32 48 64 96
STS-Avg. 76.49 77.59 78.34 78.03
w/o shuffled 75,49 77.47 77.42 77.45

Group Size 128 192 256 384
STS-Avg. 78.57 78.15 77.97 78.78
w/o shuffled 77.47 77.45 77.42 77.43

Table 4: Effects of different group size and shuffling
on seven STS tasks (Spearman’s correlation).The best
performance and the second-best performance methods
are denoted in bold and underlined fonts respectively.

Positive Number 2 3 4 5

STS-Avg. 77.81 78.78 78.65 78.74

Table 5: Effects of different positive number on seven
STS tasks (Spearman’s correlation).

in Tab. 4, we can see that the best performance is
achieved when k = 384, and the second best per-
formance is achieved when k = 128. When k takes
other values, the performance will drop slightly.

The influence of positive samples number. Sam-
pling multi-positive samples can significantly en-
rich semantic diversity, we want to explore how
the number of positive samples affect the perfor-
mance of our model, so we conduct an experiment
with positive number m varying from 2 to 5. From
Tab. 5, we can see that when m = 3, our model
achieve the best performance. However, due to the
limitation of the memory size, we cannot exhaust
all the possibilities, but we found that when m ≥ 2,
the performance of the model is always better than
when m = 2, which confirms that mult-positive
samples can bring richer semantics, allowing the
model to learn better sentence representations.

The influence of different modules. In Whitened-
CSE, using the proposed shuffled-group-whitening
method is beneficial, and further using multi-hot
positive samples brings additional benefit. We in-
vestigate their respective contributions to Whitened-
CSE in Tab. 6. In our ablation study, we replace
the whitening method with ordinary dropout tech-
nique, and still retain the multi-hot positive sample
loss. Meanwhile, we use the proposed whitening
method alone, and keep the number of positive
samples 2. From Tab. 6, we find that multi-hot pos-
itive samples based on dropout only brings +0.12%
improvement. This is reasonable because when
the data augmentation is subtle (i.e., the dropout),
using extra positive samples barely increases the
diversity. In contrast, the proposed SGW gener-

Model STS-Avg.

SimCSE-BERT-base 76.25

+ Shuffled Group Whitening 77.81 (+1.56)

+ Multiple Positives(k=3) 76.37 (+0.12)
+ Multiple Positives(k=4) 76.34 (+0.09)

WhitenedCSE-BERTbase 78.78 (+2.53)

Table 6: The performance on STS tasks when we use
whitening module and multiple positives independently.

ates informative data augmentation, and thus well
accommodates the multi-hot positive samples.

6 Conclusion

In this paper, we proposed WhitenedCSE, a
whitening-based contrastive learning framework
for unsupervised sentence representation learning.
We proposed a novel shuffled group whitening,
which reinforces the contrastive learning effect
regarding both the uniformity and the alignment.
Specifically, it retains the role of whitening in dis-
persing data, and can further improve uniformity
on the basis of contrastive learning. Additionally,
it shuffles and groups features on channel axis,
and performs whitening independently within each
group. This kind of operation can be regarded as a
disturbance on feature dimension. We obtain mul-
tiple positive samples through this operation, and
learn the invariance to this disturbance to obtain
better alignment. Experimental results on seven
semantic textual similarity tasks have shown that
our approach achieve consistent improvement over
the contrastive learning baseline.

Limitations

In this paper, we limit the proposed WhitenedCSE
for sentence embedding learning. Conceptually,
WhitenedCSE is potential to benefit contrastive
learning on some other tasks, e.g., self-supervised
image representation learning and self-supervised
vision-language contrastive learning. However, we
did not investigate the self-supervised image rep-
resentation learning because this domain is cur-
rently dominated by masked image modeling. We
will consider extending WhitenedCSE for vision-
language contrastive learning when we have suffi-
cient training resources for the extraordinary large-
scale text-image pairs.
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