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Abstract

Language models have been shown to per-
form better with an increase in scale on a
wide variety of tasks via the in-context learn-
ing paradigm. In this paper, we investigate
the hypothesis that the ability of a large lan-
guage model to in-context learn-perform a task
is not uniformly spread across all of its un-
derlying components. Using a 66 billion pa-
rameter language model (OPT-66B) across a
diverse set of 14 downstream tasks, we find
this is indeed the case: ∼70% of the attention
heads and ∼20% of the feed forward networks
can be removed with minimal decline in task
performance. We find substantial overlap in
the set of attention heads (un)important for in-
context learning across tasks and number of
in-context examples. We also address our hy-
pothesis through a task-agnostic lens, finding
that a small set of attention heads in OPT-66B
score highly on their ability to perform prim-
itive induction operations associated with in-
context learning, namely, prefix matching and
copying. These induction heads overlap with
task-specific important heads, reinforcing ar-
guments by Olsson et al. (2022) regarding in-
duction head generality to more sophisticated
behaviors associated with in-context learning.
Overall, our study provides several insights that
indicate large language models may be under-
trained for in-context learning and opens up
questions on how to pre-train language models
to more effectively perform in-context learning.

1 Introduction

In recent years, large language models (LLMs)
(Brown et al., 2020; Rae et al., 2021; Lieber et al.,
2021; Black et al., 2022; Zhang et al., 2022; Chowd-
hery et al., 2022; Hoffmann et al., 2022; Smith
et al., 2022) based on the Transformer architec-
ture (Vaswani et al., 2017) pre-trained using self-
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supervision on web-scale textual corpora have rev-
olutionized the field of natural language processing
(NLP). At larger scales, these models demonstrate
remarkable emergent (Wei et al., 2022) prowess
in performing a wide variety of tasks without
any form of fine-tuning, via the zero/few-shot in-
context learning paradigm (Brown et al., 2020).

Figure 1: A sample input prompt for in-context learning
and the model output.

How in-context learning works has been an open
question since its advent and recent studies (Xie
et al., 2021; Garg et al., 2022; Olsson et al., 2022;
Min et al., 2022b) have begun scratching the sur-
face toward better understanding the paradigm. In
this paper, we empirically address the following
key question:

Are all LLM components really needed
to perform in-context learning?

The first way we address the aforementioned
question is through the lens of task-specific im-
portance scores and structured pruning (Li et al.,
2016; Molchanov et al., 2016; Anwar et al., 2017)
of components underlying modern LLMs, which
are primarily stacks composed of multiple high-
dimensional self-attention blocks that form multi-
headed attention and densely activated feed for-
ward networks (FFNs). We pick the Open Pre-
trained Transformer (OPT) (Zhang et al., 2022)
model with 66B parameters for our analyses, which
yield several surprising observations. We find that
important attention heads are primarily clustered
in the intermediate layers and important FFNs are
primarily in later layers of the model (§4). We find
that the ability to perform zero/few-shot in-context
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learning on a variety of 14 NLP datasets/tasks stays
nearly intact when up to 70% (∼15.7B parameters
in OPT-66B) of the attention heads are removed
(§5.1). The attention heads that are (un)important
for in-context learning also seem to overlap across
tasks (§6.1) and shots (§6.2), and pruning atten-
tion heads based on a "universal" importance order
computed using all 14 datasets generalizes to vary-
ing degrees on out-of-distribution datasets (§6.1.2).
These observations indicate that a common task-
agnostic subset of the attention heads are responsi-
ble for in-context learning. We also find that only
up to 20% of the FFNs (∼8.5B parameters) can
be removed with minimal decline in zero/few-shot
in-context learning performance (§5.2), indicating
the importance of FFNs toward in-context learning.

The second way we address the aforementioned
question is by quantifying the capacity of all at-
tention heads in OPT-66B to perform a subset of
task-agnostic primitive operations associated with
in-context learning, namely, prefix matching and
copying: explicitly searching for a prior occurrence
of the current token in-context and copying over
its suffix. Elhage et al. (2021) and Olsson et al.
(2022) developed a mathematical framework to
reverse-engineer a Transformer and also find such
heads, termed induction heads, and explored the
hypothesis that such heads drive in-context learn-
ing with model sizes up to 13B parameters in a
mostly task-agnostic fashion. Using this frame-
work, we compute task-agnostic scores for prefix
matching and copying for each attention head and
find that a small set of heads in OPT-66B have non-
trivial scores for both primitives (§6.3). Qualita-
tive inspection and quantitative analyses show that
these heads overlap (to varying degrees) with the
ones identified earlier to be important for in-context
learning via our set of 14 NLP datasets/tasks, in-
dicating that induction heads are capable of more
sophisticated behaviors associated with in-context
learning such as latent concept matching but are
not the only heads with such capabilities (§6.3.1).

Overall, our study provides several insights
about in-context learning at massive scale using
both task-specific and task-agnostic settings. In a
world of ever increasing language model sizes, we
believe these insights serve as a strong foundation
for researchers and practitioners in language model-
ing to build and leverage compact language models
that can also demonstrate emergent abilities.

2 Background & Methods

In this section, we establish notation and meth-
ods with the Open Pre-trained Transformer (OPT)
(Zhang et al., 2022) model used for our study, pro-
vide background on in-context learning and the
mathematical formulation of induction heads by
Olsson et al. (2022) that we build on, and describe
our adaptation of oracle and gradient-based impor-
tance score formulations for in-context learning.

2.1 Open Pre-trained Transformer (OPT)
OPT is a suite of language models of varying sizes
aimed at serving as open replicas of GPT-3. The
largest openly accessible model from this suite is
OPT-66B with 66 billion parameters.

Architecture: Consider a tokenized input sen-
tence to OPT, X ∈ RN×de , where N is the number
of tokens in the sentence and de is the embedding
dimension. The input is processed by multiple de-
coder layers consisting of multi-headed attention
(MHA) blocks, layer norm (LN) and feed forward
networks (FFN), followed by a linear layer to pro-
duce logits over the vocabulary. The decoder layers
can be formally expressed as follows:

t(ℓ+1) = zℓ + MHAℓ(LNℓ(zℓ)) (1)

z(ℓ+1) = t(ℓ+1) + FFNℓ(t(ℓ+1)) (2)

where z1 = X, and (1) & (2) are the residual
connections corresponding to the MHA and FFN
in layer ℓ >= 1 respectively. OPT-66B was
pre-trained with a maximum sequence length of
2048 and embedding dimension de = 9216.

MHA: In an MHA block, H attention heads are
applied in parallel to the input and their outputs are
concatenated. In OPT-66B, there are H = 72 atten-
tion heads of dimension dh = 128 in every layer ℓ.
An individual attention head h in layer ℓ consists of
three learnable matrices, Wh

k ,W
h
q ,W

h
v ∈ Rde×dh ,

all unique to the head, such that it applies self-
attention Ah(.) on the input, where dh = de/H .
Formally, for input M in layer ℓ:

MHAℓ(M) = [A1(M); · · · ;AH(M)]Wℓ
o (3)

Ah(M) = sh(M)MWh
v (4)

sh(M) = σ
(MWh

q (W
h
k)

TMT

√
dh

)
(5)

where σ is the softmax function and Wℓ
o ∈ Rde×de

is a learnable output matrix unique to the MHA
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block in layer ℓ. To ensure OPT is auto-regressive,
the output of sh(.) is masked to prevent the depen-
dence of the hidden state of the token i, zℓi ∈ Rde ,
on future tokens in indices {i+ 1, . . . , N}.

To remove a head h in layer ℓ in practice, we
set Ah(M) to be the zero matrix in Equation (3).
This implies that Wh

k ,W
h
q ,W

h
v can be entirely

removed, and the corresponding dh rows in Wℓ
o

can also be removed. In total, there are 4608
attention heads across 64 layers in OPT-66B that
constitute 21.7B of the total 66B parameters.

FFN: Each layer ℓ consists of a feed forward net-
work (FFN) parameterized by a high-dimensional
projection matrix, Wℓ

1 ∈ Rde×d followed by a
low-dimensional projection matrix, Wℓ

2 ∈ Rd×de

where d = 36864 for OPT-66B. Formally, for input
M in layer ℓ:

FFNℓ(M) = ReLU(LNℓ(M)Wℓ
1)W

ℓ
2 (6)

where ReLU is the rectified linear unit activation
function and LN is the layer norm.

To remove an FFN in layer ℓ in practice, we set
FFNℓ(M) to be the zero matrix in Equation (6).
This implies Wℓ

1, Wℓ
2 and the layer norm LNℓ(.)

for the FFN can be entirely removed. In total, FFNs
constitute 43.4B parameters in OPT-66B.

2.2 In-Context Learning & Induction Heads

With increasingly larger language models being
trained in recent years, a new paradigm of learn-
ing termed in-context learning (Brown et al., 2020)
has become popular. In this paradigm, language
models perform tasks by being prompted to gener-
ate output text conditioned on a few (or zero) in-
context training examples that form solved "input-
output" pairs for the task along with a query input.
Figure 1 illustrates the paradigm for the task of
identifying the sound that an animal makes. In
some cases, tasks can also be accompanied by task
descriptions/templates to help prime the language
model better, e.g., zero-shot translating from En-
glish to German using the prompt:

English phrase: I like dogs. German phrase:

While these examples involve learning and rely-
ing on latent concepts during inference, few-shot
in-context learning can additionally involve explicit
primitive interactions between the in-context exam-
ples. For example, with the prompt:

English phrase: I like dogs. German phrase: ich

mag Hunde.

English phrase: I like ducks. German phrase:

the model may rely on prior in-context translations
of the tokens I and like when performing the task
for the query input. Olsson et al. (2022) devel-
oped a mathematical framework toward better un-
derstanding such mechanics, starting off with a
task-agnostic formulation of in-context learning as
the ability of a model to better predict tokens later
in the context than the tokens earlier (Kaplan et al.,
2020). They define a set of task-agnostic primitive
operations that reflect the kind of interactions we
refer to in the above example, namely, prefix match-
ing and copying. These operations are defined in
a simplistic fashion on a repeated sequence of ran-
domly generated tokens: explicitly searching for
a prior occurrence of the current token in-context
and copying over its suffix. The heads that are ca-
pable of performing these operations are termed
induction heads. Figure 2 depicts these operations
for a repeated sequence of tokens. While these op-
erations are intertwined in practice, the capacity of
attention heads to independently perform them is
computed with the scoring algorithms described in
detail in Appendix A.8.

Figure 2: Prefix matching and copying depicted at a
given time-step for a repeated sequence of tokens.

2.3 Importance Scores

Consider a modelM and a dataset D = {X ,Y},
where X = {x1, · · · ,xL} and Y = {y1, · · · ,yL}
such that xi represents a prompt with few (or zero)
in-context training examples along with a query in-
put and yi represents the corresponding target out-
put sequence. We define and compute importance
scores for model components using such datasets to
quantify their relative contributions to the model’s
ability to perform in-context learning.

2.3.1 Oracle
Let PM(D) denote a dataset/task-specific perfor-
mance metric, e.g., accuracy. Given dataset D, the
oracle importance score of a component C inM is
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computed as follows:

ISC(D) = PM(D)− PM\C(D) (7)

whereM\C denotes the resultant model when C is
pruned fromM. Clearly, if pruning a component
leads to poor model performance on the task, it
must be important for the task. Similarly, if there
is no difference or an improvement in performance
upon pruning a component, it must be unimpor-
tant. Computing oracle importance scores for K
model components requires us to perform O(K)
evaluations for each dataset D.

2.3.2 Gradient-based
Given dataset D, the gradient-based importance
score (Molchanov et al., 2016; Michel et al., 2019)
of an attention head h captures the expected sensi-
tivity of the model to h and is computed as follows:

ISh(D) = E(x,y)

∣∣∣∣Ah([x;y])T
∂L(y|x)

∂Ah([x;y])

∣∣∣∣ (8)

where ; is the concatenation operator, (x,y) ∼ D
such that x is a sequence of Tx tokens x1:Tx , y is
a sequence of Ty tokens y1:Ty , Ah is the output of
head h defined in (4) and the loss term in (8) is
computed using the auto-regressive decomposition
of the log-likelihood:

L(y|x) = − 1

Ty

j=Ty∑

j=1

log(p(yj |x, y1:j−1)) (9)

These importance scores can be efficiently com-
puted for all heads by simply performing a single
forward and backward pass over the model with D.

We also define the aggregated importance score
of an attention head on a set of datasets S =
{D1, · · · ,DK} as follows:

ISh(S) = ED∼S [ISh(D)] (10)

3 Experimental Setup

We conducted our experiments on OPT-66B, which
was the largest publicly available dense decoder-
only language model at the time of our exper-
iments. We efficiently compute gradient-based
importance scores for the 4608 attention heads
and oracle importance scores for the 64 feed for-
ward networks (FFNs) in OPT-66B. We experi-
ment with a variety of 14 NLP datasets/tasks. For
consistency in the evaluation metric, we report

accuracy on all tasks. Our choice of datasets
and metric is in line with Zhang et al. (2022).
The datasets include ARC Easy and Challenge
(Clark et al., 2018) and OpenBookQA (Mihaylov
et al., 2018) for advanced question-answering, Hel-
laSwag (Zellers et al., 2019), PIQA (Bisk et al.,
2020) and Winogrande (Sakaguchi et al., 2021) for
various forms of commonsense reasoning, and the
following datasets from the standard SuperGLUE
benchmark (Wang et al., 2019): BoolQ, CB, COPA,
MultiRC, ReCoRD, RTE, WiC, and WSC. For a
subset of experiments involving evaluation of out-
of-distribution generalization, we also use 2 addi-
tional datasets: MathQA (Amini et al., 2019) and
LAMBADA (Paperno et al., 2016). We use a mod-
ified version of the lm-evaluation-harness frame-
work (Gao et al., 2021) for our experiments. The
default framework samples in-context examples at
random, which we use without modification.

4 Importance Scores for OPT-66B

4.1 Attention Heads

Figure 3: Attention head aggregate importance score
heatmap for 5-shot in-context learning with OPT-66B.

Figure 3 depicts a heatmap of the head impor-
tance scores averaged across all tasks (as described
in §2.3.2) in the 5-shot setting. Task-averaged
heatmaps for the 0-shot and 1-shot settings and all
task-specific heatmaps are provided in Appendix
A.1. We observe that the important attention heads
are primarily clustered in the intermediate layers
of OPT-66B in both the task-averaged and task-
specific cases. We also observe overlap in the im-
portant heads across the different zero/few-shot
settings, confirmed in follow-up analysis in §6.2.

4.2 Feed Forward Networks

We compute oracle importance scores (both task-
specific and averaged across tasks) for each FFN
as described in §2.3.1 in the zero/few-shot settings.
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Figure 4: Feed forward network (FFN) oracle impor-
tance scores for 5-shot in-context learning with OPT-
66B computed by knocking off FFNs independently,
i.e., the curves are discrete and not cumulative.

Figure 4 depicts the scores in the 5-shot setting.
The 0/1-shot scores are depicted in Appendix A.2.

We observe in the 0/1-shot settings that the re-
moval of any FFN in the early (1-30) layers of
OPT-66B either gives comparable or better perfor-
mance for a vast majority of tasks. In the 5-shot
setting however, both the early and later layers
seem to have important FFNs for most tasks. We
also generally observe high variance in FFN impor-
tance scores in later layers. We particularly note
high variance for WSC and MultiRC, observing
that removal of some individual FFNs can lead to
absolute accuracy improvements/degradation of up
to 20%! We leave further investigation into the
cause for this variance for future work.

5 Iterative Pruning

We now assess to what extent we can remove mul-
tiple attention heads and/or FFNs with minimal
decline in task performance. For each task in each
(0/1/5-shot) in-context learning setting, we create
separate rankings of attention heads and FFNs in
OPT-66B by separately sorting them in ascending
order by their importance scores (§4.1 and §4.2).
We then remove unimportant attention heads or
FFNs in an iterative fashion using these rankings,
10% at a time, and re-evaluate task performance
after each removal.1

5.1 Removing Attention Heads
Figure 5 depicts the resulting task-specific and
task-averaged accuracy trends in the 5-shot set-
ting. Corresponding 0/1-shot trends are depicted
in Appendix A.3. We observe that the average ac-
curacy across tasks does not change much up until

1We do not remove attention heads one at a time and re-
evaluate given the number of heads and evaluation cost.
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Figure 5: Effect on 5-shot accuracy when removing
attention heads in OPT-66B in an iterative manner based
on task-specific and shot-specific importance scores.

∼70% of the attention heads are removed. A fine-
grained look at the individual tasks also mostly
shows similar trends, with accuracy staying fairly
intact until a large proportion of the heads are re-
moved. Some oddities include tasks such as WSC
and CB, wherein we see that the 0-shot accuracy ac-
tually increases after removal of 70% of the heads.

5.2 Removing FFNs
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Figure 6: Effect on 0-shot accuracy when removing
feed forward networks (FFNs) in OPT-66B in an iter-
ative manner based on task-specific and shot-specific
importance scores.

Figure 6 depicts the resulting task-specific and
task-averaged accuracy trends in the 0-shot setting.
Corresponding 1/5-shot trends are depicted in Ap-
pendix A.4. We observe that in the 0-shot setting,
the average accuracy across tasks does not change
up until ∼20% of the FFNs are removed. For some
tasks such as PIQA, Winogrande and RTE, the ac-
curacy does not change even if 30% of the FFNs
(∼13B of the 66B parameters) are removed. We
also observe that the inflection point after which
we observe a sharp decline in accuracy changes
to 10% for the few-shot settings. Overall, these
observations indicate that FFNs play a critical role
toward in-context learning.
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5.3 Combined Removal of Heads & FFNs
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Figure 7: Effect on average 5-shot accuracy when re-
moving both attention heads and feed forward networks
(FFNs) in OPT-66B in an iterative manner based on
shot-specific task-aggregate importance scores.

We now investigate whether the inflection points
to in-context learning performance when remov-
ing either attention heads or FFNs in an iterative
fashion still hold when removing them in tandem.
Figure 7 depicts the average 5-shot accuracy of all
tasks on joint iterative removal of attention heads
and FFNs. Corresponding 0/1-shot trends are de-
picted in Appendix A.5. We observe that the re-
moval of 70% of the attention heads (∼15.7B pa-
rameters) and 20% of the FFNs (∼8.5B parame-
ters) leads to a mere 5% absolute drop in the av-
erage 0-shot accuracy. In the 1-shot setting, the
drop in accuracy is 6% on removing 70% of the
attention heads and 10% of the FFNs. In the 5-shot
setting, the drop in accuracy is 4% on removing
60% of the attention heads and 20% of the FFNs.
Overall, these new inflection points have deviated
by at most 10% absolute, which may be attributed
to the interplay between heads and FFNs.

6 Detailed Analysis of Attention Heads

In this section, we perform a detailed analysis of the
attention heads in OPT-66B, given that in-context
learning is auto-regressive in nature and attention
heads explicitly encode cross-token interactions.

6.1 Cross-Task Analysis
Michel et al. (2019) found preliminary empirical
evidence of the existence of "universally" important
attention heads in trained task-specific Transformer
and BERT models via evaluating on out-of-domain
test sets for machine translation and natural lan-
guage inference respectively. With similar motiva-
tion, we study if the (un)important attention heads
identified in various in-context learning settings for
OPT-66B are shared across tasks.

6.1.1 Spearman’s Rank Correlation
We assess overlap in (un)important attention heads
across tasks by sorting task-specific head impor-
tance scores to get head importance rankings and
computing the Spearman’s rank correlation coeffi-
cient (SRCC) between the rankings for every pair
of tasks in the zero-shot and few-shot settings. We
also sort the task-aggregate head importance scores
to get the aggregate ranking and compute the SRCC
against the ranking for every constituent task. All
correlations are depicted in Figure 8 for the 5-shot
setting and Appendix A.6 for the 0/1-shot settings.

In both zero and few-shot settings, we observe
statistically significant (p < 0.01) positive correla-
tions in the head importance rankings for every pair
of tasks, as well as between every task’s ranking
and the aggregate ranking. This indicates that the
set of (un)important attention heads are clustered
together across tasks. We also observe seemingly
lower magnitude SRCC values between every task
and ReCoRD, a long reading comprehension task
which requires commonsense reasoning, indicating
the amount of head overlap is proportionally lower.
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Figure 8: Spearman’s rank correlation coefficients be-
tween the attention head importance rankings for vari-
ous tasks in the 5-shot setting. All p-values < 0.01.

6.1.2 Generalization Trends
To understand how well head importance rankings
generalize across tasks, we study accuracy trends
for tasks when pruning using various head impor-
tance rankings. We study two sets of tasks.

The first set of tasks we study were used to
compute the aggregate ranking: COPA, Wino-
grande and ReCoRD. For each of these 3 tasks,
we consider the impact of pruning based on the
self-ranking, aggregate ranking and the rankings
from the tasks which share the highest and low-
est SRCC with them. Figures 9a, 9b and 9c de-
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pict the accuracy trends for these 3 tasks in the
5-shot setting. Corresponding trends in the 0/1-
shot settings are in Appendix A.7. In the 0-shot
setting, we observe that the accuracy on all 3 tasks
when pruning using the rankings described is al-
most unaffected up to the 50% mark. We then
observe a sharp decline in accuracy on COPA
and Winogrande when the model is pruned to
the 70% mark using the ranking identified via
ReCoRD, the task with the lowest SRCC (0.13)
with both COPA and Winogrande. This indicates
that even if the rankings vary between ReCoRD and
COPA/Winogrande (as reflected in the low mag-
nitude of the SRCC score), the set of attention
heads important for 0-shot learning with ReCoRD
are important for COPA/Winogrande too. To fur-
ther verify this, we calculated and found 71% and
76% overlap between the top 30% important at-
tention heads for ReCoRD-COPA and ReCoRD-
Winogrande respectively. Comparing the zero-shot
setting against the few-shot settings, we note that
the decline/divergence in accuracy beyond the 50%
pruning mark using the ReCoRD ranking is less
sharp for COPA and Winogrande in the 1-shot set-
ting and fades away in the 5-shot setting, indicating
a convergence of important heads across tasks.

The second set of tasks we study are unseen,
i.e., not used to compute the aggregate ranking:
MathQA and LAMBADA. For these tasks, we ana-
lyze accuracy trends when pruning using the self-
ranking and aggregate ranking. Figures 9d and
9e depict their accuracy trends in the 5-shot set-
ting. Corresponding trends in the 0/1-shot settings
are in Appendix A.7. As expected, we observe
that the self-ranking accuracy curves are somewhat
higher than the aggregate ranking accuracy curves
in general across both tasks. For MathQA, we also
observe that the absolute difference in accuracy for
both cases is within 1-2%. These indicate that the
aggregate rankings generalize well to MathQA but
not as much to LAMBADA.

6.2 Cross-Shot Analysis

To see if the attention heads identified to be
(un)important for a task are shared across the differ-
ent zero and few-shot settings, we compute Spear-
man’s rank correlation coefficient (SRCC) between
the cross-shot head importance rankings for each
task and compute the mean and variance across all
14 tasks. We observe that the mean SRCC is higher
for rankings within the few-shot setting (0.41 for

1-shot vs. 5-shot) than for rankings across the zero
and few-shot settings (0.39 for 0-shot vs. 1-shot
and 0.37 for 0-shot vs. 5-shot), with low variance
(0.001) and p-value < 0.01. This matches the intu-
ition that a similar set of heads must be important
within the different few-shot settings than across
the zero-shot and any of the few-shot settings. How-
ever, we also see that the SRCC magnitudes for the
latter are not very far off. In totality, these indicate
non-trivial overlap in the (un)important attention
heads for tasks across shots.

6.3 Induction Heads in OPT-66B

We look for induction heads in OPT-66B by quanti-
fying the capacity of all attention heads to perform
prefix matching and copying using random input
sequences in a task-agnostic fashion, following the
definition and algorithms by Olsson et al. (2022)
discussed in §2.2 and Appendix A.8.

Figures 10a and 10b depict the prefix match-
ing and copying score heatmaps respectively for
OPT-66B. We observe that a small subset of atten-
tion heads in OPT-66B have high prefix matching
scores, located in the upper layers (31+) of the
model. On the other hand, there are a relatively
larger number of attention heads with high copying
scores, although the vast majority of these are also
located in the upper layers (41+). When seen in
conjunction, these observations indicate that there
is a sparse set of attention heads that are capable of
performing both primitive operations and thus can
be deemed plausible induction heads.

6.3.1 Are Induction Heads Important?
We now study whether induction heads (which en-
code the basic in-context learning primitives of
explicit prefix matching and copying) overlap with
attention heads identified to be important (and con-
sequently capable of sophisticated and latent be-
haviors associated with in-context learning) for our
chosen downstream tasks.

A qualitative comparison of the heatmaps in Fig-
ure 10 against the heatmaps referenced in §4.1 in-
dicates that induction heads do overlap with task-
aggregated important attention heads. To better
facilitate this comparison, we first formalize the
total capacity of a model to perform prefix match-
ing (or copying) to be the sum of the respective
scores for individual attention heads in the model.
We then investigate how much of this capacity is
retained when attention heads are pruned in the
order of least important heads first. Figure 11 de-
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Figure 9: Cross-task transfer of attention head importance rankings as measured by impact of pruning on accuracy
in the 5-shot setting.

(a) Prefix Matching (b) Copying

Figure 10: Attention head prefix matching and copying
score heatmaps for OPT-66B.

picts this comparison. We observe that much of
the total prefix matching score is retained when
20% of the least important heads are removed, with
the slope of decline becoming sharp only after the
40% pruning mark. This indicates that unimportant
heads also have low prefix matching scores. We
also observe that the prefix matching scores are
generally higher for heads important for few-shot
in-context learning than for heads important for
zero-shot learning. On the other hand, we observe
across the zero-shot and few-shot settings that the
total copying score retained on pruning attention
heads rapidly and consistently declines, indicat-
ing that even unimportant heads have a non-trivial
capacity to perform copying. When seen in con-
junction, these observations indicate that induction

heads in OPT-66B are capable of sophisticated be-
haviors associated with in-context learning popular
downstream NLP tasks and reinforce the induc-
tion head generality arguments Olsson et al. (2022)
make in the context of smaller models with stylized
and synthetic tasks. We also provide per-task plots
in Appendix A.9 which showcase that some tasks
rely on induction heads more than other tasks.
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Figure 11: Total inductive (prefix matching / copying)
capacity retained as a function of percentage of attention
heads pruned, where heads are pruned based on task-
aggregate importance score rankings in the order of least
important first.

7 Related Work

There has been an interest in effectively leverag-
ing the in-context learning paradigm (Zhao et al.,
2021; Holtzman et al., 2021; Min et al., 2022a; Liu
et al., 2022; Lu et al., 2022; Rubin et al., 2022;
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Mishra et al., 2022) ever since its introduction
by Brown et al. (2020), but there have been rel-
atively fewer studies toward better understanding
the paradigm itself. Xie et al. (2021) cast in-context
learning as implicit Bayesian inference where the
language model implicitly infers a shared concept
among in-context examples when making a pre-
diction. Min et al. (2022b) study the role of the
in-context examples themselves, finding that the
ground-truth labels are not needed in the examples
and that the more important drivers are provision
of the label space, the distribution of the input text
and the overall format of the sequence. Garg et al.
(2022) showcase that Transformer models trained
from scratch can in-context learn the class of lin-
ear functions with performance comparable to the
optimal least squares estimator even under distribu-
tion shifts. Razeghi et al. (2022) showcase that in-
context learning performance is correlated strongly
with term frequencies in the pre-training corpora
used. Olsson et al. (2022) consider an alternate
framing of in-context learning as the ability of a
language model to better predict tokens later in the
context than tokens earlier and hypothesize the ex-
istence of induction heads that are responsible for
in-context learning. Chan et al. (2022) show that
Transformers exhibit striking differences in gener-
alizing from in-context vs. in-weights information.

Several works have also focused on analyzing
and interpreting how attention works. Vig and Be-
linkov (2019) performed a study on GPT-2, find-
ing that attention targets different parts of speech
at different layer depths and aligns with depen-
dency relations most strongly in the middle layers.
Tenney et al. (2019) showcase that BERT encodes
the classical NLP pipeline in an interpretable way
across layers. There are works relying on different
formulations for head importance, such as layer-
wise relevance propagation (Voita et al., 2019),
gradient-based importance and oracle knock-off
importance (Michel et al., 2019), with small task-
specific trained models and report the existence of
specialized heads. Given the recent trend of increas-
ing model scale (Lieber et al., 2021; Chowdhery
et al., 2022; Smith et al., 2022; Rae et al., 2021) to-
ward tuning-free general-purpose language models
that exhibit emergent in-context learning abilities,
we draw and build on prior work to understand just
how much scale is really needed and/or used for
in-context learning downstream, an aspect some-
what eclipsed by the focus on the pre-training loss

curve in scaling laws (Hoffmann et al., 2022). It
is also worth noting that some of our empirical
observations rely on a simple greedy approach to
training-free pruning since our focus was not to op-
timally prune a language model with respect to per-
forming in-context learning. Li et al. (2021) show
the greedy approach is sub-optimal and produces
under-estimates and Halabi et al. (2022) account
for the need to re-compute importance scores after
removal of each attention head or FFN by formulat-
ing pruning as weakly sub-modular maximization.

8 Conclusion & Future Work

In this paper, we studied the efficacy of atten-
tion heads and feed forward networks (FFNs) in
a large language model (OPT-66B) in perform-
ing in-context learning in both task-specific and
task-agnostic settings. We observed that while
in-context learning may have emerged via self-
supervised pre-training at scale, only a core nu-
cleus of attention heads and FFNs seem to be im-
portant for in-context learning across a wide va-
riety of downstream tasks. We observed that a
small set of attention heads have the capacity to
perform task-agnostic primitive induction opera-
tions associated with in-context learning, namely,
prefix matching and copying. We also saw that
these induction heads overlap with task-specific
important attention heads, indicating that induction
heads are capable of more sophisticated forms of in-
context learning and reinforcing arguments (Olsson
et al., 2022) about their generality. Overall, our in-
context learning-centric observations complement
recent work (Hoffmann et al., 2022) in indicating
that large language models may be under-trained
and motivate several interesting directions for fu-
ture work. While induction heads are formed natu-
rally during self-supervised pre-training in its cur-
rent form, we believe it may be possible to increase
the number and strength of induction heads formed
by defining auxiliary pre-training objectives for
primitives like prefix matching and copying. More
generally, it may also be prudent to investigate and
improve (pre-)training regimes to increase the num-
ber of important model components to in-context
learn-perform a wide variety of downstream tasks.
Multi-task instruction-tuning likely belongs to this
category and it would be interesting to replicate our
study with now increasingly accessible instruction-
tuned model variants (such as OPT’s instruction
meta-learned variant OPT-IML).
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9 Limitations

Our work is a comprehensive empirical study of a
popular large language model’s capacity to perform
in-context learning, relying on both task-specific
(via a wide variety of challenging and practically
relevant downstream tasks) and task-agnostic (via
looking for induction heads) analyses and connect-
ing the two via correlation/overlap investigations.
We do not claim a causal link, i.e., we do not claim
that an attention head that acquires the capacity to
be an induction head will become capable of more
sophisticated in-context learning associated with
our downstream tasks. Making this claim will re-
quire a more deeper investigation that is outside the
scope of this paper. We also do not fully understand
why most attention heads seem to be unimportant
for in-context learning and why there is an overlap
in (un)important attention heads across tasks and
shots, which warrant further investigation. Other
more obvious limitations to our work include our
use of only up to 5 in-context examples, random se-
lection of in-context examples for a query input and
our choice of all monolingual downstream tasks.

10 Impact Statement

The findings in our work have significant implica-
tions for the design, development and deployment
of large language models, known to have a very
high carbon footprint as well as training and infer-
ence costs. Having identified that a core nucleus
of model parameters seem to be important for in-
context learning, it may be possible to reduce these
models’ carbon footprint and mitigate these costs.
Our findings provide architectural transparency and
may also be helpful in identifying targeted improve-
ments for downstream tasks as well as for more
broader facets such as bias and fairness.
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A Appendix

A.1 Head Importance Scores
Figure 12 depicts the attention head aggregate im-
portance score heatmaps in the 0-shot and 1-shot

settings. Figures 14, 15 and 16 depict the attention
head importance scores for each task in the 0-shot,
1-shot and 5-shot settings respectively.

A.2 FFN Importance Scores
Figure 13 depicts the task-specific and task-
averaged importance scores for feed forward net-
works in the 0-shot and 1-shot settings.

A.3 Removing Attention Heads
Figure 17 depicts the task-specific and task-
averaged accuracy trends on iterative removal of
attention heads in the order of least important first
in the 0-shot and 1-shot settings.

A.4 Removing FFNs
Figure 18 depicts the task-specific and task-
averaged accuracy trends on iterative removal of
feed forward networks in the order of least impor-
tant first in the 1-shot and 5-shot settings.

A.5 Combined Removal of Heads & FFNs
Figure 19 depicts the average accuracy of all tasks
on joint iterative removal of attention heads and
feed forward networks in the order of least impor-
tant first in the 0-shot and 1-shot settings.

A.6 Cross-Task Analysis: Spearman’s Rank
Correlation

Figure 20 depicts the Spearman’s rank correlation
coefficients (SRCC) between the attention head
importance rankings for every pair of tasks in the
0-shot and 1-shot settings. It also depicts the SRCC
between the aggregate ranking and the ranking for
each constituent task.

A.7 Cross-Task Analysis: Generalization
Trends

Figures 21 and 22 depict the cross-task head impor-
tance ranking generalization plots in the 0-shot and
1-shot settings.

A.8 Details of Prefix Matching and Copying
Scores

Algorithms 1 and 2 contain pseudo-code to com-
pute prefix matching and copying scores respec-
tively for each attention head in OPT-66B. We fol-
low the approach described by Olsson et al. (2022),
but instead of computing scores using 10 sequences
with fixed length of 25, we compute these scores us-
ing 100 sequences with varying lengths to account
for OPT-66B’s large maximum sequence length.
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(a) 0-shot (b) 1-shot

Figure 12: Attention head aggregate importance score heatmaps for 0/1-shot in-context learning with OPT-66B.
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Figure 13: Feed forward network (FFN) oracle importance scores for 0/1-shot in-context learning with OPT-66B.
Each FFN is knocked off independently to compute these scores, i.e., the curves are discrete and not cumulative.

As in Olsson et al. (2022), we exclude a small frac-
tion of the most and least common tokens from the
model’s vocabulary and randomly sample tokens
for these sequences to strip out the effects of pre-
training corpora memorization from our scores and
inductive behavior analyses.

For prefix matching, the high-level approach is
the following: take a random sequence, repeat it
4 times, perform a forward pass and then for each
head, compute the attention pattern and take the
average of all attention pattern entries attending
from a given token back to tokens that succeeded
the same token in earlier repeats.

For copying, the high-level approach is the fol-
lowing: take a random sequence, directly feed the
sequence through each head and compute the con-
tribution of the head to the output logits, and then
measure how much the head increased the logit of
the maximally attended to token over increasing

the logits of other attendable tokens at each time-
step. Unlike Olsson et al. (2022), we do not scale
the raw scores to be in the range of -1 to 1.

A.9 Importance of Induction Heads to Each
Task

Figures 23 and 24 showcase the importance of in-
duction heads to each task via measuring the per-
centage of the total prefix matching and copying
capacities retained as a function of percentage of
attention heads pruned, where heads are pruned
based on each task’s head importance ranking for
each in-context learning setting (zero-shot, one-
shot and five-shot) in the order of least important
first. A small initial slope of decline implies that
unimportant heads also have low prefix matching or
copying scores while a steep initial slope of decline
implies unimportant heads also have high prefix
matching or copying scores. We observe differ-
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ences in the slopes of decline across different tasks,
with tasks like HellaSwag and ReCoRD (which
have high accuracies in Figure 5) having smaller
initial slopes than a task like OpenBookQA (which
has relatively lower accuracy in Figure 5). When
seen in conjunction, these plots not only point to
the generality of induction heads to more sophisti-
cated behaviors associated with in-context learning
but also indicate that some tasks rely on induction
heads more than others.
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Algorithm 1 Prefix Matching Scores for Attention Heads

Arguments: ModelM

model← Pretrained(M)
layers, heads← model.num_layers,model.num_heads_per_layer
ranked_vocab_list← model.tokenizer.vocab ▷ term-frequency based vocabulary list of model
exclude_vocab_size← 0.04× len(ranked_vocab_list) ▷ remove 4% most & least common tokens
ranked_vocab_list← ranked_vocab_list[exclude_vocab_size : −exclude_vocab_size]
prefix_matching ← [ ]
for seed in {1 · · · 100} do

L← 2× seed+ 23 ▷ ensure 4L ∈ [100, 892]
X ← random.choice(ranked_vocab_list, size = L, seed = seed, replace = False) ▷ L length

random sequence with all unique tokens
X ← repeat(X, 4) ▷ Repeat it four times
Y ← model.forward(X) ▷ Forward pass the repeated sequence
score← zeros(layers, heads) ▷ Zero matrix of shape layers× heads
for layer in layers do

for head in heads do
att← model.get_attention(layer, head) ▷ Shape: 4L× 4L
for token in {L+ 1 · · · 4L} do ▷ Repetition starts from token L+ 1

att_token← att[token] ▷ Shape: 4L
for every prev_token == token do ▷ Look at the previous repetitions of the token

prefix_score = att_token[prev_token+ 1] ▷ Attention given to token whose
prefix is current token

score[layer][head]← score[layer][head] + prefix_score
end for

end for
score[layer][head]← score[layer][head]/3L ▷ Normalizing by length of for loop

end for
end for
prefix_matching.append(score) ▷ Prefix matching scores via one randomly generated example

end for
prefix_matching ← average(prefix_matching) ▷ Attention head-wise average over all examples
return prefix_matching
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Algorithm 2 Copying Scores for Attention Heads

Arguments: ModelM
Definitions: Dimension per Head D,Vocabulary Size V

model← Pretrained(M)
layers, heads← model.num_layers,model.num_heads_per_layer
ranked_vocab_list← model.tokenizer.vocab ▷ term-frequency based vocabulary list of model
exclude_vocab_size← 0.04× len(ranked_vocab_list) ▷ remove 4% most & least common tokens
ranked_vocab_list← ranked_vocab_list[exclude_vocab_size : −exclude_vocab_size]
copying_score← [ ]
for seed in {1 · · · 100} do

L← 4× (2× seed+ 23) ▷ L ∈ [100, 892]
X ← random.choice(ranked_vocab_list, size = L, seed = seed, replace = False) ▷ L length

random sequence with all unique tokens
score← zeros(layers, heads) ▷ Zero matrix of shape layers× heads
for layer in layers do

for head in heads do
attn_layer_head← model.get_attention_head(layer, head)
out← attn_layer_head(X) ▷ Shape: L×D
attention← model.get_attention(layer, head) ▷ Shape: L× L
logits← model.hidden_to_vocab(out) ▷ Shape: L× V
logits← softmax(logits, dim = 1)
for token in {1 · · ·L} do

max_ind← argmax(attention[token]) ▷ Index of the token being max attended to
attendable_input← X[1 : token] ▷ Attendable input tokens
attendable_logits← logits[token][attendable_input] ▷ Logits of attendable tokens
mean_of_logits← average(attendable_logits)
raised_logits← attendable_logits−mean_of_logits
relu_raised_logits← ReLU(raised_logits) ▷ Computing raise in logit values
relu_raised_logit_max_ind← relu_raised_logits[X[max_ind]]
temp_score← relu_raised_logit_max_ind/sum(relu_raised_logits)
score[layer][head]← score[layer][head] + temp_score

end for
score[layer][head]← score[layer][head]/L ▷ Normalizing by length of for loop

end for
end for
copying_score.append(score) ▷ Copying scores via one randomly generated example

end for
copying_score← average(copying_score) ▷ Attention head-wise average over all examples
return copying_score
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(a) HellaSwag (b) ARC (Easy) (c) ARC (Challenge)

(d) CB (e) BoolQ (f) Winogrande

(g) RTE (h) MultiRC (i) OpenBookQA

(j) COPA (k) PIQA (l) ReCoRD

(m) WIC (n) WSC

Figure 14: Attention head importance score heatmaps for 0-shot in-context learning with OPT-66B for each task.
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(a) HellaSwag (b) ARC (Easy) (c) ARC (Challenge)

(d) CB (e) BoolQ (f) Winogrande

(g) RTE (h) MultiRC (i) OpenBookQA

(j) COPA (k) PIQA (l) ReCoRD

(m) WIC (n) WSC

Figure 15: Attention head importance score heatmaps for 1-shot in-context learning with OPT-66B for each task.
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(a) HellaSwag (b) ARC (Easy) (c) ARC (Challenge)

(d) CB (e) BoolQ (f) Winogrande

(g) RTE (h) MultiRC (i) OpenBookQA

(j) COPA (k) PIQA (l) ReCoRD

(m) WIC (n) WSC

Figure 16: Attention head importance score heatmaps for 5-shot in-context learning with OPT-66B for each task.

11851



0 10 20 30 40 50 60 70 80 90
Percentage pruned (%)

0

10

20

30

40

50

60

70

80

90

Ac
cu

ra
cy

 (%
)

Iterative Pruning of Attention Heads (0-shot)

HellaSwag
PIQA
ARC (Easy)
ARC (Challenge)
OpenBookQA
Winogrande
BoolQ
CB
COPA
WIC
WSC
MultiRC
RTE
ReCoRD
Average

(a) 0-shot
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(b) 1-shot

Figure 17: Effect on 0/1-shot accuracy when removing attention heads in OPT-66B in an iterative manner based on
task-specific and shot-specific importance scores.
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Figure 18: Effect on 1/5-shot accuracy when removing feed forward networks (FFNs) in OPT-66B in an iterative
manner based on task-specific and shot-specific importance scores.
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Figure 19: Effect on average in-context learning accuracy when removing both attention heads and feed forward
networks (FFNs) in OPT-66B in an iterative manner based on shot-specific task-aggregate importance scores.
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Figure 20: Spearman’s rank correlation coefficients between the attention head importance rankings for various
tasks in the 0-shot and 1-shot settings. All p-values < 0.01.
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Figure 21: Cross-task transfer of attention head importance rankings as measured by impact of pruning on accuracy
in the 0-shot setting.
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Figure 22: Cross-task transfer of attention head importance rankings as measured by impact of pruning on accuracy
in the 1-shot setting.

0 20 40 60 80 100
Percentage pruned (%)

0

20

40

60

80

100

%
 o

f T
ot

al
 P

re
fix

 M
at

ch
in

g 
Sc

or
e 

Re
ta

in
ed

Impact of Pruning Attention Heads on Prefix Matching (0-shot)

HellaSwag
PIQA
ARC (Easy)
ARC (Challenge)
OpenBookQA
Winogrande
BoolQ
CB
COPA
WIC
WSC
MultiRC
RTE
ReCoRD

(a) 0-shot

0 20 40 60 80 100
Percentage pruned (%)

0

20

40

60

80

100

%
 o

f T
ot

al
 P

re
fix

 M
at

ch
in

g 
Sc

or
e 

Re
ta

in
ed

Impact of Pruning Attention Heads on Prefix Matching (1-shot)

HellaSwag
PIQA
ARC (Easy)
ARC (Challenge)
OpenBookQA
Winogrande
BoolQ
CB
COPA
WIC
WSC
MultiRC
RTE
ReCoRD

(b) 1-shot
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(c) 5-shot

Figure 23: Total prefix matching capacity retained as a function of percentage of attention heads pruned, where
heads are pruned based on task-specific importance score rankings in the order of least important first.
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(b) 1-shot
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Figure 24: Total copying capacity retained as a function of percentage of attention heads pruned, where heads are
pruned based on task-specific importance score rankings in the order of least important first.
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