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Abstract

Addressing the issues of who saying what to
whom in multi-party conversations (MPCs) has
recently attracted a lot of research attention.
However, existing methods on MPC under-
standing typically embed interlocutors and
utterances into sequential information flows,
or utilize only the superficial of inherent graph
structures in MPCs. To this end, we present a
plug-and-play and lightweight method named
graph-induced fine-tuning (GIFT) which can
adapt various Transformer-based pre-trained
language models (PLMs) for universal MPC
understanding. In detail, the full and equiva-
lent connections among utterances in regular
Transformer ignore the sparse but distinctive
dependency of an utterance on another in
MPCs. To distinguish different relationships
between utterances, four types of edges are
designed to integrate graph-induced signals
into attention mechanisms to refine PLMs
originally designed for processing sequential
texts. We evaluate GIFT by implementing it
into three PLMs, and test the performance on
three downstream tasks including addressee
recognition, speaker identification and response
selection. Experimental results show that GIFT
can significantly improve the performance of
three PLMs on three downstream tasks and two
benchmarks with only 4 additional parameters
per encoding layer, achieving new state-of-the-
art performance on MPC understanding.

1 Introduction

Maintaining appropriate human-computer conver-
sation is an important task leaping towards ad-
vanced artificial intelligence. Most of existing
methods have studied understanding conversations
between two participants, aiming at returning an
appropriate response either in a generation-based
(Shang et al., 2015; Serban et al., 2016; Zhang et al.,
2020; Roller et al., 2021) or retrieval-based manner
(Wu et al., 2017; Zhou et al., 2018; Tao et al., 2019;
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Figure 1: Illustration of (a) a graphical information flow
of an MPC where rectangles denote utterances, and
solid lines represent the “reply" relationship between
two utterances, and (b) the detailed reply relationships
between each utterance and U3.

Gu et al., 2020). Recently, researchers have paid
more attention to a more practical and challenging
scenario involving more than two participants,
which is well known as multi-party conversations
(MPCs) (Ouchi and Tsuboi, 2016; Zhang et al.,
2018; Le et al., 2019; Hu et al., 2019; Wang
et al., 2020; Gu et al., 2021, 2022). Unlike two-
party conversations, utterances in an MPC can be
spoken by anyone and address anyone else in this
conversation, constituting a graphical information
flow and various relationships between utterances
as shown in Figure 1(a). Thus, predicting who the
next speaker will be (Meng et al., 2018) and who
the addressee of an utterance is (Ouchi and Tsuboi,
2016; Zhang et al., 2018; Le et al., 2019) are unique
and important issues in MPCs.

The complicated interactions between interlocu-
tors, between utterances and between an interlocu-
tor and an utterance naturally increase the difficulty
of fully understanding MPCs. Existing studies
on MPC understanding focus on the challenging
issue of modeling the complicated conversation
structures and information flows. The current state-
of-the-art method MPC-BERT (Gu et al., 2021) pro-
posed to pre-train a language model with two types
of self-supervised tasks for modeling interlocutor
structures and utterance semantics respectively in a
unified framework. The complementary structural
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and semantic information in MPCs is learned by
designing a variety of self-supervised optimization
objectives. However, the semantics contained in the
interlocutor and utterance representations may not
be effectively captured as these supervision signals
are placed only on top of language models. During
encoding inside language models, the full and
equivalent connections among utterances in regular
Transformer (Vaswani et al., 2017) ignore the
sparse but distinctive dependency of an utterance
on another, such as “reply-to". Despite of the
performance improvement with pre-training, MPC-
BERT still overlooks the inherent MPC graph
structure when fine-tuning on various downstream
tasks. Intuitively, leveraging graph-induced signals
when fine-tuning pre-trained language models
(PLMs) may yield better contextualized repre-
sentations of interlocutors and utterances and
enhance conversation understanding, but has been
overlooked in previous studies.

In light of the above issues, we propose a plug-
and-play and lightweight method named graph-
induced fine-tuning (GIFT), which can adapt var-
ious Transformer-based PLMs and improve their
ability for universal MPC understanding. Existing
Transformer-based PLMs such as BERT (Devlin
et al., 2019) are originally designed for process-
ing sequential texts. To distinguish different
relationships between utterances, four types of
edges (reply-to, replied-by, reply-self and indirect-
reply) are designed to integrate graph-induced
signals in the attention mechanism. These edge-
type-dependent parameters are utilized to refine
the attention weights and to help construct the
graphical conversation structure in Transformer.
Intuitively, the conversation structure influences
the information flow in MPCs, thus it can be
used to strengthen the representations of utter-
ance semantics. By this means, it can help
characterize fine-grained interactions during the
internal encoding of PLMs, and produce better
representations that can be effectively generalized
to multiple downstream tasks of MPCs. Lastly,
the proposed method is plug-and-play which can
be implemented into various Transformer-based
PLMs, and is lightweight which requires only 4
additional parameters per encoding layer.

To measure the effectiveness of the proposed
GIFT method and to test its generalization ability,
GIFT is implemented into three PLMs including
BERT (Devlin et al., 2019), SA-BERT (Gu et al.,

2020) and MPC-BERT (Gu et al., 2021). We
evaluate the performance on three downstream
tasks including addressee recognition, speaker
identification and response selection, which are
three core research issues of MPCs. Two bench-
marks based on Ubuntu IRC channel are employed
for evaluation. One was released by Hu et al.
(2019). The other was released by Ouchi and
Tsuboi (2016) with three experimental settings
according to session lengths. Experimental results
show that GIFT helps improve the performance of
all three PLMs on all three downstream tasks. Take
MPC-BERT as an example, GIFT improved the
performance by margins of 0.64%, 1.64%, 3.46%
and 4.63% on the test sets of these two bench-
marks respectively in terms of utterance precision
of addressee recognition, by margins of 6.96%,
23.05%, 23.12% and 22.99% respectively in terms
of utterance precision of speaker identification,
and by margins of 1.76%, 0.88%, 2.15% and
2.44% respectively in terms of response recall of
response selection, achieving new state-of-the-art
performance on MPC understanding.

In summary, our contributions in this paper are
three-fold: (1) A graph-induced fine-tuning (GIFT)
method is proposed to construct and to utilize the
inherent graph structure for MPC understanding.
(2) GIFT is implemented into three PLMs and is
tested on three downstream tasks to comprehen-
sively evaluate the effectiveness and generalization
ability. (3) The proposed method achieves new
state-of-the-art performance on three downstream
tasks and two benchmarks.

2 Related Work

Existing methods on building dialogue systems
can be generally categorized into studying two-
party conversations and multi-party conversations
(MPCs). In this paper, we study MPCs. In addition
to predicting the utterance, the tasks of identifying
the speaker and recognizing the addressee of an
utterance are also important for MPCs. Ouchi and
Tsuboi (2016) first proposed the task of addressee
and response selection and created an MPC cor-
pus for studying this task. Zhang et al. (2018)
proposed the speaker interaction RNN, which
updated the speaker embeddings role-sensitively
for addressee and response selection. Meng et al.
(2018) proposed a task of speaker classification
as a surrogate task for general speaker modeling.
Le et al. (2019) proposed a who-to-whom (W2W)
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model to recognize the addressees of all utterances
in an MPC. Kummerfeld et al. (2019) created a
dataset based on Ubuntu IRC channel which was
manually annotated with reply-structure graphs for
MPC disentanglement. Hu et al. (2019) proposed
a graph-structured neural network (GSN), the core
of which is to encode utterances based on the
graph topology rather than the sequence of their
appearances to model the information flow as
graphical. Wang et al. (2020) proposed to track
the dynamic topic for response selection. Liu et al.
(2020, 2021) studied transition-based online MPC
disentanglement by modeling semantic coherence
within each session and exploring unsupervised
co-training through reinforcement learning. Gu
et al. (2021) proposed MPC-BERT pre-trained with
two types of self-supervised tasks for modeling
interlocutor structures and utterance semantics. Gu
et al. (2022) proposed HeterMPC to model the
complicated interactions between utterances and
interlocutors with a heterogeneous graph.

Compared with MPC-BERT (Gu et al., 2021)
that is the most relevant to this work, two main
differences should be highlighted. First, MPC-
BERT works on designing various self-supervised
tasks for pre-training, while GIFT works on further
improving fine-tuning performance. Second, MPC-
BERT models conversation graph structures by
placing self-supervision signals on top of PLMs,
while GIFT achieves this by alternatively modify-
ing the internal encoding of PLMs. Furthermore,
compared with GSN (Hu et al., 2019) and Het-
erMPC (Gu et al., 2022) that both attempt to model
graphical information flows, it should be noted
that there are also two main differences. First,
GSN and HeterMPC represent each individual
utterance as a node vector encoded by either
BiLSTM (Hochreiter and Schmidhuber, 1997)
or Transformer (Vaswani et al., 2017), and then
update via graph neural network-based information
passing, while this work integrates graph-induced
signals into the fully-connected interactions of
Transformer over the whole MPC context. Second,
GSN and HeterMPC are designed specifically
for MPC response generation, while this work
focuses on universal MPC understanding. Overall,
to the best of our knowledge, this paper makes
the first attempt to design a fine-tuning method
that leverages graph-induced signals during the
internal encoding of Transformer-based PLMs for
improving MPC understanding.

3 Graph-Induced Fine-Tuning (GIFT)

An MPC instance is composed of a sequence of
(speaker, utterance, addressee) triples, denoted as
{(sn, un, an)}Nn=1, where N is the number of turns
in the conversation. Our goal is to fine-tune PLMs
for universal MPC understanding. Given an MPC,
it is expected to produce embedding vectors for
all utterances which contain not only the semantic
information of each utterance, but also the speaker
and addressee structure of the whole conversation.
Thus, it can be effectively adapted to various tasks
by fine-tuning model parameters.

3.1 Intuition

Graphs are ubiquitous data structures. There is a
wide range of application domains where data can
be represented as graphs. For learning on graphs,
graph neural networks (GNNs) (Scarselli et al.,
2009) have emerged as the most powerful tool in
deep learning. In short, GNNs take in a graph with
node and edge features, and build abstract feature
representations of nodes and edges by taking the
available explicit connectivity structure (i.e., graph
structure) into account. The so-generated features
are then passed to downstream classification layers.

In this work, an MPC is viewed as a conversation
graph. The current state-of-the-art method MPC-
BERT (Gu et al., 2021) concatenates all utterances
into a sequential text and sends it into Transformer-
based PLMs for encoding. Recently, Transformer-
based neural networks have been proven effective
for representation learning and on a wide range of
applications in natural language processing (NLP)
such as machine translation (Vaswani et al., 2017)
and language modeling (Devlin et al., 2019). Since
Transformer considers full attention while building
contextualized word representations, the full and
equivalent connections among utterances ignore the
sparse but distinctive dependency of an utterance
on another. More importantly, recent studies on
MPCs have indicated that the complicated graph
structures can provide crucial interlocutor and
utterance semantics (Hu et al., 2019; Gu et al.,
2022). Thus, it inspires us to refine Transformer-
based PLMs by modeling graph structures during
internal encoding to help enhance the conversation
understanding process.

3.2 Input Representation

Following Gu et al. (2020) and Gu et al. (2021),
another type of speaker embeddings is added to
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Figure 2: Input representations and model architectures when fine-tuning on (a) addressee recognition, (b) speaker
identification and (c) response selection. Specifically for U3, it illustrates how the graph-induced signals of the
conversation structure in Figure 1(b) are utilized during Transformer-based encoding.

the input representation as shown in Figure 2, to
consider the speaker information of each utterance.
Considering that the set of interlocutors are in-
consistent in different conversations, a position-
based interlocutor embedding table is initialized
randomly at first and is updated during fine-tuning.
In this way, each interlocutor in a conversation
is assigned with an embedding vector according
to the order it appears in the conversation. Then,
the speaker embeddings for each utterance can be
derived by looking up this embedding table and as-
signed for all tokens in this utterance. The speaker
embeddings are combined with the standard token,
position and segmentation embeddings. The input
representation is denoted as H = {hm}Mm=0, where
hm ∈ Rd, d is the dimension of embedding vectors
and M is the length of input sequences.

3.3 Graph-Induced Encoding

To derive the contextualized and graph-induced
representations, the output of encoding of our pro-
posed method is based on both semantic similarity
and structural relationships between a query vector
and each of a set of key vectors. Given the input
representation H, it is first encoded with the multi-
head self-attention mechanism as

headi = Atten(HWq
i ,HWk

i ,HWv
i ), (1)

MultiHead(H) = [head1, ...,headh]Wo, (2)

where Wq
i ∈ Rd× d

h , Wk
i ∈ Rd× d

h , Wv
i ∈ Rd× d

h

and Wo ∈ Rd×d are all trainable parameters. h is
the number of attention heads and [;] denotes the
concatenation operation.

When calculating attention weights between
tokens, existing Transformer-based PLMs consider

the relationship between any two tokens to be
equivalent. This approach does not model the
inherent graph structure while encoding, which is
crucial for constructing a graph-induced topology.
To distinguish different relationships between utter-
ances, edge-type-dependent parameters ϕ(eq,v) are
utilized to refine the attention weights as

Atten(q, k, v) = softmax(ϕ(eq,v)
q⊤k√

d
)v, (3)

where eq,v ∈ {reply-to, replied-by, reply-self,
indirect-reply} as illustrated in Figure 1(b). On the
one hand, the reply-to edge guides the modeling of
what the current utterance should be like given
the prior utterance it replies to. On the other
hand, the replied-by edge focuses on how the
posterior utterances amend the modeling of the
current utterance. In addition, the reply-self edge
determines how much of the original semantics
should be kept. Finally, the rest of the utterances
are connected through the indirect-reply edge for
contextualization. It is notable that the relation-
ships between utterances are assigned for all tokens
in an utterance. With these four types of edges,
different relationships between utterances can be
distinguished and the contextualized encoding can
be conducted following a graph-induced topology.
The dependency of an utterance on another can be
well modeled for better MPC understanding.

Afterwards, the operations of residual connec-
tion, layer normalization and feed-forward network
are applied accordingly as those used in a standard
Transformer encoder layer (Vaswani et al., 2017).
Finally, the combination of all the above operations
is performed L times to derive deep contextualized
representations for MPC understanding.
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4 Downstream Tasks

Three downstream tasks are employed to evaluate
the MPC understanding as comprehensively as
possible, aiming at the issues of addressing whom,
who speaking and saying what. When fine-tuning
on each downstream task, all parameters are
updated. Figure 2 shows the input representations
and model architectures for three tasks respectively.

4.1 Addressee Recognition

In this paper, we follow the experimental setting
in Ouchi and Tsuboi (2016) and Zhang et al.
(2018) where models are tasked to recognize the
addressee of the last utterance in a conversation.1

Formally, models are asked to predict âN given
{(sn, un, an)}Nn=1\aN , where âN is selected from
the interlocutor set in this conversation and \
denotes exclusion. When fine-tuning, this task is
reformulated as finding a preceding utterance from
the same addressee.

Un is a sequence of utterance tokens. A [CLS]
token is inserted at the start of each utterance,
denoting the utterance-level representation for each
individual utterance. Then, all utterances in a
conversation are concatenated and a [SEP] token
is inserted at the end of the whole sequence. It is
notable that the reply-to edge of the last utterance
is masked to avoid leakage. After encoded by
PLMs, the contextualized representations for each
[CLS] token representing individual utterances
are extracted. A task-dependent non-linear trans-
formation layer is placed on top of PLMs in order
to adapt the output of PLMs to different tasks.
Next, a layer normalization is performed to derive
the utterance representations for this specific task
{un}Nn=1, where un ∈ Rd. Then, for the last
utterance UN , its reply-to matching scores with
all its preceding utterances are calculated as

mNn = softmax(u⊤
N · A · un), n < N, (4)

where mNn is defined as the probability of the
speaker of Un being the addressee of UN . Then,
the utterance with the highest score is selected and
the speaker of the selected utterance is considered
as the recognized addressee. Finally, the fine-
tuning objective of this task is to minimize the

1We did not evaluate all utterances in an MPC, since the
reply information of history utterances are utilized as the
graph-induced signals which may cause information leakage.

cross-entropy loss as

Lar = −
N−1∑

n=1

yNn log(mNn), (5)

where yNn = 1 if the speaker of Un is the
addressee of UN and yNn = 0 otherwise.

4.2 Speaker Identification
We follow the experimental setting in Gu et al.
(2021) where models are tasked to identify the
speaker of the last utterance in a conversation.
Formally, models are asked to predict ŝN given
{(sn, un, an)}Nn=1\sN , where ŝN is selected from
the interlocutor set in this conversation. When fine-
tuning, this task is reformulated as identifying the
utterances sharing the same speaker.

First, the speaker embedding of the last utterance
in the input representation is masked to avoid in-
formation leakage. Similar to the task of addressee
recognition, the operations of PLM encoding,
extracting the representations for [CLS] tokens,
non-linear transformation and layer normalization
are performed. For the last utterance UN , its
identical-speaker matching scores mNn with all
preceding utterances are calculated similarly as
Eq. (4). Here, mNn denotes the probability of UN

and Un sharing the same speaker. The fine-tuning
objective of this task is to minimize the cross-
entropy loss similarly as Eq. (5). Here, yNn = 1 if
Un shares the same speaker with UN and yNn = 0
otherwise.

4.3 Response Selection
This task asks models to select ûN from a set of
response candidates given the conversation con-
text {(sn, un, an)}Nn=1\uN , which is an important
retrieval-based approach for chatbots. The key is
to measure the similarity between two segments of
context and response.

Formally, utterances in a context are first con-
catenated to form a segment, and each response
candidate is the other segment. Then, the two
segments are concatenated with a [SEP] token
and a [CLS] token is inserted at the beginning of
the whole sequence.

The contextualized representation e[CLS] for
the first [CLS] token using PLMs is extracted,
which is an aggregated representation containing
the semantic matching information for the context-
response pair. Then, e[CLS] is fed into a non-linear
transformation with sigmoid activation to obtain
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Datasets Train Valid Test
Hu et al. (2019) 311,725 5,000 5,000

Ouchi and Tsuboi (2016)
Len-5 461,120 28,570 32,668

Len-10 495,226 30,974 35,638
Len-15 489,812 30,815 35,385

Table 1: Statistics of the two benchmarks evaluated in
this paper.

the matching score between the context and the
response as

mcr = sigmoid(e⊤[CLS] · w + b), (6)

where mcr denotes the probability of semantic
matching between the context and the response
candidate, w ∈ Rd×1 and b ∈ R1 are parameters
updated during fine-tuning. Finally, the fine-tuning
objective of this task is to minimize the cross-
entropy loss according to the true/false labels of
responses in the training set as

Lrs = −[ycrlog(mcr) + (1− ycr)log(1−mcr)],
(7)

where ycr = 1 if the response r is a proper one for
the context c; otherwise ycr = 0.

5 Experiments

5.1 Datasets
We evaluated our proposed methods on two Ubuntu
IRC benchmarks. One was released by Hu et al.
(2019), in which both speaker and addressee
labels was provided for each utterance. The other
benchmark was released by Ouchi and Tsuboi
(2016). Here, we adopted the version shared
in Le et al. (2019) for fair comparison. The
conversation sessions were separated into three
categories according to the session length (Len-
5, Len-10 and Len-15) following the splitting
strategy of previous studies (Ouchi and Tsuboi,
2016; Zhang et al., 2018; Le et al., 2019; Gu et al.,
2021). Table 1 presents the statistics of the two
benchmarks evaluated in our experiments.

5.2 Baseline Models
We compared the proposed method with
(1) non-pre-training-based models including
Preceding (Le et al., 2019), SRNN, DRNN (Ouchi
and Tsuboi, 2016), SHRNN (Serban et al., 2016)
and SIRNN (Zhang et al., 2018), as well as (2)
pre-training-based models including BERT (Devlin
et al., 2019), SA-BERT (Gu et al., 2020), and
MPC-BERT (Gu et al., 2021). Readers can refer

to Appendix A for implementation details of the
baseline models.

5.3 Implementation Details

The base version of various PLMs were adopted
for all our experiments. GELU (Hendrycks and
Gimpel, 2016) was employed as the activation
for all non-linear transformations. The Adam
method (Kingma and Ba, 2015) was employed
for optimization. The learning rate was initialized
as 0.00002 and the warmup proportion was set to
0.1. Some configurations were different according
to the characteristics of these datasets. For Hu
et al. (2019), the maximum utterance number was
set to 7 and the maximum sequence length was
set to 230. For the three experimental settings in
Ouchi and Tsuboi (2016), the maximum utterance
numbers were set to 5, 10 and 15 respectively,
and the maximum sequence lengths were set to
120, 220 and 320 respectively. For Hu et al.
(2019), the fine-tuning process was performed for
10 epochs for addressee recognition, 10 epochs for
speaker identification, and 5 epochs for response
selection. For Ouchi and Tsuboi (2016), the fine-
tuning epochs were set to 5, 5 and 3 for these three
tasks respectively. The batch sizes were set to 16
for Hu et al. (2019), and 40, 20, and 12 for the
three experimental settings in Ouchi and Tsuboi
(2016) respectively. The fine-tuning was performed
using a GeForce RTX 2080 Ti GPU. The validation
set was used to select the best model for testing.
All codes were implemented in the TensorFlow
framework (Abadi et al., 2016) and are published
to help replicate our results. 2

5.4 Metrics and Results

Addressee recognition We followed the metric
of previous work (Ouchi and Tsuboi, 2016; Zhang
et al., 2018; Le et al., 2019; Gu et al., 2021) by
employing precision@1 (P@1) to evaluate the
performance of utterance prediction.

Table 2 presents the results of addressee recog-
nition. It shows that GIFT helps improve the
performance of all three PLMs on all test sets.
In detail, BERT fine-tuned with GIFT (BERT
w/ GIFT) outperformed its counterpart, i.e., fine-
tuning BERT without graph-induced signals, by
margins of 2.92%, 2.73%, 5.75% and 5.08% on
these test sets respectively in terms of P@1. In
addition, GIFT improved the performance of SA-

2https://github.com/JasonForJoy/MPC-BERT
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Hu et al. (2019) Ouchi and Tsuboi (2016)
Len-5 Len-10 Len-15

Preceding (Le et al., 2019) - 55.73 55.63 55.62
SRNN (Ouchi and Tsuboi, 2016) - 60.26 60.66 60.98
SHRNN (Serban et al., 2016) - 62.24 64.86 65.89
DRNN (Ouchi and Tsuboi, 2016) - 63.28 66.70 68.41
SIRNN (Zhang et al., 2018) - 72.59 77.13 78.53.
BERT (Devlin et al., 2019) 82.88 80.22 75.32 74.03
SA-BERT (Gu et al., 2020) 86.98 81.99 78.27 76.84
MPC-BERT (Gu et al., 2021) 89.54 84.21 80.67 78.98
BERT w/ GIFT 85.80† 82.95† 81.07† 79.11†

SA-BERT w/ GIFT 88.30† 84.49† 82.53† 82.65†

MPC-BERT w/ GIFT 90.18 85.85† 84.13† 83.61†

Table 2: Evaluation results of addressee recognition on the test sets in terms of P@1. Results except ours are cited
from Ouchi and Tsuboi (2016) and Zhang et al. (2018). Numbers marked with † denoted that the improvements after
implementing GIFT were statistically significant (t-test with p-value < 0.05) comparing with the corresponding
PLMs. Numbers in bold denoted that the results achieved the best performance.

Hu et al. (2019) Ouchi and Tsuboi (2016)
Len-5 Len-10 Len-15

BERT (Devlin et al., 2019) 71.81 62.24 53.17 51.58
SA-BERT (Gu et al., 2020) 75.88 64.96 57.62 54.28
MPC-BERT (Gu et al., 2021) 83.54 67.56 61.00 58.52
BERT w/ GIFT 85.52† 89.74† 82.31† 80.40†

SA-BERT w/ GIFT 88.02† 90.01† 82.76† 80.87†

MPC-BERT w/ GIFT 90.50† 90.61† 84.12† 81.51†

Table 3: Evaluation results of speaker identification on the test sets in terms of P@1. Results except ours are cited
from Gu et al. (2021).

BERT by margins of 1.32%, 2.50%, 4.26% and
5.22%, and of MPC-BERT by margins of 0.64%,
1.64%, 3.46% and 4.63% on these test sets respec-
tively. These results verified the effectiveness and
generalization of the proposed fine-tuning method.

Speaker identification Similarly, P@1 was em-
ployed as the evaluation metric of speaker identifi-
cation for comparing performance.

Table 3 presents the results of speaker identi-
fication. It also shows that GIFT helps improve
the performance of all three PLMs on all test
sets. In detail, GIFT improved the performance
of BERT by margins of 13.71%, 27.50%, 29.14%
and 28.82%, of SA-BERT by margins of 12.14%,
25.05%, 25.14% and 26.59%, as well as of MPC-
BERT by margins of 6.96%, 23.05%, 23.12%
and 22.99% in terms of P@1 on these test sets
respectively. From these results, we can see that
the proposed fine-tuning method are particularly
useful for speaker identification.

Response selection The Rn@k metrics adopted
by previous studies (Ouchi and Tsuboi, 2016;

Zhang et al., 2018; Gu et al., 2021) were used
here. Each model was tasked with selecting k best-
matched responses from n available candidates for
the given conversation context, and we calculated
the recall of the true positive replies among the k
selected responses, denoted as Rn@k. Two settings
were followed in which k was set to 1, and n was
set to 2 or 10.

Table 4 presents the results of response selection.
Specifically, GIFT improved the performance of
BERT by margins of 2.48%, 2.12%, 2.71% and
2.34%, of SA-BERT by margins of 3.04%, 4.16%,
5.18% and 5.35%, as well as of MPC-BERT by
margins of 1.76%, 0.88%, 2.15% and 2.44% in
terms of R10@1 on these test sets respectively.
From these results, we can get inspired that the
graph-induced signals introduced to construct con-
versation structures were crucial for deep context
understanding to select an appropriate response.

5.5 Discussions

Ablations To further illustrate the effectiveness
of each component of the graph-induced topol-
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Hu et al. (2019) Ouchi and Tsuboi (2016)
Len-5 Len-10 Len-15

R2@1 R10@1 R2@1 R10@1 R2@1 R10@1 R2@1 R10@1

DRNN (Ouchi and Tsuboi, 2016) - - 76.07 33.62 78.16 36.14 78.64 36.93
SIRNN (Zhang et al., 2018) - - 78.14 36.45 80.34 39.20 80.91 40.83
BERT (Devlin et al., 2019) 92.48 73.42 85.52 53.95 86.93 57.41 87.19 58.92
SA-BERT (Gu et al., 2020) 92.98 75.16 86.53 55.24 87.98 59.27 88.34 60.42
MPC-BERT (Gu et al., 2021) 94.90 78.98 87.63 57.95 89.14 61.82 89.70 63.64
BERT w/ GIFT 93.22† 75.90† 86.59† 56.07† 88.02† 60.12† 88.57† 61.26†

SA-BERT w/ GIFT 94.26† 78.20† 88.07† 59.40† 89.91† 64.45† 90.45† 65.77†

MPC-BERT w/ GIFT 95.04 80.74† 87.97 58.83† 89.77† 63.97† 90.62† 66.08†

Table 4: Evaluation results of response selection on the test sets. Results except ours are cited from Ouchi and
Tsuboi (2016), Zhang et al. (2018) and Gu et al. (2021).

AR SI RS
(P@1) (P@1) (R10@1)

BERT w/ GIFT 86.24 86.50 75.26
w/o reply-to and replied-by 84.38 70.67 72.30
w/o reply-to or replied-by 85.72 85.67 74.00
w/o reply-self 85.72 85.92 74.72

SA-BERT w/ GIFT 88.88 89.32 78.80
w/o reply-to and replied-by 86.90 77.07 77.50
w/o reply-to or replied-by 88.44 88.87 78.22
w/o reply-self 88.42 89.05 78.32

MPC-BERT w/ GIFT 90.78 91.72 81.08
w/o reply-to and replied-by 90.38 84.32 79.60
w/o reply-to or replied-by 90.52 90.90 80.22
w/o reply-self 90.46 91.10 80.02

Table 5: Evaluation results of the ablation tests on
the validation set of Hu et al. (2019) on the tasks of
addressee recognition (AR), speaker identification (SI),
and response selection (RS).

ogy, three ablation tests were performed on the
validation set of Hu et al. (2019) and the results
were shown in Table 5. First, both reply-to and
replied-by edges were ablated by merging these
two types of edges with in-direct edges. The
performance dropped significantly since these two
types of edges constituted the majority of the
conversation structure topology. Furthermore,
reply-to or replied-by edges were ablated by merg-
ing these two types of edges together without
distinguishing the bidirectional reply relationships
between utterances. The performance drop verified
the necessity of modeling what it uttered and what
it received respectively. Finally, reply-self edges
were merged with in-direct edges, showing that it
is useful to distinguish self-replying from others.

Impact of conversation length Figure 3 illus-
trated how the performance of BERT, SA-BERT
and MPC-BERT, as well as those implemented

with GIFT changed with respect to different session
lengths on three downstream tasks and on the test
sets of Ouchi and Tsuboi (2016). First, we can draw
the conclusions that the performance of addressee
recognition and speaker identification dropped,
while the performance of response selection was
significantly improved for all models as the session
length increased, which was consistent with the
findings in Gu et al. (2021). Furthermore, to
quantitatively compare the performance differ-
ence at different session lengths, the performance
margins between Len-5 and Len-10, as well as
those between Len-10 and Len-15 were calculated.
Readers can refer to Table 6 in Appendix B for
details of these margins. From the results, it
can be seen that as the session length increased,
the performance of models with GIFT dropped
more slightly on addressee recognition and speaker
identification, and enlarged more on response
selection, than the models without GIFT in most
14 out of 18 cases (including every 2 margins
across lengths 5-10-15 for each model on each
task). These results implied the superiority of
introducing graph-induced signals on modeling
long MPCs with complicated structures.

Visualization of weights Figure 4 visualized
how the weights of four types of edges changed
with respect to different encoding layers on three
downstream tasks. Here, we took MPC-BERT
fine-tuned on the training set of Hu et al. (2019)
as an example. On the one hand, we can see
that the changing trends of reply-to and replied-
by edges were roughly the same, illustrating that
these two types of edges were closely related to
each other. Meanwhile, the values of these two
edges were always different, further verifying the
necessity of distinguishing the bidirectional reply
relationships. On the other hand, the indirect-
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Figure 3: Performance of models fine-tuned with or without graph-induced signals at different session lengths on
the test sets of Ouchi and Tsuboi (2016) of three downstream tasks.
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Figure 4: The weights of four types of edges in different encoding layers of MPC-BERT fine-tuned on the training
set of Hu et al. (2019) of three downstream tasks.

reply edges generally followed the trend of first
rising, then falling, and finally rising again. In
addition, the values of this edge were always the
minimum among all four edges at the beginning,
and surprisingly became the maximum in the last
layer (to clarify, 0.9834, 0.9825 and 0.9821 for
indirect-reply, reply-to and replied-by edges of the
12th layer in Figure 4(c) respectively). It is likely
that models have learned human behavior in MPCs,
i.e., paying less attention to utterances that are
not the most relevant to themselves at first glance.
After comprehending the most relevant utterances,
turn to indirectly related ones in context for fully
understanding the entire conversation.

6 Conclusion

In this paper, we present graph-induced fine-
tuning (GIFT), a plug-and-play and lightweight
method that distinguishes the relationships between
utterances for MPC understanding. The sparse but
distinctive dependency of an utterance on another
among those in an MPC is modeled by utilizing
the edge-type-dependent parameters to refine the
attention weights during the internal encoding of
PLMs. Experimental results on three downstream

tasks show that GIFT significantly helps improve
the performance of three PLMs and achieves new
state-of-the-art performance on two benchmarks.
Obviously, the addressee labels of utterances in
the conversation history are important for building
the inherent graph structure required for graph-
induced fine-tuning. However, an MPC with a few
addressee labels missing is a common issue. In the
future, it will be part of our work to investigate the
scarcity of addressee labels.

Limitations

Enabling dialogue agents to join multi-party con-
versations naturally is undoubtedly a crucial step
towards building human-like conversational AI,
especially as such technology becomes more af-
fordable and portable. More crucially, research
on multi-party conversations has the promising
potential to improve the interactive experience
between humans and machines. Although the
proposed method has shown great performance
and generalization ability across various models
and tasks, however, we never lose the sight of
the other side of the coin. The proposed method
requires full interactions among utterances in multi-
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head attention of Transformers. Therefore, com-
putational complexity and inference latency may
be worth considering when deploying to online
dialogue systems. Aside from the well-known
difficulties in deployment, the proposed method
was only evaluated on the domain-specific datasets,
i.e., Ubuntu IRC, considering the constraints of
dataset resources. In the future, we will try to
search more open-domain datasets for multi-party
conversations, and test if the proposed method can
still show great performance on a more challenging
open-domain setting.
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A Baseline Models

We compared GIFT with these baseline methods.

A.1 Non-pre-training-based Models

• Preceding Le et al. (2019) was a heuristic
method where the addressee was designated as
the preceding speaker of the current speaker.

• SRNN and DRNN Ouchi and Tsuboi (2016)
proposed the static or dynamic recurrent neu-
ral network-based models (SRNN or DRNN)
where the speaker embeddings were fixed or
updated with the conversation flow.

• SHRNN Inspired by Serban et al. (2016),
Zhang et al. (2018) implemented Static-Hier-
RNN (SHRNN), a hierarchical version of
SRNN. It first built utterance embeddings
from words and then processed utterance
embeddings using high-level RNNs.

• SIRNN Zhang et al. (2018) proposed a
speaker interaction RNN-based model
(SIRNN). This model distinguished the
interlocutor roles (sender, addressee,
observer) at a finer granularity and updated
the speaker embeddings role-sensitively, since
interlocutors might play one of the three roles
at each turn and those roles vary across turns.

A.2 Pre-training-based Models

The proposed GIFT was implemented into three
PLMs.

• BERT (Devlin et al., 2019) was pre-trained
to learn universal language representations on
a large amount of general corpora with the
self-supervised tasks of MLM and NSP.

• SA-BERT (Gu et al., 2020) added speaker
embeddings and further pre-trained BERT
on a domain-specific corpus to incorporate
domain knowledge. We re-implemented SA-
BERT on the same pre-training corpus used
in this paper to ensure fair comparison.

• MPC-BERT (Gu et al., 2021) was pre-trained
with two major types of self-supervised tasks
for modeling interlocutor structures and utter-
ance semantics in a unified framework.

Len 5 → Len 10 Len 10 → Len 15
AR (P@1)

BERT -4.90 -1.29
BERT w. GIFT -1.88‡ -1.96
SA-BERT -3.72 -1.43
SA-BERT w. GIFT -1.96‡ -0.47‡

MPC-BERT -3.54 -1.69
MPC-BERT w. GIFT -1.72‡ -0.52‡

SI (P@1)
BERT -9.07 -1.59
BERT w. GIFT -7.43‡ -1.91
SA-BERT -7.34 -3.34
SA-BERT w. GIFT -7.25‡ -1.89‡

MPC-BERT -6.56 -2.48
MPC-BERT w. GIFT -6.49‡ -2.61

RS (R10@1)
BERT +3.46 +1.51
BERT w. GIFT +4.05‡ +1.14
SA-BERT +4.03 +1.15
SA-BERT w. GIFT +5.05‡ +1.32‡

MPC-BERT +3.87 +1.82
MPC-BERT w. GIFT +5.14‡ +2.11‡

Table 6: Performance change of models as the session
length increased on the test sets of Ouchi and Tsuboi
(2016). For models with GIFT, numbers marked with
‡ denoted larger performance improvement or less
performance drop compared with the corresponding
models without GIFT.

B Impact of Conversation Length

To quantitatively compare the performance differ-
ence at different session lengths, the performance
margins between Len-5 and Len-10, as well as
those between Len-10 and Len-15 were calculated.
Table 6 presents the details of these margins. From
the results, it can be seen that as the session length
increased, the performance of models with GIFT
dropped more slightly on addressee recognition
and speaker identification, and enlarged more on
response selection, than the models without GIFT
in most 14 out of 18 cases (including every 2
margins across lengths 5-10-15 for each model on
each task).
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