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Abstract
In-context learning (ICL) is an important
paradigm for adapting large language models
(LLMs) to new tasks, but the generalization be-
havior of ICL remains poorly understood. We
investigate the inductive biases of ICL from
the perspective of feature bias: which feature
ICL is more likely to use given a set of under-
specified demonstrations in which two features
are equally predictive of the labels. First, we
characterize the feature biases of GPT-3 models
by constructing underspecified demonstrations
from a range of NLP datasets and feature com-
binations. We find that LLMs exhibit clear
feature biases—for example, demonstrating a
strong bias to predict labels according to senti-
ment rather than shallow lexical features, like
punctuation. Second, we evaluate the effect
of different interventions that are designed to
impose an inductive bias in favor of a particu-
lar feature, such as adding a natural language
instruction or using semantically relevant la-
bel words. We find that, while many interven-
tions can influence the learner to prefer a par-
ticular feature, it can be difficult to overcome
strong prior biases. Overall, our results provide
a broader picture of the types of features that
ICL may be more likely to exploit and how to
impose inductive biases that are better aligned
with the intended task.1

1 Introduction

In-context learning (ICL) is an increasingly popu-
lar paradigm for adapting large language models
(LLMs) to downstream tasks (Brown et al., 2020).
It works by prompting LLMs with a small set of
examples that demonstrate the input and output of
a task, without requiring any parameter updates.
However, a key limitation of ICL is that it can only
incorporate a small number of demonstration ex-
amples (e.g., 16) due to the context length limit of

*Equal contribution.
1Our code and data are publicly available at

https://github.com/NoviScl/AmbigPrompt.

Sentence Label
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The steak is incredible, and 
is reasonably priced.

Words can’t describe how 
utterly abysmal this movie is. 0                 1

Without intervention h1: 92.4% h2: 7.6%
With instruction:
“Classify based on the topic.”  h1:  1.1%  h2: 98.9%

Better verbalizers:
“1” → “movie”,  “0”  → “food” h1: 0.5% h2: 99.5%

Model preference

1                 0

h1               h2

Figure 1: We prompt language models with underspeci-
fied demonstrations in which two features are equally
predictive of the label. In this case, the decision rule
could be based on either sentiment (positive vs. neg-
ative) or topic (movie vs. food). We measure feature
biases by testing the model on disambiguation exam-
ples where the two hypotheses disagree, such as positive
restaurant reviews. Here, GPT-3 strongly favors the sen-
timent hypothesis, but we can encourage it to prefer the
topic feature using various interventions, e.g., adding a
natural-language instruction or using verbalized labels.

Transformer models, meaning that most tasks will
be highly underspecified. For example, as shown
in Figure 1, we present the model with an under-
specified text classification problem. The sentences
with label ‘1’ are positive reviews of movies, and
the sentences with label ‘0’ are negative reviews of
restaurants. From the demonstrations, it is unclear
whether the labels are determined by the sentiment
feature (positive vs. negative) or the topic feature
(movie vs. food). Moreover, due to the limited
context window, it is difficult to specify the task
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by supplying a large number of additional training
examples. Instead, ICL can succeed only if (a) the
LLM has an inductive bias that happens to align
well with the given task or (b) there is a mecha-
nism for imposing an inductive bias on the system,
which can specify the task (e.g., whether it is senti-
ment classification or topic classification) without
incorporating more training examples.

In this paper, we study the inductive biases of
ICL with LLMs and measure the effectiveness of
different interventions to steer ICL towards a par-
ticular hypothesis. We focus on feature biases: a
tendency to use one feature rather than another
given a prompt in which the two features predict
the label equally well. As illustrated in Figure 1,
by evaluating the model on sentences where the
two features disagree—such as positive restaurant
reviews—we can measure the feature bias of the
learning algorithm, and we can attempt to mod-
ify the feature biases through various interventions
applied to the prompt.

In the first part of the paper, we characterize the
feature biases of ICL by constructing underspeci-
fied demonstrations from a variety of NLP datasets
and feature pairs. We find that ICL models exhibit
some clear feature biases. For example, in a senti-
ment analysis setting, the LLMs we study exhibit a
strong tendency to generalize on the basis of senti-
ment rather than other equally predictive features,
including topics of sentences. On sentence-pair
tasks, such as question answering and natural lan-
guage inference, the GPT-3 model (Brown et al.,
2020) generally prefers shallow lexical features,
while the instruction-tuned models (Ouyang et al.,
2022) generalize more consistently with the labels
associated with those datasets. Such feature biases
could potentially be problematic—users could have
intended either of the two predictive features as the
actual task. When the model’s feature bias does not
align with the intended task, we want the model to
be steerable with appropriate interventions.

In the second part of the paper, we measure
whether simple modifications of the prompt can
supply an inductive bias to the ICL learning algo-
rithm, steering the model to generalize according
to one feature rather than another. These interven-
tions include using natural-language instructions
or explanations and using label words that are se-
mantically related to the intended feature. As a
baseline, we compare these methods with unam-
biguous prompts, in which some demonstration

examples are consistent with one hypothesis but
not the other. We find that these interventions are
most effective when the model does not have a
strong feature bias, or already has a bias in favor of
the intended task feature. They are less effective at
steering the model to use one feature when it has a
strong bias to use another feature. For example, the
instruction-tuned model generalizes on the basis
of sentiment despite adding instructions and even
disambiguating evidence in favor of lexical fea-
tures like punctuation. Interestingly, we find that
data-independent methods, like using semantically
relevant label words, sometimes have a stronger
effect than providing unambiguous data.

These results underscore some of the challenges
involved with using ICL as a general-purpose ma-
chine learning method, complementing a growing
body of work that has attempted to explain how
ICL works from an empirical (e.g., Min et al., 2022;
Webson and Pavlick, 2022; Chan et al., 2022) and
theoretical (Xie et al., 2022; Akyürek et al., 2023;
von Oswald et al., 2022) point of view. On one
hand, the strong inductive biases of LLMs are help-
ful when they happen to be well aligned with the
given task, enabling ICL to generalize successfully
from very few training examples. Moreover, sim-
ple modifications to the prompt are often successful
at steering the model towards a particular feature in
underspecified settings. On the other hand, simple
prompting methods cannot systematically align the
model with user intention: they have limited effec-
tiveness when the model’s feature biases conflict
with the intended task.

2 Setup

2.1 Measuring Feature Biases

We consider text classification problems, where
x ∈ X is a text input and h1, h2 : X → {0, 1} are
two binary feature functions. For example, h1 may
be a sentiment classifier (returning 0 if x is negative
and 1 if it is positive), and h2 is a domain classifier
indicating whether x is a review of a movie or a
restaurant. We consider a learning algorithm `,
defined as a mapping from a dataset D ⊆ X ×
{0, 1} to a classifier f : X → {0, 1}. Given a
learning algorithm ` and a pair of feature functions
h1, h2, our aim is to understand whether ` tends to
return classifiers more similar to h1 or h2, given
that h1 and h2 have the same accuracy on D.

In the context of ICL, we measure this property
behaviorally by prompting language models with a
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set of underspecified demonstrations Ddemo and
evaluating the resulting function f = `(Ddemo)
on a disambiguating dataset Dtest. The under-
specified demonstrations are examples Ddemo ∈
X × {0, 1} such that, for all (x, y) ∈ Ddemo, y =
h1(x) = h2(x); and we ensure that the labels are
balanced on D. The disambiguating dataset Dtest is
constructed so that, for all x, h1(x) 6= h2(x), and
the dataset is balanced with respect to h1(x) and
h2(x). A simple example is illustrated in Figure 1.

We measure whether f is more consistent with
h1 or h2 by comparing the predictions of f , h1,
and h2 on Dtest. For a given feature function h,
we define the accuracy on h as the proportion of
examples for which f(x) = h(x):

h-accuracy =
1

|Dtest|
∑

x∈Dtest

1[f(x) = h(x)].

The difference between h1-accuracy and h2-
accuracy on Dtest can be interpreted as a feature
bias: for example, a high value of h1-accuracy in-
dicates that the model is more likely to predict the
same label as h1 in situations where h1 and h2 dis-
agree. h1-accuracy and h2-accuracy always add up
to 1 and, because Dtest is balanced, an h1-accuracy
of 0.5 indicates that the model does not exhibit a
strong bias towards either feature.

2.2 In-Context Learning

The learning algorithms we consider in this pa-
per are based on in-context learning (ICL) of
LLMs (Brown et al., 2020). A language model
pθ(w) assigns scores to strings w ∈ V∗, where
V is a discrete vocabulary. The input to ICL is
a language model pθ(w) and a function that con-
verts a dataset D and a single test example xtest
into a prompt c(D, xtest) ∈ V∗. We consider the
basic form of ICL, which consists of2: (1) an in-
stance template t : X → V∗ that encodes each
data instance x as a string; (2) a label verbalizer
v : {0, 1} → V∗ that encodes each label as a
string. For the first part of our analysis on mea-
suring feature biases (Section 4), we adopt the sim-
plest format and define the instance template as
t(x) = “Input: $x Label: ”, and the label verbal-
izer as v(0) = “0” and v(1) = “1”. The prompt c
is then the concatenation of t(xi) and v(yi) for all
demonstration examples (xi, yi) ∈ D; and lastly

2Additionally, we can incorporate natural-language instruc-
tions and explanations, as we will discuss in Section 5.

the test instance t(xtest). The resulting classifier is:

f(xtest;D) = argmax
y

pθ(v(y) | c(D, xtest)).

ICL is known to be sensitive to the order of the
demonstrations (Lu et al., 2022) and to demonstrate
other biases that are orthogonal to this study, in-
cluding majority label bias and recency bias (Zhao
et al., 2021). We control for these by ordering the
demonstration examples randomly and performing
label calibration, following (Zhao et al., 2021).

3 Data Construction

We choose datasets to cover four different NLP
tasks, including both single-sentence and sentence-
pair classification. For sentiment analysis, we
use IMDb (Maas et al., 2011) and Yelp (Asghar,
2016) datasets; for toxicity classification, we use
the CivilComments dataset (Borkan et al., 2019);
for natural language inference, we use the MNLI
dataset (Williams et al., 2018); and for question
answering, we use BoolQ (Clark et al., 2019).

For each dataset, we select the original classi-
fication label as the default feature and denote it
as h1. We select alternative comparison features
(h2) using existing metadata or simple, determin-
istic functions, chosen to reflect realistic sources
of ambiguity or spurious correlation that have been
studied in prior work (McCoy et al., 2019; Guru-
rangan et al., 2018; Poliak et al., 2018; Joshi et al.,
2022), as well as common shallow features such
as length, capitalization, and the presence of par-
ticular words or punctuation marks. All datasets
and features we use are listed in Table 1, which we
elaborate below:

(1) For sentiment analysis, the default feature is
the sentiment, and the alternative features include:
domain or source of the review (based on whether it
is from IMDb or Yelp), length of the review (longer
or shorter than a threshold), the final punctuation
mark of the review (exclamation mark or period),
whether it contains certain keywords (“food” and
“nice”), and whether it contains uppercase words
(e.g., “THIS”).

(2) For toxicity classification, the default feature
is whether the comment is toxic. The alternative
features are: gender, sexuality, religion, and race
mentioned in the comment (all based on human-
annotated meta-data), and its length and capitaliza-
tion (whether containing uppercase words).

(3) For NLI, the default feature is the entailment
relationship between the sentence pair, and we con-
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Task Dataset Hypotheses

Single-sentence classification
Sentiment analysis IMDb + Yelp Sentiment (positive vs. negative)

Domain (IMDb vs. Yelp)
Length (short vs. long)
Terminal punctuation (exclamation vs. period)
Contains word (“nice”/“food”)
Capitalization (lowercase vs. uppercase)

Toxicity classification CivilComments Toxicity (toxic vs. non-toxic)
Gender (female vs. male)
Sexuality (LGBTQ vs. non-LGBTQ)
Religion (Muslim vs. Christian; Muslim vs. Jewish)
Race (Black vs. White; Asian vs. White)
Length (short vs. long)
Capitalization (lowercase vs. uppercase)

Sentence-pair classification
Natural language inference MultiNLI Entailment (entailment vs. non-entailment)

Domain (government vs. fiction; government vs. telephone)
Lexical overlap (overlap vs. non-overlap)
Hypothesis length (long vs. short)
Hypothesis negation (contains “not”, “n’t”, “no”)

Question answering BoolQ Answer (yes vs. no)
Question word (“is/was” vs. “do/does/did”)
Lexical overlap (overlap vs. non-overlap)
Question structure (“is x the same as y”)
Passage length (short vs long)

Table 1: The datasets and features we study in this paper. We treat the first feature for each task as the default feature
(referred to as h1) and the others as distractors (h2). We measure feature biases between the default feature (in bold)
and each of the distractor features.

dense the neutral and contradiction classes as non-
entailment to cast the task as binary classification.
For alternative features, we consider: domain of
the text (from the genre meta-data); lexical overlap,
following the definition in HANS (McCoy et al.,
2019); whether the hypothesis is shorter or longer
than the premise; and whether the hypothesis con-
tains negation words (“no”, “not”, “n’t”).

(4) For question answering, the default feature
is whether the answer is yes or no, and the alter-
native features are: the question word, whether all
words from the question also appear in the passage
(lexical overlap), question structure (whether it is a
comparison question), and passage length. These
features are potential spurious features in QA that
have been documented in prior work (Pezeshkpour
et al., 2022; Shinoda et al., 2022).

4 Measuring Feature Biases

4.1 Experiment Details

Evaluation protocol. For all experiments, we
randomly sample a balanced set of 16 demon-
stration examples (randomly shuffled) to form
the prompt. For eight of the examples, y =
h1(x) = h2(x) = 0; for the other eight, y =

h1(x) = h2(x) = 1. For each experiment, we
randomly sample three sets of prompts and re-
port the average performance on a set of 1,200
test examples, balanced between examples with
h1(x) = 0/h2(x) = 1 and h1(x) = 1/h2(x) = 0.
In this baseline setting, the instance template is
t(x) = “Input: $x Label: ”, and the label verbal-
izer provides no additional information about the
task: v(0) = “0” and v(1) = “1”.

Models. We focus on the TEXT-DAVINCI-002
and DAVINCI checkpoints of GPT-3 mainly be-
cause smaller-scale models often perform no better
than random on tasks like NLI. The main differ-
ences between the two checkpoints are the pretrain-
ing data and the additional instruction tuning for
TEXT-DAVINCI-002 (Ouyang et al., 2022). For all
experiments, we use a temperature value of 0 in
GPT-3 decoding, and all experiments involving the
OpenAI API were conducted in January 2023.

Metric. We report the h-accuracy for each fea-
ture. Higher h-accuracy indicates a higher prefer-
ence for that feature. We denote the default feature
h1 (sentiment, toxicity, entailment, answer) and the
alternative features h2.
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Figure 2: The generalization behavior of two LLMs given demonstration examples that could support both h1

(sentiment, entailment, toxicity, and question-answer) and an alternative feature h2. The y-axis is the accuracy
on a balanced set of disambiguating examples, where h1(x) 6= h2(x), measuring accuracy using either h1(x) or
h2(x) as the ground truth label. Both models generally show a strong preference for the sentiment feature. On the
sentence-pair datasets (MultiNLI and BoolQ), the Davinci model tends to prefer the distractor feature, while the
Text-Davinci-002 model, which was trained with human feedback, always prefers the original task hypothesis. Error
bars represent the standard deviation over three random seeds, which correspond to three sets of randomly sampled
demonstration examples as prompts.

4.2 Results

We present ICL results on all the datasets and pairs
of features in Figure 2, and note several interesting
trends as follows:

LLMs often have clear feature biases. For ex-
ample, in the sentiment analysis setting (Figure 2a),
both models generally show a strong preference to
predict labels according to the sentiment of the sen-
tence rather than other features, such as sentence
length or the presence of individual lexical items
like the word “food”. Such biases can be helpful
when they are aligned with the intended task.

On the other hand, we do not observe clear fea-
ture preferences in the CivilComments dataset (Fig-
ure 2c), suggesting that these models may not have
a strong feature biases in this setting.

The instruction-tuned model is generally more
aligned with standard dataset labels. While
both DAVINCI and TEXT-DAVINCI-002 show sim-
ilar feature biases in the sentiment analysis setting,
they show very different biases on the the sentence
pair datasets MultiNLI (Figure 2b) and BoolQ (Fig-
ure 2d): the DAVINCI model tends to prefer the
shallow distractor features, such as lexical overlap,

while TEXT-DAVINCI-002 tends to prefer the se-
mantic feature associated with the dataset—either
the entailment relationship or the answer to the
question. This may be due to some aspect of in-
struction tuning, which might have exposed the
model to similar tasks.

5 Comparing Interventions

Our findings that LLMs can have strong feature bi-
ases have important implications: when the LLMs’
biases do not align with users’ intended task, such
biases would hurt performance. To resolve such
misalignment, we explore a set of intervention
methods designed to encourage the model to prefer
one feature over another, examining whether the h-
accuracy for the intended feature indeed increases.

5.1 Experiment Details

We now consider more variants of ICL that can be
decomposed into four components that are com-
monly used in various prompting methods. In ad-
dition to the instance template t and label verbal-
izer v described in Section 2.2, we also introduce:
(1) An instruction s ∈ V∗, which is prepended
to the prompt; and (2) a free-form explanation
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e : X → V∗ after each input text t(x) and before
the label v(x). The prompt c is then the concate-
nation of s, followed by t(xi); e(xi); v(yi) for all
demonstration examples (xi, yi) ∈ D; and lastly
the test instance t(xtest).

Each intervention operates on a combination
of the above components. We apply these inter-
ventions separately and compare with the baseline
rather than applying all interventions on top of each
other in order to analyze the impact of each of the
methods. We compare interventions designed to
steer the model towards h1 and h2 as the intended
feature respectively, to understand the effectiveness
of interventions towards different features.

• Recall that in the baseline setting, there is no
instruction or explanation (s and e are empty
strings). We simply concatenate demonstra-
tion examples as the prompt, and use “1” and
“0” as the verbalizer.

• In the semantic verbalizer setting, the verbal-
izer selects label words that are semantically
related to a chosen feature in order to hint at
the intended task. For example, if the intended
feature is sentiment, then v(0) = “negative”
and v(1) = “positive”; and if the intended
feature is length, then v(0) = “short” and
v(1) = “long”. Our choice of verbalizers is
inspired by prior work (Gao et al., 2021; Shi
et al., 2022) and we list all of them in Table 6.

• In the instruction setting, we add a prefix
string describing the intended feature and in-
structing the model to use this feature. We
format our instructions mostly following prior
work such as Natural Instructions (Mishra
et al., 2021; Wang et al., 2022), and we list all
our instructions in Tables 7 and 8.

• In the explanation setting, we append a tem-
plate explanation after each demo example to
explain why the prediction is made based on
the intended feature, formatted in a similar
manner as Chain-of-Thought prompting (Wei
et al., 2022) and “explain-then-predict” (Ye
and Durrett, 2022). Since hand-written expla-
nations are hard to obtain, we create fixed
human-written templates for each feature
value. For example, for the punctuation fea-
ture, all positive examples have the explana-
tion “The review ends with an exclamation

Steer towards h1 Steer towards h2

Intervention Davinci TD002 Davinci TD002

Baseline 39.5 59.1 46.9 30.5

Verbalizer +11.9 +7.1 +15.6 +24.4
Instruction +1.6 +12.2 -2.4 +24.2
Explanation +14.4 +6.9 +14.3 +33.8

Disambig +12.9 +9.4 +18.6 +21.1

Table 2: The impact of different intervention strategies
on h1-accuracy (left) or h2-accuracy (right), averaged
over features and datasets. (The Steer towards h1 exper-
iments exclude the sentiment analysis datasets, because
the models already strongly prefer h1 even without in-
terventions.) We report the change in accuracy relative
to the baseline. Higher values indicate that the interven-
tion is more effective at steering the model to predict
labels according to the given feature. TD002: TEXT-
DAVINCI-002.

mark. Therefore, the answer is 1”. We list all
our template explanations in Tables 9 and 10.

• Finally, we include a disambiguation setting,
in which we change half of the demonstration
examples to those that disambiguate the task
in favor of the intended feature. For example,
to steer the model towards h1, the demon-
stration includes examples such that h1(x) 6=
h2(x) and y = h1(x). Intuitively, this pro-
vides additional evidence for the model to dif-
ferentiate the intended feature.

We measure the effectiveness of the intervention in
terms of the increase in h-accuracy relative to the
baseline model, where h is the intended feature.

5.2 Results

Which interventions are effective? Table 2 sum-
marizes the results of these experiments, comparing
the effect of the different interventions on DAVINCI

and TEXT-DAVINCI-002, averaged over features
and datasets, and comparing between interventions
designed to steer towards the default feature (h1)
and the alternative features. Nearly all interven-
tions increase the average h-accuracy, in many
cases by a substantial amount. However, the ef-
fectiveness of the intervention varies depending
on the model. For the DAVINCI model, the best-
performing interventions include semantic verbal-
izers and template-based explanations, while the
worst-performing intervention is natural-language
instructions. For the TEXT-DAVINCI-002 model,
instructions are much more effective.
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Figure 3: Generalization results of TEXT-DAVINCI-002 using different interventions, aggregated over feature
pairs. In the first row, the intervention is designed to steer the model towards h1, so we expect an increase in the
h1-accuracy (the blue bars) compared to the baselines (the first pair of bars in each plot). In the second row, the
intervention is designed to steer the model towards h2, so we expect an increase in the h2-accuracy (red bars). The
interventions are most successful when the model already has a feature bias for the intended feature (e.g. h1 for
NLI and QA) or has low feature bias (Toxicity). They are less effective at overcoming prior feature biases. We omit
results for steering towards h1 on sentiment analysis since the baseline already has a near-perfect preference for
h1 with little room for improvement. Error bars represent the standard deviation over three random seeds, which
correspond to three sets of randomly sampled demonstration examples as prompts.

In some cases, prompt-based interventions are
more effective at steering the model than provid-
ing unambiguous demonstration examples. On one
hand, this suggests that ICL can be effective even
given highly underspecified data, but it also indi-
cates that ICL models may fail to exploit the infor-
mation provided in the demonstrations. This find-
ing illustrates that ICL works very differently from
standard supervised learning, and calls to mind ex-
isting empirical (Min et al., 2022) and theoretical
results (Xie et al., 2022) suggesting that ICL might
work in part by recognizing existing tasks rather
than directly learning the input-output relation from
the demonstration.

When are interventions effective? Figure 3
compares the results of different interventions on
the TEXT-DAVINCI-002 model, aggregated over
features. (Detailed results for each feature and
DAVINCI results are in Appendix A.1.) The ef-
fectiveness of the intervention varies depending
on whether the prior feature bias and the intended
feature are aligned. The interventions are most ef-
fective in two scenarios. First, interventions are
effective when the model already has a feature bias
for the intended features. This is evident in the
interventions that steer the model towards h1 in

NLI and QA, settings in which the model already
has a feature bias in favor of h1. Second, inter-
ventions are effective when the model has a low
feature bias. This is the case in the Toxicity Classi-
fication dataset, where the model does not exhibit a
strong feature bias. In this setting, all interventions
are moderately successful at steering the model
towards h1, and more successful at steering the
model towards h2.

On the other hand, interventions are less effec-
tive at overriding feature biases. This trend is illus-
trated in the second row of Figure 3, in which the
intervention is designed to steer the model towards
h2 rather than the standard dataset label. While
some interventions increase h2-accuracy, no inter-
vention consistently gets the model to generalize
according to the intended feature.

Which features are most susceptible to interven-
tions? In Table 3, we compare the effect of inter-
ventions on different features in MultiNLI. Using
meaningful label words works better on the genre
features, where the label words are semantically
similar to the input example, but it is more difficult
to steer the model toward the use of features like
length and lexical overlap, which are not related to
the semantics of the sentences. More work may be
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h2 Govt/Fiction Govt/Telephone Length Negation Overlap

DAVINCI Baseline 87.9 89.1 52.3 41.9 69.5

Verbalizer +3.0 +1.2 -2.0 +10.3 -6.6
Instruction -2.2 -10.2 -1.1 +6.1 -6.3
Explanation +5.2 +6.3 -1.2 +8.2 -19.5
Disambig +2.3 +7.8 +14.4 +12.7 -0.6

TEXT-DAVINCI-002 Baseline 28.7 39.5 27.3 34.7 39.2

Verbalizer +66.8 +58.2 -4.5 -0.9 -3.2
Instruction +42.0 +41.3 +6.8 +28.7 -3.8
Explanation +47.7 +51.8 +26.5 +9.1 +3.1
Disambig +37.3 +45.9 +12.8 +0.7 +12.7

Table 3: Comparing the effectiveness of intervention strategies on steering the model towards different features in
MultiNLI. This table reports the h2-accuracy in the baseline setting for each feature and the difference in h2-accuracy
obtained by the different interventions. The interventions are generally more successful on simple semantic features
like genre and less successful on semantically irrelevant features like lexical overlap and length.

needed to develop interventions that work well for
higher-order language features.

Lastly, we compile a summary of practical take-
aways for steering LLMs:

• When using non-instruction-tuned LLMs
(e.g., DAVINCI), specifying feature prefer-
ences as instructions is not effective, instead
adding explanations or disambiguating exam-
ples can be more effective.

• When using instruction-tuned LLMs (e.g.,
TEXT-DAVINCI-002), all interventions can
be effective.

• Features not related to semantics, such as sen-
tence lengths or overlap, are difficult to inter-
vene across all conditions.

6 Related Work

Measuring inductive biases. Our work builds
on existing research on measuring the inductive bi-
ases of learning algorithms in machine learning and
NLP. Dasgupta et al. (2022) introduce a method-
ology for measuring feature bias as well as rule-
vs. exemplar-based generalization, and Chan et al.
(2022) apply this approach to compare rule- vs.
exemplar-based learning in ICL. We use a simi-
lar framing as Dasgupta et al. (2022), but focus
on feature bias. In NLP, another line of work has
studied the inductive biases of neural networks in
the context of the poverty of the stimulus argu-
ment (Chomsky, 1980). These studies evaluate
whether neural networks generalize in a manner
consistent with structural or superficial linguistic
rules (McCoy et al., 2018, 2020). Several studies

have found that models such as BERT acquire a
preference for structural generalizations from large-
scale masked language model pretraining (Warstadt
and Bowman, 2020; Warstadt et al., 2020; Zhang
and Hashimoto, 2021; Mueller et al., 2022). We fol-
low a similar poverty-of-the-stimulus experimental
setup but focus on in-context learning and on fea-
tures arising in common NLP tasks. Lovering
et al. (2021) explore whether it is possible to pre-
dict the inductive biases of pre-trained models and
show that models tend to generalize on the basis
of features that are more “extractable”, measured
using probing techniques (Voita and Titov, 2020),
but it is not straightforward to extend the notion
of extrability to in-context learning. Tamkin et al.
(2023) also study how LLMs generalize to ambigu-
ous classification tasks, but focus on ambiguous
instructions and use template-generated datasets.

Spurious correlations. A related line of work
has explored the inductive biases of pretrained LMs
in relation to spurious correlations, or shortcuts
(e.g. Gururangan et al., 2018; Poliak et al., 2018;
McCoy et al., 2019; Geirhos et al., 2020; Sagawa
et al., 2020)—shallow features that are correlated
with the classification targets. Models can general-
ize successfully if they have an inductive bias that
tends to favor the intended feature over the short-
cut. Hendrycks et al. (2019, 2020); Tu et al. (2020)
found that pre-trained models can generalize more
successfully to such distribution shifts.

Explaining in-context learning. A number of
empirical studies have attempted to characterize the
behavior of ICL and explain why it works. These
studies have found that ICL can be overly sensitive
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to certain aspects of the prompt, such as the order
of the demonstration examples (Lu et al., 2022) and
choice of label words (Zhao et al., 2021), but also
surprisingly insensitive to others. In particular, Min
et al. (2022) show that LLMs can largely ignore
the relationship between inputs and labels in the
demonstration example and Webson and Pavlick
(2022) show that the performance of ICL can per-
form well on NLI even if the prompt is irrelevant
or misleading. Relatedly, Wei et al. (2023); Pan
et al. (2023) show that LLMs can perform ICL well
with flipped labels or semantically-unrelated la-
bels, but such ability of overriding semantic priors
emerges with scale. Some theoretical work has also
attempted to explain why prompt-based methods
work, by drawing connections between the prompt-
ing setting and properties of the pretraining distri-
bution (Saunshi et al., 2021; Wei et al., 2021; Xie
et al., 2022) or by arguing that Transformers can
act as meta-learners, implicitly performing gradient
descent on the in-context examples (von Oswald
et al., 2022; Akyürek et al., 2023). Our results pro-
vide empirical evidence that there is a strong task
bias from pretraining when the LLMs must infer
the task by input-output relations.

Improving in-context learning. Recent work
studied the effect of including explanations in the
prompt to produce better quality answers (Wei
et al., 2022; Lampinen et al., 2022). While they
show the benefit of high-quality human-annotated
explanations for improving task performance, we
demonstrated the effectiveness of simple template
explanations in steering feature biases. Another
line of work collects large pools of instructions
from diverse tasks and uses them to tune and con-
trol language models (Wang et al., 2022; Chung
et al., 2022). We also adopt instructions as an inter-
vention method and show that it works particularly
well on instruction-tuned models. In a similar man-
ner, Si et al. (2023) studied prompting methods to
make GPT-3 more reliable, such as instructing it to
not rely on demographic biases.

7 Conclusion

In this work, we constructed underspecified
prompts from real-world datasets to study feature
biases of large language models. We found that the
instruction-tuned InstructGPT model prefers the
“default” task features over distractor features more
often than the base GPT-3 model, and we demon-
strated the effectiveness of various intervention

methods in steering models to use the specified fea-
ture. These results not only shed new insights into
the working mechanisms of ICL, but also have prac-
tical takeaways for discouraging models from ex-
ploiting unintended features such as demographic
biases or shallow statistical cues.

Limitations

Model coverage. Our study is targeted specif-
ically at GPT-3 and it would be interesting to
study feature bias patterns on other large language
models such as OPT (Zhang et al., 2022) and
BLOOM (Scao et al., 2022); and it is possible that
our intervention methods may have different effects
on these language models trained with different
data sources and scales.

Task coverage. Apart from model coverage, our
analysis is focused on only four common binary
classification tasks. Our main metric, h-accuracy,
compares the predictions between a learned func-
tion f and a feature function h. For simplicity, we
only study binary functions (consistent with prior
work) to illustrate the main ideas, but the frame-
work applies equally well if f and h are multi-class
classifiers. For example, in the case of the three-
way NLI task, we might set h1 to predict on the
basis of entailment / contradiction / neutral, and h2
to predict on the basis of the genres – e.g. fiction /
government / telephone. Future work could extend
our framework to more tasks, and consider how to
apply it to more complex tasks such as generation.

Feature coverage. Our current experiments are
limited to a set of hand-crafted features. One po-
tential way to systematically scale our approach is
to develop novel techniques for automatic feature
discovery, for example, to cluster the data and treat
each cluster as having a distinct feature.

Explaining feature biases. While our empirical
findings shed light on the feature bias patterns of
GPT-3, we do not yet have a conclusion on how
these biases arise from pretraining. Future work
could attempt to draw connections to the pretrain-
ing data or to theoretical accounts of in-context
learning.

Risks and ethics. While we do not foresee any
ethical risks resulting from our work, we caution
against making extrapolations about the extent to
which LLMs exhibit feature biases towards pro-
tected social attributes. Although we do not find
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evidence of strong feature biases in a particular tox-
icity classification setting, care should be taken to
evaluate the fairness and reliability of these models
directly before they are deployed in downstream
applications.
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A Appendix

A.1 Intervention Results Across Features
We present the complete set of intervention results
broken down by features in Table 4 for DAVINCI

and Table 5 for TEXT-DAVINCI-002.
It is worth noting that the intervention methods’

effectiveness often varies across features even on
the same dataset. For example, all intervention
methods can effectively steer models towards using
the genre feature over the entailment feature on
MNLI, but the success is limited for the lexical
overlap feature on MNLI. We hypothesize this is
because features like lexical overlap are harder for
models to recognize.

A.2 List of Semantic Verbalizers
We present the full list of semantically meaning-
ful verbalizers for the intervention experiments in
Table 6.

A.3 List of Task Instructions
We present the full list of task instructions for the
intervention experiments in Table 7 and Table 8.

A.4 List of Template Explanations
We present the full list of template explanations
for the intervention experiments in Table 9 and
Table 10.
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h2 Baseline + DisAmbig + Verbalizers + Instruction + Explanation

Steer Towards h1

NLI genre 11.5 / 88.5 53.4 / 46.6 28.5 / 71.5 13.5 / 86.5 20.9 / 79.1
length 47.7 / 52.3 54.5 / 45.5 53.3 / 46.7 49.3 / 50.7 53.4 / 46.6

negation 58.1 / 41.9 49.7 / 50.3 52.6 / 47.4 51.8 / 48.2 45.4 / 54.6
overlap 30.5 / 69.5 54.9 / 45.1 29.4 / 70.6 37.9 / 62.1 44.5 / 55.5

Aggregate 31.9 / 68.1 53.2 / 46.8 38.4 / 61.6 33.2 / 66.8 37.0 / 63.0

TC gender 47.9 / 52.1 50.2 / 49.8 53.1 / 46.9 47.8 / 52.2 58.6 / 41.4
race 53.0 / 47.0 51.1 / 48.9 58.0 / 42.0 52.2 / 47.8 59.5 / 40.5

religion 51.4 / 48.6 50.7 / 49.3 53.4 / 46.6 51.9 / 48.1 55.1 / 44.9
length 36.6 / 63.4 53.6 / 46.4 33.8 / 66.2 37.8 / 62.2 62.6 / 37.4

capitalization 32.4 / 67.6 51.2 / 48.8 51.5 / 48.5 30.0 / 70.0 60.3 / 39.7
Aggregate 45.8 / 54.2 51.1 / 48.9 50.9 / 49.1 45.6 / 54.4 58.6 / 41.4

QA Q word 39.8 / 60.2 63.5 / 36.5 76.1 / 23.9 45.1 / 54.9 67.2 / 32.8
overlap 41.1 / 58.9 55.1 / 44.9 73.1 / 26.9 44.9 / 55.1 64.3 / 35.7

structure 34.0 / 66.0 49.3 / 50.7 61.7 / 38.3 37.4 / 62.6 71.0 / 29.0
length 37.8 / 62.2 48.4 / 51.6 64.2 / 35.8 46.2 / 53.8 64.8 / 35.2

Aggregate 38.2 / 61.8 54.1 / 45.9 68.8 / 31.2 43.4 / 56.6 66.8 / 33.2

Steer Towards h2

NLI genre 11.5 / 88.5 6.5 / 93.5 9.4 / 90.6 17.7 / 82.3 5.7 / 94.3
length 47.7 / 52.3 33.3 / 66.7 49.8 / 50.2 48.8 / 51.2 48.8 / 51.2

negation 58.1 / 41.9 45.4 / 54.6 47.8 / 52.2 52.0 / 48.0 49.8 / 50.2
overlap 30.5 / 69.5 31.1 / 68.9 37.1 / 62.9 36.7 / 63.3 50.0 / 50.0

Aggregate 31.9 / 68.1 24.6 / 75.4 30.7 / 69.3 34.5 / 65.5 32.0 / 68.0

SA punctuation 98.3 / 1.7 73.1 / 26.9 97.0 / 3.0 98.0 / 2.0 68.6 / 31.4
domain 56.1 / 43.9 0.3 / 99.7 1.0 / 99.0 77.6 / 22.4 25.8 / 74.2
length 98.4 / 1.6 35.2 / 64.8 30.7 / 69.3 97.8 / 2.2 62.1 / 37.9
lexicon 95.5 / 4.5 63.2 / 36.8 87.8 / 12.2 96.5 / 3.5 72.0 / 28.0

capitalization 92.0 / 8.0 43.5 / 56.5 85.5 / 14.5 81.5 / 18.5 75.2 / 24.8
Aggregate 89.3 / 10.7 46.4 / 53.6 65.0 / 35.0 91.3 / 8.7 62.6 / 37.4

TC gender 47.9 / 52.1 41.3 / 58.7 29.8 / 70.2 48.3 / 51.7 28.8 / 71.2
race 53.0 / 47.0 38.4 / 61.6 26.2 / 73.8 50.9 / 49.1 27.1 / 72.9

religion 51.4 / 48.6 34.6 / 65.4 16.8 / 83.2 51.1 / 48.9 9.8 / 90.2
length 36.6 / 63.4 29.7 / 70.3 22.7 / 77.3 40.4 / 59.6 31.2 / 68.8

capitalization 32.4 / 67.6 18.1 / 81.9 48.8 / 51.2 31.6 / 68.4 43.0 / 57.0
Aggregate 45.8 / 54.2 34.0 / 66.0 27.3 / 72.7 46.1 / 53.9 25.5 / 74.5

QA Q word 39.8 / 60.2 31.1 / 68.9 11.5 / 88.5 43.1 / 56.9 1.7 / 98.3
overlap 41.1 / 58.9 28.9 / 71.1 50.0 / 50.0 45.5 / 54.5 49.9 / 50.1

structure 34.0 / 66.0 16.3 / 83.7 55.5 / 44.5 39.3 / 60.7 48.3 / 51.7
length 37.8 / 62.2 43.4 / 56.6 37.0 / 63.0 47.7 / 52.3 34.3 / 65.7

Aggregate 38.2 / 61.8 29.9 / 70.1 38.5 / 61.5 43.9 / 56.1 33.6 / 66.4

Table 4: The impact of different intervention strategies (applied separately on top of the baseline). This table is
for DAVINCI. We report the ambiguous accuracy for supporting h1 and h2 respectively in each cell, higher h1

accuracy indicates a preference for the h1 hypothesis. Most interventions successfully steer the model preference in
the intended direction. We omit results for steering towards h1 on sentiment analysis since both models already
have a strong preference for the sentiment feature without any intervention. We average and condense results of
features from the same category (such as gender and sexuality on CivilComments, and different lexicon features on
sentiment analysis) since their trends are largely similar.
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h2 Baseline + DisAmbig + Verbalizers + Instruction + Explanation

Steer Towards h1

NLI genre 65.9 / 34.1 79.2 / 20.8 74.9 / 25.1 86.1 / 13.9 75.9 / 24.1
length 72.7 / 27.3 83.6 / 16.4 73.4 / 26.6 81.6 / 18.4 77.8 / 22.2

negation 65.3 / 34.7 72.5 / 27.5 77.3 / 22.7 80.1 / 19.9 77.8 / 22.2
overlap 60.8 / 39.2 73.1 / 26.9 64.6 / 35.4 70.9 / 29.1 66.4 / 33.6

Aggregate 66.1 / 33.9 77.5 / 22.5 73.0 / 27.0 81.0 / 19.0 74.8 / 25.2

TC gender 45.9 / 54.1 55.2 / 44.8 53.0 / 47.0 58.4 / 41.6 60.4 / 39.6
race 50.9 / 49.1 59.7 / 40.3 55.8 / 44.2 60.8 / 39.2 60.7 / 39.3

religion 42.0 / 58.0 56.8 / 43.2 49.5 / 50.5 56.5 / 43.5 57.7 / 42.3
length 45.9 / 54.1 60.8 / 39.2 53.3 / 46.7 66.8 / 33.2 62.7 / 37.3

capitalization 48.8 / 51.2 58.1 / 41.9 55.3 / 44.7 63.8 / 36.2 64.9 / 35.1
Aggregate 45.9 / 54.1 57.5 / 42.5 52.8 / 47.2 60.1 / 39.9 60.6 / 39.4

QA Q word 79.7 / 20.3 77.2 / 22.8 85.2 / 14.8 84.3 / 15.7 86.1 / 13.9
overlap 71.3 / 28.7 77.6 / 22.4 81.1 / 18.9 76.7 / 23.3 81.6 / 18.4

structure 68.0 / 32.0 72.3 / 27.7 78.8 / 21.2 71.6 / 28.4 74.9 / 25.1
length 74.6 / 25.4 78.7 / 21.3 80.4 / 19.6 82.6 / 17.4 85.7 / 14.3

Aggregate 73.4 / 26.6 76.5 / 23.5 81.4 / 18.6 78.8 / 21.2 82.0 / 18.0

Steer Towards h2

NLI genre 65.9 / 34.1 24.3 / 75.7 3.4 / 96.6 24.2 / 75.8 16.1 / 83.9
length 72.7 / 27.3 59.9 / 40.1 77.2 / 22.8 65.9 / 34.1 46.2 / 53.8

negation 65.3 / 34.7 64.6 / 35.4 66.2 / 33.8 36.6 / 63.4 56.2 / 43.8
overlap 60.8 / 39.2 48.1 / 51.9 63.9 / 36.1 64.6 / 35.4 57.7 / 42.3

Aggregate 66.1 / 33.9 44.2 / 55.8 42.8 / 57.2 43.1 / 56.9 38.4 / 61.5

SA punctuation 99.1 / 0.9 98.0 / 2.0 96.6 / 3.4 85.4 / 15.6 50.5 / 49.5
domain 92.4 / 7.6 0.7 / 99.3 0.5 / 99.5 1.1 / 98.9 26.4 / 73.6
length 98.6 / 1.4 76.1 / 23.9 27.7 / 72.3 81.1 / 18.9 42.6 / 57.4
lexicon 97.8 / 2.2 65.7 / 34.3 87.6 / 22.4 68.6 / 31.4 67.4 / 32.6

capitalization 98.4 / 1.6 56.2 / 43.8 87.2 / 12.8 61.7 / 38.3 56.0 / 44.0
Aggregate 97.3 / 2.7 60.4 / 39.6 64.5 / 35.5 61.1 / 38.9 51.7 / 48.3

TC gender 45.9 / 54.1 37.9 / 62.1 41.0 / 59.0 22.9 / 77.1 12.1 / 87.9
race 50.9 / 49.1 42.7 / 57.3 36.0 / 64.0 33.1 / 66.9 7.4 / 92.6

religion 42.0 / 58.0 21.8 / 78.2 7.7 / 92.3 9.4 / 90.6 5.7 / 94.3
length 45.9 / 54.1 31.0 / 69.0 20.3 / 79.7 19.6 / 80.4 3.6 / 96.4

capitalization 48.8 / 51.2 28.9 / 71.1 41.3 / 58.7 43.7 / 56.3 48.0 / 52.0
Aggregate 45.9 / 54.1 31.7 / 68.3 27.8 / 72.2 23.0 / 77.0 13.5 / 86.5

QA Q word 79.7 / 20.3 68.9 / 31.1 0.1 / 99.9 83.5 / 16.5 39.4 / 60.6
overlap 71.3 / 28.7 66.1 / 33.9 78.5 / 21.5 69.3 / 30.7 64.5 / 35.5

structure 68.0 / 32.0 62.0 / 38.0 62.5 / 37.5 48.9 / 51.1 33.9 / 66.1
length 74.6 / 25.4 62.1 / 37.9 36.0 / 64.0 51.5 / 48.5 49.9 / 50.1

Aggregate 73.4 / 26.6 64.8 / 35.2 44.3 / 55.7 63.3 / 36.7 46.9 / 53.1

Table 5: The impact of different intervention strategies (applied separately on top of the baseline). This table is for
TEXT-DAVINCI-002. We report the ambiguous accuracy for supporting h1 and h2 respectively in each cell, higher
h1 accuracy indicates a preference for the h1 hypothesis. Most interventions successfully steer the model preference
in the intended direction. We omit results for steering towards h1 on sentiment analysis since both models already
have a strong preference for the sentiment feature without any intervention. We average and condense results of
features from the same category (such as gender and sexuality on CivilComments, and different lexicon features on
sentiment analysis) since their trends are largely similar.
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Task Feature Verbalizer

Sentiment analysis Sentiment 1- “positive”, 0 - “negative”
Domain “Source?” 1 - “movie”, 0 - “other”
Length “Length?” 1 - “short”, 0 - “long”
Terminal punctuation “End punctuation?” 1 - “other”, 0 - “period”
Contains word “Has food / nice?” 1 - “yes”, 0 - “no”
Capitalization “Uppercase words?” 1 - “yes”, 0 - “no”

Toxicity classification Toxicity “Toxic?” 1 - “yes”, 0 - “no”
Gender “Gender?” 1 - “female”, 0 - “male”
Sexuality “LGBTQ?” 1 - “yes”, 0 - “no”
Religion “Religion?” 1 - “Muslim”, 0 - “Christian” / “Jewish”
Race “Race?” 1 - “black”, 0 - “white”
Length “Length?” 1 - “short”, 0 - “long”
Capitalization “Uppercase words?” 1 - “yes”, 0 - “no”

Natural language inference Entailment “Entailed?” 1 - “yes”, 0 - “no”
Domain “Source?” 1 - “government”, 0 - “fiction” / “telephone”
Lexical overlap “Overlap?” 1 - “yes”, 0 - “no”
Hypothesis length “Shorter?” 1 - “yes”, 0 - “no”
Hypothesis negation “Negation?” 1 - “yes”, 0 - “no”

Question answering Answer 1 - “yes”, 0 - “no”
Question word “Question word?” 1 - “be”, 0 - “do”
Lexical overlap “Overlap?” 1 - “yes”, 0 - “no”
Question structure “Has same as?” 1 - “yes”, 0 - “no”
Passage length “Length?” 1 - “long”, 0 - “short”

Table 6: All verbalizers we used in our experiments. For some hypotheses, it is difficult to use succinct words to
specify the label (e.g., whether it contains negation words), we thus prepend a short question before the label words
for such cases to better specify the task (e.g., “Negation? yes / no”).
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Task Feature Instruction

Sentiment Analysis Sentiment Given a review, you need to predict whether the review is good (positive)
or bad (negative). Please answer with “1” for positive and “0” for negative.

Domain Given a review, you need to predict whether it comes from IMDB movie
reviews or Yelp restaurant and service reviews. Please answer with “1” for
IMDB and “0” for Yelp.

Length Given a review, you need to predict whether it is longer than 40 words.
Please answer with “1” for shorter than 40 words and “0” for longer.

Terminal punctuation Given a review, you need to predict whether the review ends with an excla-
mation mark (‘!’) or period (‘.’). Please answer with “1” for exclamation
mark and “0” for period.

Contains word Given a review, you need to predict whether the review mentions the word
“nice”/“food”. Please answer with “1” for mentioning “nice”/“food” and
“0” for not mentioning.

Capitalization Given a review, you need to predict whether the review contains any
uppercase words where all letters are uppercase (like ‘THIS’). Please
answer with “1” for having uppercase words and “0” for not.

Toxicity classification Toxicity Categorize the comment on the basis of toxicity. If the comment is toxic
(harmful, malicious, derogatory, threat, insult, identity attack, etc.) output
“1”, otherwise output “0”.

Gender Given a comment, you need to predict whether the comment targets males
or females. Please answer with “1” for female and “0” for male.

Sexuality Given a comment, you need to predict whether the comment targets
LGBTQ people. Please answer with “1” if it does and “0” if not.

Religion Given a comment, you need to predict whether the comment targets Mus-
lim or Christian/Jewish people. Please answer with “1” for Muslim and “0”
for Christian/Jewish.

Race Given a comment, you need to predict whether the comment targets black
or white people. Please answer with “1” for black people and “0” for white
people.

Length Given a comment, you need to predict whether the comment is longer than
40 words. Please answer with “1” for shorter and “0” for longer.

Capitalization Given a comment, you need to predict whether the comment contains any
uppercase words where all letters are uppercased (like ‘THIS’). Please
answer with “1” for having uppercase words and “0” for not.

Table 7: All instructions used in our experiments. We prepend the corresponding instruction of each hypothesis to
the prompt. This table is for sentiment analysis and toxicity classification.
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Task Feature Instruction

Natural language inference Entailment In this task, you will be presented with a premise sentence (the first
sentence) and a hypothesis sentence (the second sentence). Determine
whether the premise sentence entails (implies) or does not entail the
hypothesis sentence. Please answer with “1” for entailment and “0”
for non-entailment.

Domain In this task, you will be presented with a premise sentence (the first
sentence) and a hypothesis sentence (the second sentence). Determine
whether they come from government files or fiction/telephone. Please
answer with “1” for government and “0” for fiction

Lexical overlap In this task, you will be presented with a premise sentence (the first
sentence) and a hypothesis sentence (the second sentence). Determine
whether all words in the second sentence also appear in the first sen-
tence. If so, answer “1”; if not, answer “0”.

Hypothesis length In this task, you will be presented with a premise sentence (the first
sentence) and a hypothesis sentence (the second sentence). Determine
whether the second sentence is shorter than the first sentence. Please
answer with “1” for shorter and “0” for longer.

Hypothesis negation In this task, you will be presented with a premise sentence (the first
sentence) and a hypothesis sentence (the second sentence). Determine
whether there are any negation words in the second sentence (“not”,
“no”, “n’t”). Please answer with “1” for not having negations and “0”
for having negations.

Question answering Answer Based on the information present in the given passage, decide whether
the answer to the given question is yes or no. Please answer with “1”
for yes and “0” for no.

Question word Given the passage and question, determine whether the question word
is “is/was” or “do/does/did”. Please answer with “1” for “is/was” and
“0” for “do/does/did”.

Lexical overlap Given the passage and question, determine whether all words in the
question also appear in the passage. If so, answer “1”; if not, answer
“0”.

Question structure Given the passage and question, determine whether the question con-
tains the phrase “same as”. Please answer with “1” for having “same
as” and “0” if not.

Passage length Given the passage and question, determine whether the passage is
longer than 50 words. Please answer with “1” for longer than 50
words and “0” for shorter.

Table 8: All instructions used in our experiments. We prepend the corresponding instruction of each hypothesis to
the prompt. This table is for natural language inference and question answering.
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Task Feature Explanation

Sentiment Analysis Sentiment (1) The review has a positive sentiment. Therefore, the answer is 1.
Sentiment (0) The review has a negative sentiment. Therefore, the answer is 0.
Domain (1) The review is from IMDB movie reviews. Therefore, the answer is 1.
Domain (0) The review is from Yelp reviews. Therefore, the answer is 0.
Length (1) The review is shorter than 40 words. Therefore, the answer is 1.
Length (0) The review is longer than 40 words. Therefore, the answer is 0.
Terminal punctuation (1) The review ends with an exclamation mark (‘!’). Therefore, the answer

is 1.
Terminal punctuation (0) The review ends with a period (’.’). Therefore, the answer is 0.
Contains word (1) The review contains the word ‘food’/‘nice’. Therefore, the answer is 1.
Contains word (0) The review does not contain the word ‘food’/‘nice’. Therefore, the

answer is 0.
Capitalization (1) The review contains an uppercase word with all uppercase letters.

Therefore, the answer is 1.
Capitalization (0) The review does not contain an uppercase word with all uppercase

letters. Therefore, the answer is 0.
Toxicity classification Toxicity (1) The comment is toxic. Therefore, the answer is 1.

Toxicity (0) The comment is not toxic. Therefore, the answer is 0.
Gender (1) The comment mentions females. Therefore, the answer is 1.
Gender (0) The comment mentions males. Therefore, the answer is 0.
Sexuality (1) The comment mentions LGBTQ. Therefore, the answer is 1.
Sexuality (0) The comment does not mention LGBTQ. Therefore, the answer is 0.
Religion (1) The comment mentions Muslim people. Therefore, the answer is 1.
Religion (0) The comment mentions Christian/Jewish people. Therefore, the answer

is 0.
Race (1) The comment mentions black people. Therefore, the answer is 1.
Race (0) The comment mentions white people. Therefore, the answer is 0.
Length (1) The comment is shorter than 40 words. Therefore, the answer is 1.
Length (0) The comment is longer than 40 words. Therefore, the answer is 0.
Capitalization (1) The comment contains an uppercase word with all uppercase letters.

Therefore, the answer is 1.
Capitalization (0) The comment contains an uppercase word with all uppercase letters.

Therefore, the answer is 0.

Table 9: All template explanations used in our experiments. The explanation is appended after each input text and
before the label for all demonstration examples. Such explanation would be induced during test inference as well.
We manually write a template explanation for each class of each hypothesis. This table is for sentiment analysis and
toxicity classification.
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Task Feature Explanation

Natural language inference Entailment (1) The first sentence entails the second sentence. Therefore, the
answer is 1.

Entailment (0) The first sentence does not entail the second sentence. Therefore,
the answer is 0.

Domain (1) The text is from government files. Therefore, the answer is 1.
Domain (0) The text is from fiction / telephone recordings. Therefore, the

answer is 0.
Lexical overlap (1) All words from the second sentence also appear in the first sentence.

Therefore, the answer is 1.
Lexical overlap (0) Not all words from the second sentence also appear in the first

sentence. Therefore, the answer is 0.
Hypothesis length (1) The second sentence is shorter than the first sentence. Therefore,

the answer is 1.
Hypothesis length (0) The second sentence is longer than the first sentence. Therefore,

the answer is 0.
Hypothesis negation (1) The second sentence contains negation words. Therefore, the

answer is 1.
Hypothesis negation (0) The second sentence does not contain negation words. Therefore,

the answer is 0.
Question answering Answer (1) The answer to the question is yes. Therefore, the answer is 1.

Answer (0) The answer to the question is no. Therefore, the answer is 0.
Question word (1) The question word is ‘is’ or ‘was’. Therefore, the answer is 1.
Question word (0) The question word is ‘do’ or ‘does’ or ‘did’. Therefore, the answer

is 0.
Lexical overlap (1) All words from the question also appear in the passage. Therefore,

the answer is 1.
Lexical overlap (0) Not all words from the question also appear in the passage. There-

fore, the answer is 0.
Question structure (1) The question contains the phrase ‘same as’. Therefore, the answer

is 1.
Question structure (0) The question does not contain the phrase ‘same as’. Therefore, the

answer is 0.
Passage length (1) The passage is longer than 50 words. Therefore, the answer is 1.
Passage length (0) The passage is shorter than 50 words. Therefore, the answer is 0.

Table 10: All template explanations used in our experiments. The explanation is appended after each input text
and before the label for all demonstration examples. Such explanation would be induced during test inference as
well. We manually write a template explanation for each class of each hypothesis. This table is for natural language
inference and question answering.
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