Multitask Pretraining with Structured Knowledge for Text-to-SQL
Generation

Robert Giaquinto; Dejiao Zhang, Benjamin Kleiner, Yang Li
Ming Tan, Parminder Bhatia, Ramesh Nallapati, Xiaofei Ma

AWS AI Labs

{rgiag,dejiaoz, kleinerb,ylizam,
mingtan, parmib, rnallapa, xiaocofeim}@amazon.com

Abstract

Many machine learning-based low-code or no-
code applications involve generating code that
interacts with structured knowledge. For exam-
ple, one of the most studied tasks in this area is
generating SQL code from a natural language
statement. Prior work shows that incorporating
context information from the database schema,
such as table and column names, is beneficial
to model performance on this task. In this work
we present a large pretraining dataset and strat-
egy for learning representations of text, tables,
and SQL code that leverages the entire con-
text of the problem. Specifically, we build on
existing encoder-decoder architecture by intro-
ducing a multitask pretraining framework that
complements the unique attributes of our di-
verse pretraining data. Our work represents the
first study on large-scale pretraining of encoder-
decoder models for interacting with structured
knowledge, and offers a new state-of-the-art
foundation model in text-to-SQL generation.
We validate our approach with experiments on
two SQL tasks, showing improvement over ex-
isting methods, including a 1.7 and 2.2 percent-
age point improvement over prior state-of-the-
arts on Spider and CoSQL.

1 Introduction

Tables, relational databases, and other forms of
structured knowledge (SK) encompass a massive
amount of data across a wide range of applications.
Extracting insights held in such data often requires
proficiency in query languages like SQL, making
it only accessible to the minority of people with
the technical skills. A natural language interface,
however, would expand access to these information
exponentially. Likewise, querying via natural lan-
guage allows users quickly hone in on an answer
to their particular question, rather than visually
scanning dense tables where the majority of the in-
formation is irrelevant to the user. To that end, we

“Corresponding author.

explore pretraining techniques for large language
models that focus on the challenging interplay be-
tween structured and unstructured knowledge, and
target a variety of downstream text-to-SQL tasks.

Recently there have been significant advance-
ments in learning representations for tables (Yin
et al., 2020; Herzig et al., 2020; Eisenschlos et al.,
2020; Liu et al., 2022; Wang et al., 2021c; Yu et al.,
2021; Cheng et al., 2022; Dong et al., 2022), which
advanced the state-of-the-art in a range of table-to-
text tasks, like table question-answering (Nan et al.,
2022; Chen et al., 2021), fact verification (Chen
et al., 2020; Aly et al., 2021), data-to-text (Parikh
et al., 2020; Nan et al., 2021), and semantic pars-
ing (Yu et al., 2019b; Zhong et al., 2017). While
better table understanding benefits a range of tasks,
pretraining focused on text-to-SQL has thus far re-
ceived less attention. Pretrained encoders, such as
TaBERT and TAPAS (Yu et al., 2021; Yin et al.,
2020; Herzig et al., 2020), show that pretraining
BERT-style encoders (Devlin et al., 2019) on ta-
bles with mask language modeling (MLM) loss
produces a strong foundation model that can be
extended for text-to-SQL. GRAPPA includes small
amount of synthetic SQL code in the pretraining
data to more specifically target the text-to-SQL task
(Yu et al., 2021). These encoder-only approaches
are, however, restricted in their generative capabili-
ties as they must be combined with an additional
module that is carefully designed to generate valid
SQL code (Zhong et al., 2017; Wang et al., 2021a).

Encoder-decoder architectures like TS5 (Raffel
et al., 2020), on the other hand, exhibit better per-
formance on text-to-SQL to-date when constrain-
ing the decoder with rules that check for syntactic
correctness (Scholak et al., 2021). However, the T5-
based models with exceptional text-to-SQL perfor-
mance (Xie et al., 2022; Scholak et al., 2021) have
still only been pretrained on natural language (NL)

— begging the question, can text-to-SQL encoder-
decoders benefit from pretraining on structured in-

11067

Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics
Volume 1: Long Papers, pages 11067-11083
July 9-14, 2023 ©2023 Association for Computational Linguistics

Augmented TAPEX

table : tally_bronze | col : rank | npc | gold |
silver | bronze | total row 1 : 1 | china | 95 |
71 | 65 | 231 row 2 : 6 | united states | 31 | 29
| 38 | 98 row 3 : 10 | netherlands | 16 | 10 | 19
| 39 row 4 : total (75 npcs) | total (75 npes) |
503 | 503 | 516 | 1522

+

value clob null
);

create table site (

<NL>How many bronze medals were awarded to
citizens of Netherlands and China?

)

alter table site

<SQL>select sum (bronze) from tally_bronze where
npc in ('netherlands' ,

‘china')

(1) Table + NL ¢ SQL

t

GitHub SQL

<SQL>create table site_property (
site_id varchar2(99) not null,
name varchar2(99) not null,

site_id varchar2(99) not null,
title varchar2(99) null,

4

<SQL>alter table site_property
add (primary key (site_id, name)) ;

add (primary key (site_id)) ;

(2) saL - saL

|

Stack Overflow

<Question> What is the difference between "INNER
JOIN" and "OUTER JOIN"? Also, how do "LEFT OUTER
RIGHT OUTER JOIN,

JOIN', and “FULL OUTER JOIN’

FAERnZ

¢

<Answer> Assuming you're joining on columns with
no duplicates, which is a very common case:

- An inner join of A and B gives the result of A
intersect B, i.e. the inner part of a Venn diagram
intersection.

- An outer join of A and B gives the results of A
union B, i.e. the outer parts of a Venn diagram
union.

Examples ...

(3) Question ¢ Answer

1

Tables: Context-to-Output

table : Pattonsburg, Missouri | col : Country |
State | County | Total | Land | Water | Elevation
| Total | Estimate (2016) | Density | Time zone |
Summer (DST) | ZIP code row 1 : United States |
Missouri | Daviess | 0.61 sq mi (1.58 km2) | 0.61
sq mi (1.58 km2) | 0 sq mi (0 km2) | 781 ft (238
m) | 348 | 343 | 570/sq mi (220/km2) | UTC-6

STAMP:
SQL & Table Aware Multi-task Pretraining

Tables: MLM-Based Objectives

<NL>Pattonsburg is a<mask_8> northwest Daviess
County, Missouri, United States. The<mask_1> at
the 2010 census. | table : Pattonsburg, Missouri |
col : Country | State | County | Total | Land |
Water |<mask_2> | Total | Estimate (2016) |
<mask_3> | Time zone | Summer (DST) | ZIP code |
<mask_4> | FIPS code row 1 : United States |
Missouri | Daviess | ©.61 sq mi (1.58 km2) | 0.61

(Central (CST)) | UTC-5 (CDT) | 64670

(4) Table - NL

12

<NL>Pattonsburg is a city in northwest Daviess
County, Missouri, United States. The population
was 348 at the 2010 census.

sq mi (1.58 km2) | 0 sq mi (B km2) |<mask_4>343 |
570/sq mi (220/km2) | UTC-6 (Central (CST)) | UTC-
(5) MLM 5 (CDT)| 64670 | 660 | 29-56558

3

<MLM><mask_0> city in<mask_1> population was

348<mask_2> Elevation<mask_3> Density<mask_4> Area
code(s)<mask_5> 781 ft (238m) | 348 |

Figure 1: STAMP’s multi-task strategy combines context-to-output with MLM-based objectives that are designed
for our diverse of pretraining data. In (1-4) we show the context-to-output format for four data sources, however in
pretraining MLM objectives are also applied. For example, (5) shows the MLM objectives applied to the same data
as (4), showing the combination of the TS style of masking with masked column recovery. For data sources (1) and
(3) we also apply dual learning, where the context and output are interchanged to better align representations.

formation or code? Most recently, Andrejczuk et al.
(2022) proposed a multi-task tabular pretraining
strategy for TS5 model, but their work introduced
the tabular knowledge to the model with a single
data source, i.e. Wikipedia tables.

In this work we introduce our SQL and Table
Aligned Multi-task Pretraining (STAMP) frame-
work, which explores pretraining encoder-decoder
models for text-to-SQL. Starting from text-only TS
(Raffel et al., 2020) checkpoints, our multi-stage
pretraining framework refines previous text-only
models by continuing training on a collection of
large multi-modal datasets that combine structured
knowledge with natural language and SQL. Addi-
tionally, inspired by the impressive generalization
of large language models incorporating code in pre-
training data (Athiwaratkun et al., 2022; Brown
et al., 2020; Chowdhery et al., 2022; Du et al.,
2022; Thoppilan et al., 2022), we apply our pre-
training framework to CodeT5 (Wang et al., 2021b)
checkpoints that are trained on code.

Building on recent work in multi-task pretrain-
ing (Tay et al., 2022; Aghajanyan et al., 2021;

Sanh et al., 2022; Aribandi et al., 2021), we com-
bine masked language modeling (MLM) with task-
aware context-to-output objectives that vary across
tasks and datasets. For pretraining datasets with
multiple modalities (i.e. combinations of NL, SQL,
and structured knowledge) or intrinsic splits (e.g.
question and answer), we explore the benefit of the
dual learning objectives (Wang et al., 2021b). We
assess our pretraining strategy on a variety of SQL
benchmarks following the UnifiedSKG framework
(Xie et al., 2022). Our approach outperforms pre-
vious text- and code-only pretraining, and gives a
new state-of-the-art on a range of benchmarks. To
better understand our strategy, we present ablation
studies on the optimal objective mix, the impact of
linearizing structured knowledge into row- versus
column-centric tables, and the effect of building on
previously pretrained text- versus code-only check-
points. Our work shows that continued pretraining
with multi-task learning is a promising direction
for advancing the capacity of language models.

11068

2 Related Work

Encoder-only Encoder-only transformer archi-
tectures like BERT and its successors (Devlin
et al., 2019; Liu et al., 2019; Joshi et al., 2020;
Reimers and Gurevych, 2019; Clark et al., 2020)
optimize masked language modeling (MLM) ob-
jectives while using a bidirectional receptive field
covering the whole input sequence. The encoder-
only architectures perform well across a variety of
tasks like classification, regression, sentiment anal-
ysis, question-answering, and retrieval. However,
recent work (Herzig et al., 2020; Yin et al., 2020;
Yu et al., 2021) shows that tasks like table-to-text
and text-to-SQL require additional pretraining on
structured knowledge for good generalization, and
adapting MLM objectives to the unique structure
of tabular data improves learning.

Prior to BERT, text-to-SQL models like SQL-
Net and Seq2SQL (Zhong et al., 2017; Xu et al.,
2017) encoded inputs with bidirectional LSTMs
(Hochreiter and Schmidhuber, 1997) and generated
queries via slot-filling. Text-to-SQL performance
improved with the adoption of BERT-based en-
coders, for example (Yu et al., 2021; Wang et al.,
2021a) attach feed forward networks and LSTMs
to the BERT-style encoder to generate queries. Be-
cause encoder-only architectures are restricted in
their ability to generate sequences, they require
careful design to generate valid SQL queries and
limit the complexity of those queries.

Encoder-Decoder Alternatively, encoder-
decoders like BART (Lewis et al., 2019) and T5
(Raffel et al., 2020) combine the bidirectional
encoder with a causal decoder are naturally suited
for sequence-to-sequence tasks like text-to-SQL,
and are quickly becaming the mainstream ap-
proach due to the reduced need for domain specific
solutions (Qin et al., 2022). T5 (Raffel et al., 2020)
in particular achieves impressive performance on a
range of table-to-text and text-to-SQL tasks (Xie
et al., 2022) despite pretraining that is limited
to NL. Moreover, Shi et al. (2020) and Liu et al.
(2022) leverage a BART-style encoder-decoder to
improve the performance of pretrained models for
text-to-SQL and table-to-text tasks, respectively.
We follow this line, proposing a strategy that builds
on top of TS and CodeT5 (Wang et al., 2021b).

Multi-Task Training Raffel et al. (2020) explore
various self-supervised objectives, and found the
fill-in-the-blank style of denoising objective as

most effective. Additionally, combining MLM ob-
jectives with small amounts of auxiliary objectives
is effective (Liu et al., 2019; Aroca-Ouellette and
Rudzicz, 2020). For encoder-decoder models Tay
et al. (2022); Wang et al. (2021b) show the benefit
of multi-task pretraining on a mix of the T5 span
corruption objective (Raffel et al., 2020) along with
a the causal language modeling (CLM) style of ob-
jective, similar to those used in decoder-only archi-
tectures (Brown et al., 2020). In the domain of text-
to-SQL, Yu et al. (2021); Tao Yu et al. (2021) per-
form multitask learning by combining MLM with
SQL specific objectives. Lastly, Xie et al. (2022);
Aghajanyan et al. (2021); Aribandi et al. (2021);
Sanh et al. (2022); FitzGerald et al. (2022); Chen
et al. (2022) demonstrate that multi-task learning
across a variety of datasets can improve perfor-
mance relative to the single-task, single-dataset
paradigm. Wang et al. (2021b) show that an objec-
tive mix specific to programming languages (PL)
along with dual learning on bimodal data promotes
generation on tasks combining PL and NL.

3 Multi-Task Pretraining on Structured
Knowledge

Our SQL and Table Aligned Multi-task Pretraining
(STAMP) model builds on the T5 encoder-decoder
architecture and pretraining checkpoints (Raffel
et al., 2020), and similarly our CodeSTAMP mod-
els build on the CodeT5 architecture and check-
points Wang et al. (2021b). We develop a multi-
task pretraining framework specifically designed
to leverage our large and unique collection of data
that combine various data modalities, namely natu-
ral language (NL), stuctured knowledge (SK), and
SQL. STAMP introduces a new stage of pretrain-
ing that transitions TS5 from being a purely NL
programing language (PL) trained model to a back-
bone model that excels at text-to-SQL generation.
Next, we present the construction of our pretrain-
ing dataset in Section 3.1, the mixture of objectives
designed to learn the unique structure of our data
and align the NL, SK, SQL data modalities in Sec-
tion 3.2, and our unified format for representing
tasks and structured knowledge in Section 3.3.

3.1 Datasets and Pre-Processing

Our pretraining dataset consists of 18 million exam-
ples, with various combinations of NL, SQL code,
and structured knowledge (see Figure 2). Our data
is derived from diverse sources and we propose dif-

11069

ferent strategies to remove many low-quality and
noisy data from each data source. We tokenize the
raw data using the corresponding TS5 and CodeT5
tokenizers, which we augment to support new spe-
cial tokens for representing input data modality,
output tasks, and table structures. We process all
data into sequences of up to 1024 tokens. More
details on pre-processing are in Appendix A.

Table Data Approximately half of our pretrain-
ing data (N = 10,136,268) combine tables with
NL. These table datasets derive from Wikipedia,
WDC’s Web Table Corpora, and arXiv. Pretraining
on table datasets acts as a bridge from the previous
text-only pretraining, while promoting alignment
between NL and structured knowledge. In initial
experiments we pretrained on all available table
and NL pairs. However, after closer examination
we discovered that a significant portion these ex-
amples exhibited minimal connection between the
table and NL — and hence are unlikely to pro-
mote the desired alignment. Therefore, we choose
to focus on high-quality examples and remove ap-
proximately 75% of the examples in which there
is a tenuous or no connection between the table
and the paired NL. To identify noisy examples we
compute an edit similarity between the NL and the
content of the table, we then drop examples with
such similarity below a threshold. Likewise, to re-
duce noise within each example we truncate tables,
keeping at most 6 rows and 25 columns which have
the highest edit similarity between table and NL.

SQL Data The remainder of our pretraining data
incorporate SQL. Approximately 10% of the exam-
ples (N = 1,918,468) are SQL code from GitHub
repositories with permissive licenses. SQL code
from GitHub only includes only a small amount NL
in code comments, and some structured knowledge
in the database schema definitions. We filter these
data to remove duplicates and repetitive statements.

Approximately 25% of the examples (N =
4,479,767) are from SQL-related posts on Stack
Overflow. These data combine NL questions and
answers with snippets of SQL code, thereby bridg-
ing the NL knowledge learned during the prior text-
only pretraining into domain-specific language, and
aligning SQL with NL. We perform augmentations
to increase the number of question-answer pairs
and leverage hidden human supervision ! in the

'As discussed in Appendix A, we consider accepted an-
swers, favorite answers, or answers that received upvotes

Github: 10% Context-to-Output: 5%

Question < Answers: 12% I

Table + NLS — SQL: 3%
Stack Overflow: 25%

Table + SQL - NLS: 3%
SQL Data: 46%

Aug. TAPEX: 11% MLM: 23%

Training: 100%
Wiki Tables: 17%
Table - NLS: 27%

Table Data: 55%

WDC Web Tables: 37%

MLM + MCR: 27%

ArXiv: 1%

Figure 2: Pretraining data sources and objective mix
ratios. Left side: Proportion of total pretraining data (N
= 18,612,078) contributed by each data source. Right
side: The corresponding objective mix during training
when using an equal ratio of MLM-based to context-to-
output objectives. Flow colors indicate which datasets
feed into which objectives, except for MLM which is
applied to all SQL data sources.

data. We first create five augmented versions of
each question using random word deletion, ran-
dom word appending, synonym replacement, and
paraphrasing. We then create up to six versions of
each original example by pairing combinations of
answers with augmented versions of the questions.
Lastly, approximately 11% of the examples (N
=2,005,456) in our data derive from TAPEX (Liu
et al., 2022), a dataset consisting of SQL generated
from templates along with their corresponding ex-
ecution result. To improve the quality and better
align these data with downstream tasks we perform
the following modifications. First, we remove 2.3
million duplicates (of the original 5 million exam-
ples), add a FROM clause to the SQL code with a
fictitious table name using a random combination
of 1-3 column names, and filter out any examples
that could not be parsed by mo-sql-parsing®. Next,
we train a SQL-to-Text model (T5-3B) on the Spi-
der (Yu et al., 2019b) dataset in order to generate
natural language statements for each SQL query.

3.2 Objectives for Multi-Task Pretraining

MLM-Based Objectives A critical component
in pretraining encoder-decoder models is a MLM-
based objective. In STAMP we follow the span
corruption style of MLM from Raffel et al. (2020),
which involves replacing contiguous whole words

above some fixed threshold as latent human supervision.
Zhttps://github.com/klahnakoski/mo-sql-parsing

11070

from the text with sentinel tokens in the inputs, and
then the decoder generates the replaced text pre-
ceded by the corresponding to sentinel token. We
set the mean span to 3, with a denoising rate of
15% following the default TS5 configuration. This
span corruption objective is applied to sequences
of NL and SQL code. For pretraining datasets that
also include structured knowledge we apply the
masked column recovery (MCR) objective, as in-
troduced in Yin et al. (2020), which encourages
the model to learn table schemas using the natural
language statement and row information as con-
text. In our implementation, 25% of the column
names and data types (when available) are masked
with a sentinel token. Note, only MCR is applied
to the sequence containing the column names to
avoid overlapping MLM and MCR masking. More
concretely, let x™%k = (xMIM xMCR) pe the in-
put sequence combining MLM and MCR masking,
then our masked span prediction loss £ over a
sequence of length T is:

T

ﬁM(@) = Z _ log P, (x?ask | X\mask’ X??“) 7
t=1

where "X is the masked token for the decoder to

predict, x\™#k g the encoded masked input, x 3
is the sequence generated by the decoder up to

token ¢, and 6 are the model parameters.

Context-to-Output Objectives In addition to
MLM-based objectives we include causal language
modeling objectives (Radford et al., 2019; Liu
et al., 2018), which partition sequences into con-
texts and outputs in order to mimic the format of
many down-stream tasks. For unimodal datasets,
such as GitHub SQL, we create the context and out-
put by uniformly sampling a split point based on
line-breaks within each code example. For tabular
datasets we treat the table as input and the paired
NL as output, thereby teaching the model to con-
nect the structured and unstructured information.
For Stack Overflow, the natural partition be-
tween a question and each of the answers defines
the context to output splits. We use the augmenta-
tions described in 3.1 to create additional unique
question-to-answer pairs. We apply dual learning
to better align the question prompt with the answer.
Finally, for trimodal data like our augmented-
TAPEX we model Table + NL — SQL, or in the
dual learning (Wang et al., 2021b) setting we model
Table + SQL — NL. Thus for a sequence x of

length 7" with a split point S € (0, T) that is either
randomly selected or based a natural split in the
data, we define the context-to-output loss L0 as:

T

Lo(0) =Y —log Py (yr | 2,y<1)
=S

where z = x_g is the left context and y = xg<
the right output.

Combining Objectives Prior work shows the
importance of MLM (Liu et al., 2019; Aroca-
Ouellette and Rudzicz, 2020; Raffel et al., 2020)
and the benefit of including a small percentage
of context-to-output objectives. For instance, Tay
et al. (2022) recommend approximately 20% of the
objective mixture to be context-to-output. How-
ever, unlike Tay et al. (2022) we are not pretraining
from scratch, rather we seek to build on existing
checkpoints and hence we consider greater rates
of context-to-output. In our implementation, we
sample an objective per-example during pretrain-
ing, where the pool of objectives depends on the
data source of each example. Hence, each training
mini-batch combines examples from multiple data
sources that are formatted as a mix of objectives.
Figure 2 summarizes our dataset and objective mix,
showing the connection between each input data
source and a corresponding objective.

table : racetracks |
col : track | city | state |
opened | surface | length
altamont park | tracy | california |
1966-2008 | asphalt | 0.5 miles

row 1 :

Figure 3: Row-centric format for tables.

<table> racetracks

<column_name> track<column_value> altamont park
<column_name> city<column_value> tracy
<column_name> state<column_value> california
<column_name> opened<column_value> 1966-2008
<column_name> surface<column_value> asphalt
<column_name> length<column_value> 0.5 miles

Figure 4: Column-centric format for tables.

3.3 Unified Format for Learning from
Structured Knowledge

In order to bridge the gap between pretraining and
downstream tasks, we explore unified formats for
structured knowledge. Connecting NL to struc-
tured knowledge is challenging with limited data.
A unified table format, however, allows the model
to leverage learning from large scale pretraining

11071

for smaller datasets. Moreover, in some cases Xie
et al. (2022) report worse performance for multi-
task versus single-task training, which we suspect
is due to inconsistent formatting. Thus, we lin-
earize structured knowledge into both row- and
column-centric formats. Figure 3 shows the row-
centric format, and Figure 4 shows the equivalent
information in the column-centric format.

Lastly, we use special tokens in the encoder to
preface each data modality (NL, structured knowl-
edge, and SQL), and encourage sharing across
tasks with common modalities. Additional tags
prompt the decoder with the desired task, reflecting
each of our objectives: MLM, table-to-text, SQL-
to-SQL, Table and NL-to-SQL, Stack Overflow
question answering, and dual learning variations.

4 [Experiments

4.1 Evaluation Setup

We evaluate our pretrained checkpoints on SQL
tasks following the UnifiedSKG framework (Xie
et al., 2022). Specifically, for text-to-SQL bench-
marking we evaluate on Spider without database
row information (Yu et al., 2019b) and WikiSQL
with row information (Zhong et al., 2017), as well
as conversational text-to-SQL datasets SPaRC (Yu
et al., 2019¢) and CoSQL (Yu et al., 2019a), and
in alignment with our bimodal objectives we also
evaluate on SQL2Text (Shu et al., 2021). For each
dataset we use pre-defined train, validation, and
test splits. In Appendix C lists our evaluation set-
tings, Appendix D contains details on the evalua-
tion datasets, and Appendix E includes additional
results.

4.2 Main Results

We present our main results in Table 1, with base-
line results as reported in each comparison ap-
proach. We group models with SQL-specific de-
coders on top, and encoder-decoders like STAMP
that have more general token decoders on bottom.
Overall we find that our STAMP yields better re-
sults than domain specific solutions and text- or
code-only pretrained models. SMBOP + GRAPPA
(Rubin and Berant, 2021) is similar to our work
with multi-task learning and additional pretraining,
however they rely on a SQL specific parsing algo-
rithm. Whereas, our framework focuses on larger,
more diverse sources of structured knowledge and
a complementary multi-task learning strategy.

We highlight that pretraining on structured in-
formation alone like TABERT (Yin et al., 2020),
or a general code pretraining dataset like CodeT5
(Wang et al., 2021b) does not produce exceptional
results on text-to-SQL. Likewise, a large multi-
task learning approach like TO performs worse than
STAMP models and vanilla T5, indicating that the
benefits of multi-task learning depend on having
a degree of domain relevance. Specifically TO’s
multi-task learning approach, which centers on text-
only domains, does not benefit SQL tasks. Lastly,
despite constrained decoding being very different
than our approach, we include results for PICARD
(Scholak et al., 2021) because it is an extremely
effective approach that complements STAMP.

4.3 Ablation Studies

Denoising versus Context-to-Output In Table 2
we report development set performance of STAMP
models that build on the T5-base checkpoint. We
train each model on our full row-centrically ori-
entated dataset and only vary the objective mix-
ture. Unlike prior work (Tay et al., 2022; Aroca-
Ouellette and Rudzicz, 2020) that pretrains from
scratch, during our additional structured knowledge
pretraining we observe that higher rates context-to-
output objectives tend to perform best.

At the extremes of the objective mix we see
mixed results. Setting MLLM / context-to-output
ratios to 100% / 0%, improves performance on
text-to-SQL — indicating the benefit from our
pretraining data. However, on the other extreme,
model performance suffers with no MLM and only
context-to-output. Nonetheless, by combining the
two objectives we see the best performance overall.
Specifically, an equal mix of MLM and completion
either throughout pretraining or after one epoch of
entirely MLM training results in noticeably higher
performance compared to vanilla T5.

Our results complement those in literature (Tay
et al., 2022; Wang et al., 2021b; Aghajanyan et al.,
2021; Aribandi et al., 2021; Sanh et al., 2022;
FitzGerald et al., 2022), showing the importance
of mixing additional objectives with MLM. Unlike
Tay et al. (2022), however, our results show that
higher rates of context-to-output are optimal, which
we attribute to our approach of building on prior
checkpoints and not pretraining from scratch.

Tables versus SQL Datasets Table 3 presents
an ablation study comparing of STAMP and
CodeSTAMP models trained on different pretrain-

11072

Spider Sup. WikiSQL SParC = CoSQL SQL2Text

Model # Params | (EM 1/ Exec 1) (EM 1) (EM1T) (EM?T) (BLECY)
Seq2SQL (Zhong et al., 2017) —— 49.5 - - -
SQLNET (Xu et al., 2017) _—— 63.2 - - -
5 IRNet (Guo et al., 2019) 554/ — - - - -
£ RAT-SQL (Wang et al., 2021a) 62.7/ — - - — -
g TABERT (Yin et al., 2020) 345M+ 652/ — - - - -
Q SCoRE (Tuo Yuetal., 2021) 500M —— - 62.2 52.1 -
é BERT + RAT-SQL (Wang et al., 2021a) 500M 69.7/ — - - - -
“ RAT-SQL + GAP (Shi et al., 2020) 71.8/ — - - - -
SMBOP + GRAPPA (Rubin and Berant, 2021) 74.7/75.0 - - - -
T5 + PICARD' (Scholak et al., 2021) 3B 74.1/76.3 - - 56.9 -
CodeT5 (Wang et al., 2021b) 770M 64.6 / — 76.6 57.9 48.4 91.9
T5 (from Xie et al. (2022)) 770M 66.6/68.3 - 56.7 48.3 93.4
_qg TS5 MT-P (Xie et al., 2022) 770M 67.6 /| — - 59.0 51.6 93.9
S TO (Sanhetal., 2022) 3B 68.1/ — — - — 92.9
8 TS5 (from Xie et al. (2022)) 3B 71.8/74.4 - 61.5 54.1 92.7
_qéj (ours) STAMP-Large RC 770M 71.6/74.4 78.9 61.4 53.7 93.0
S (ours) STAMP-Large CC 770M 71.8/76.3 79.3 59.6 514 93.3
s (ours) CodeSTAMP-Large RC 770M 70.7/74.5 84.3 58.8 50.6 92.0
(ours) CodeSTAMP-Large CC 770M 69.4/72.8 84.7 58.7 52.0 92.1
(ours) STAMP-3B RC 3B 75.2/78.0 79.4 64.4 56.4 92.6

Table 1: Development set performance on text-to-SQL benchmarks for both TS5, CodeT5, and our results with
additional pretraining on our structured knowledge. All STAMP checkpoints train with a 50/50 mixture of context-
to-output and MLM-based objectives. STAMP results are separated by variations in the pretraining data, specifically
CC and RC denote column- and row-centric table formats, respectively, and w/ Tables denotes the full pretraining
dataset whereas SQL-only is a subset that omits the NL+Table datasets. Note: A dagger (f) indicates constrained
decoding approach, which is complementary but not used in our work, models in italics are our work.

%-MLM in Spider Sup. WikiSQL ~ SParC CoSQL ~ SQL2Text
Objective Mix | (Exec 1) (EM D) (EM?D) (EM?T) (BLECY)
100% 63.2 782 52.0 4338 93,6
75% 64.0 78.1 523 44.0 932
50% 64.5 779 519 45 932
100—50% 62.9 78.9 52.4 03 94.2
0% 613 78.0 49.6 40.1 93.0
Vanilla T5-base | 60.1 74.1 499 424 937

Table 2: Development set performance for T5-base, and
base-sized STAMP models pretrained on our full row-
centric dataset with varying objective mixes. For each
pretrained STAMP model we specify the proportion of
training examples using the MLM-based objective, with
the remaining examples using a dataset-specific context-
to-output objective. We also explore dynamic mixing
ratios, where 100—50% represents training with 100%
MLM in the first epoch, followed by a 50%/50% mix of
during the remaining epochs.

ing data. Specifically, we report the effect of pre-
training on data where tables are in the row-centric
(RC) versus column-centric (CC) format. We also
explore the effect of pretraining on all data versus
only SQL-related data. Overall we see that pretrain-
ing on all datasets generally improves performance
on text-to-SQL — confirming the finding of Yin
et al. (2020) that aligning NL and tables improves
performance. Moreover, in comparison with Yin

et al. (2020), our results show that adding SQL
code to the data mix further boosts performance.

Row-Centric versus Column-Centric We pre-
process the pretraining and benchmark datasets
from UnifiedSKG (Xie et al., 2022) with consistent
table formatting. Row-centric formats are more
similar to natural language and do not require learn-
ing any new special tokens, which better leverages
the original NL pretraining of T5. Whereas, the
column-centric format requires special tokens that
preface the table, columns, and each value in a col-
umn. While new special tokens must be learned
from scratch, we hypothesized that the column-
centric format is advantageous since text-to-SQL
is inherently more column and schema oriented
and often not dependent on row information. Sur-
prisingly, Table 3 shows no clear advantage for
either RC or CC formats. In fact, the mixed re-
sults hold for even across model sizes (Large vs
Base) and initial pretraining (T5 vs CodeT5). Our
results suggest that further pretraining on enough
high-quality data helps to nullify the advantages or
disadvantages of each table linearization method.

TS versus CodeTS5 as Starting Point Table 3
shows the high performance of base-sized CodeT5

11073

Starting Additional STAMP | Spider Sup. WikiSQL SParC CoSQL SQL2Text
Checkpoint Pretraining Data (Exec 1) (EM 1) (EM1T) (EM1) (BLECY)
T5-Large — 71.7 75.3 57.4 48.8 93.4
T5-Large RC, w/ Tables 74.4 78.9 61.4 53.7 93.0
T5-Large RC, SQL-only 72.8 79.5 60.1 514 93.6
T5-Large CC, w/ Tables 76.3 79.3 59.6 514 93.3
T5-Large CC, SQL-only 74.5 79.1 51.9 50.9 93.3
CodeT5-Large — 68.4 76.6 57.9 48.4 91.9
CodeT5-Large RC, w/ Tables 71.9 84.4 59.7 50.9 92.1
CodeT5-Large CC, w/ Tables 72.8 84.7 58.7 52.0 92.1
T5-Base — 60.8 74.1 499 424 93.7
T5-Base RC, w/ Tables 64.5 779 51.9 44.5 93.2
T5-Base RC, SQL-only 61.7 77.8 52.4 42.8 934
T5-Base CC, w/ Tables 60.5 79.5 49.9 41.3 93.9
T5-Base CC, SQL-only 59.2 79.5 46.8 38.9 94.0
CodeT5-Base — 67.1 76.0 54.4 47.2 93.5
CodeT5-Base RC, w/ Tables 69.0 83.5 55.6 47.7 92.9
CodeT5-Base CC, w/ Tables 69.2 84.5 54.7 46.9 934

Table 3: Development set performance on SQL benchmarks for both the original T5-base, T5-large, CodeT5-base,
and CodeT5-large checkpoints, as well as our results with additional pretraining on our structured knowledge
pretraining dataset. All STAMP checkpoints train with a 50/50 mixture of context-to-output and MLM-based
objectives. STAMP results are separated by variations in the pretraining data, specifically CC and RC denote
column- and row-centric table formats, respectively, and w/ Tables denotes the full pretraining dataset described in 3
whereas the SQL-only subset omits the Text+Table datasets. The best performer at each model size is shown in bold.

and CodeSTAMP models. Relative to their T5* and
STAMP counterparts, the base-sized CodeT5 and
CodeSTAMP models show significant performance
gains across all text-to-SQL benchmarks. In par-
ticular, models based on the CodeT5-base check-
point show exceptional performance when given
row information in the tables, as is the case for Wik-
iSQL. Interestingly, models based on CodeT5 do
not exhibit the same performance gains compared
to those based on T5 for large-sized models. In
fact, models based on CodeT5-large only excel at
WikiSQL, whereas models based on T5-large excel
in all other tasks. We hypothesize that large-sized
models based on CodeT5 do not outperform their
peers in the same way as the base-sized models
due to scaling issues caused by CodeT5’s much
smaller CodeSearchNet (Husain et al., 2020) pre-
training dataset, especially when using a smaller
dataset to train the larger model. Additionally, we

3Our results for T5-Large on Spider, SParC, and CoSQL
differ from Xie et al. (2022) and Scholak et al. (2021). On Spi-
der we achieve 3.4%-points higher than Xie et al. (2022), and
4.5%-points higher than Scholak et al. (2021). In our imple-
mentation we use a maximum input sequence length of 1024
and an output sequence lengths of 256 to avoid truncation.

see that models based on CodeT5 checkpoints tend
to perform worse on SQL2Text, which is likely
because natural language in CodeT5’s original pre-
training data is limited to comments in code, and
hence the ability to generate natural language may
be underdeveloped relative to TS.

5 Conclusion

We present STAMP, a pretraining framework for
encoder-decoders on SQL tasks. We introduce
a large scale pretraining dataset of tables, SQL
code, discussions on Stack Overflow, and a modi-
fied TAPEX dataset (Liu et al., 2022). We comple-
ment our data with a multi-task learning framework
to align the data modalities, finding that an equal
mix of the objectives is optimal. We explore both
row- and column-centric approaches to lineariz-
ing tables, creating a unified format across training
stages. A column-centric format is often superior,
challenging the conventional row-centric approach.
Lastly, while PL pretraining may help generaliza-
tion (Athiwaratkun et al., 2022), STAMP models
based on T3 yield better performance.

11074

6 Limitations

While our work displays many strengths, we high-
light some important limitations in our analysis.
Namely, we pretrain our STAMP models on a range
of sources containing structured knowledge, how-
ever our analysis is limited to text-to-SQL tasks and
does not demonstrate if such pretraining helps more
generally in structured information tasks. For in-
stance, STAMP pretrains on tables with (1) masked
column recovery as a way to learn the structure of a
table using the rows and natural language statement
as context, and (2) a context-to-output objective
that always includes the table in the context (when
available) — since this matches the format of text-
to-SQL tasks. It is unclear if our objective choices
for pretraining on tables perform equally well on
the range of structured knowledge tasks, such as ta-
ble question-answering, table summarization, data-
to-text, fact verification, and others explored in Xie
et al. (2022). Second, we acknowledge that signif-
icant GPU resources are required for pretraining,
even in continued pretraining approaches like ours
which limit the breadth of ablations studies. Con-
versely, our work explores pretraining at smaller
scales where certain phenomena like strong zero-
shot performance is unlikely. Pretraining specif-
ically on structured knowledge has an unknown
value at larger scales with models having tens or
hundreds of billions of parameters.

7 Ethics Statement

We acknowledge the importance of the ACL Ethics
Policy and agree with it. Large language models
can appear confident while providing false infor-
mation. In our work we are fortunate that incorrect
SQL output is verifiable and take care to report
the true reliability of the systems. Additionally
we acknowledge that large language models, such
as those studied in this work, may generate toxic
language (Gehman et al., 2020). While we avoid
pretraining on data sources and content from web
domains with offensive language, we acknowledge
that even our data gathered from reputable publish-
ers introduces bias (Bolukbasi et al., 2016).

Acknowledgements

We would like to thank Henry Zhu for providing a
sql-to-text model that we used to augment TAPEX
with natural language statements.

References

Armen Aghajanyan, Anchit Gupta, Akshat Shrivastava,
Xilun Chen, Luke Zettlemoyer, and Sonal Gupta.
2021. Muppet: Massive Multi-task Representations
with Pre-Finetuning.

Rami Aly, Zhijiang Guo, Michael Sejr Schlichtkrull,
James Thorne, Andreas Vlachos, Christos
Christodoulopoulos, Oana Cocarascu, and Arpit
Mittal. 2021. The Fact Extraction and VERification
Over Unstructured and Structured information
(FEVEROUS) Shared Task. In Proceedings of the
Fourth Workshop on Fact Extraction and VERIfica-
tion (FEVER), pages 1-13, Dominican Republic.
Association for Computational Linguistics.

Ewa Andrejczuk, Julian Martin Eisenschlos, Francesco
Piccinno, Syrine Krichene, and Yasemin Altun. 2022.
Table-to-text generation and pre-training with tabt5.

Vamsi Aribandi, Yi Tay, Tal Schuster, Jinfeng Rao,
Huaixiu Steven Zheng, Sanket Vaibhav Mehta, Hon-
glei Zhuang, Vinh Q. Tran, Dara Bahri, Jianmo Ni,
Jai Gupta, Kai Hui, Sebastian Ruder, and Donald
Metzler. 2021. ExT5: Towards Extreme Multi-Task
Scaling for Transfer Learning. arXiv:2111.10952
[cs].

Stephane Aroca-Ouellette and Frank Rudzicz.
2020. On Losses for Modern Language Models.
arXiv:2010.01694 [cs].

Ben Athiwaratkun, Sanjay Krishna Gouda, Zijian Wang,
Xiaopeng Li, Yuchen Tian, Ming Tan, Wasi Uddin
Ahmad, Shiqi Wang, Qing Sun, Mingyue Shang, Su-
jan Kumar Gonugondla, Hantian Ding, Varun Ku-
mar, Nathan Fulton, Arash Farahani, Siddhartha Jain,
Robert Giaquinto, Haifeng Qian, Murali Krishna Ra-
manathan, Ramesh Nallapati, Baishakhi Ray, Parmin-
der Bhatia, Sudipta Sengupta, Dan Roth, and Bing
Xiang. 2022. Multi-lingual Evaluation of Code Gen-
eration Models.

Tolga Bolukbasi, Kai-wei Chang, James Zou, Venkatesh
Saligrama, and Adam Kalai. 2016. Man is to
Computer Programmer as Woman is to Home-
maker? Debiasing Word Embeddings. arXiv preprint
arXiv:1607.06520v1, (Nips):1-25.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei.
2020. Language Models are Few-Shot Learners.

Jifan Chen, Yuhao Zhang, Lan Liu, Rui Dong, Xinchi
Chen, Patrick Ng, William Yang Wang, and Zhiheng
Huang. 2022. Improving Cross-task Generalization

11075

http://arxiv.org/abs/2101.11038
http://arxiv.org/abs/2101.11038
https://doi.org/10.18653/v1/2021.fever-1.1
https://doi.org/10.18653/v1/2021.fever-1.1
https://doi.org/10.18653/v1/2021.fever-1.1
https://doi.org/10.48550/ARXIV.2210.09162
http://arxiv.org/abs/2111.10952
http://arxiv.org/abs/2111.10952
http://arxiv.org/abs/2010.01694
http://arxiv.org/abs/2210.14868
http://arxiv.org/abs/2210.14868
http://arxiv.org/abs/1607.06520v1
http://arxiv.org/abs/1607.06520v1
http://arxiv.org/abs/1607.06520v1
http://arxiv.org/abs/2005.14165
http://arxiv.org/abs/2212.08780

of Unified Table-to-text Models with Compositional
Task Configurations.

Wenhu Chen, Hongmin Wang, Jianshu Chen, Yunkai
Zhang, Hong Wang, Shiyang Li, Xiyou Zhou, and
William Yang Wang. 2020. TabFact: A Large-scale
Dataset for Table-based Fact Verification.

Wenhu Chen, Hanwen Zha, Zhiyu Chen, Wenhan Xiong,
Hong Wang, and William Wang. 2021. HybridQA:
A Dataset of Multi-Hop Question Answering over
Tabular and Textual Data.

Zhoujun Cheng, Haoyu Dong, Ran Jia, Pengfei Wu,
Shi Han, Fan Cheng, and Dongmei Zhang. 2022.
FORTAP: Using Formulas for Numerical-Reasoning-
Aware Table Pretraining.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts,
Paul Barham, Hyung Won Chung, Charles Sutton,
Sebastian Gehrmann, Parker Schuh, Kensen Shi,
Sasha Tsvyashchenko, Joshua Maynez, Abhishek
Rao, Parker Barnes, Yi Tay, Noam Shazeer, Vin-
odkumar Prabhakaran, Emily Reif, Nan Du, Ben
Hutchinson, Reiner Pope, James Bradbury, Jacob
Austin, Michael Isard, Guy Gur-Ari, Pengcheng Yin,
Toju Duke, Anselm Levskaya, Sanjay Ghemawat,
Sunipa Dev, Henryk Michalewski, Xavier Garcia,
Vedant Misra, Kevin Robinson, Liam Fedus, Denny
Zhou, Daphne Ippolito, David Luan, Hyeontaek Lim,
Barret Zoph, Alexander Spiridonov, Ryan Sepassi,
David Dohan, Shivani Agrawal, Mark Omernick, An-
drew M. Dai, Thanumalayan Sankaranarayana Pil-
lai, Marie Pellat, Aitor Lewkowycz, Erica Moreira,
Rewon Child, Oleksandr Polozov, Katherine Lee,
Zongwei Zhou, Xuezhi Wang, Brennan Saeta, Mark
Diaz, Orhan Firat, Michele Catasta, Jason Wei, Kathy
Meier-Hellstern, Douglas Eck, Jeff Dean, Slav Petrov,
and Noah Fiedel. 2022. PalLM: Scaling Language
Modeling with Pathways. arXiv:2204.02311 [cs].

Kevin Clark, Minh-Thang Luong, Quoc V. Le, and
Christopher D. Manning. 2020. ELECTRA: Pre-
training Text Encoders as Discriminators Rather
Than Generators.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-Training of
Deep Bidirectional Transformers for Language Un-
derstanding. arXiv:1810.04805 [cs].

Haoyu Dong, Zhoujun Cheng, Xinyi He, Mengyu Zhou,
Anda Zhou, Fan Zhou, Ao Liu, Shi Han, and Dong-
mei Zhang. 2022. Table Pre-training: A Survey
on Model Architectures, Pretraining Objectives, and
Downstream Tasks. arXiv:2201.09745 [cs].

Nan Du, Yanping Huang, Andrew M. Dai, Simon Tong,
Dmitry Lepikhin, Yuanzhong Xu, Maxim Krikun,
Yanqi Zhou, Adams Wei Yu, Orhan Firat, Barret
Zoph, Liam Fedus, Maarten Bosma, Zongwei Zhou,
Tao Wang, Yu Emma Wang, Kellie Webster, Marie
Pellat, Kevin Robinson, Kathleen Meier-Hellstern,
Toju Duke, Lucas Dixon, Kun Zhang, Quoc V. Le,

Yonghui Wu, Zhifeng Chen, and Claire Cui. 2022.
GLaM: Efficient Scaling of Language Models with
Mixture-of-Experts.

Julian Martin Eisenschlos, Syrine Krichene, and
Thomas Miiller. 2020. Understanding tables with
intermediate pre-training. arXiv:2010.00571 [cs].

Jack FitzGerald, Shankar Ananthakrishnan, Konstan-
tine Arkoudas, Davide Bernardi, Abhishek Bha-
gia, Claudio Delli Bovi, Jin Cao, Rakesh Chada,
Amit Chauhan, Luoxin Chen, Anurag Dwarakanath,
Satyam Dwivedi, Turan Gojayev, Karthik Gopalakr-
ishnan, Thomas Gueudre, Dilek Hakkani-Tur, Wael
Hamza, Jonathan J. Hiiser, Kevin Martin Jose, Haidar
Khan, Beiye Liu, Jianhua Lu, Alessandro Manzotti,
Pradeep Natarajan, Karolina Owczarzak, Gokmen
Oz, Enrico Palumbo, Charith Peris, Chandana Satya
Prakash, Stephen Rawls, Andy Rosenbaum, Anjali
Shenoy, Saleh Soltan, Mukund Harakere Sridhar,
Lizhen Tan, Fabian Triefenbach, Pan Wei, Haiyang
Yu, Shuai Zheng, Gokhan Tur, and Prem Natarajan.
2022. Alexa Teacher Model: Pretraining and Dis-
tilling Multi-Billion-Parameter Encoders for Natural
Language Understanding Systems. In Proceedings
of the 28th ACM SIGKDD Conference on Knowl-
edge Discovery and Data Mining, pages 2893-2902,
Washington DC USA. ACM.

Samuel Gehman, Suchin Gururangan, Maarten Sap,
Yejin Choi, and Noah A. Smith. 2020. RealToxi-
cityPrompts: Evaluating Neural Toxic Degeneration
in Language Models. In Findings of the Association
for Computational Linguistics: EMNLP 2020, pages
3356-3369, Online. Association for Computational
Linguistics.

Jiaqi Guo, Zecheng Zhan, Yan Gao, Yan Xiao, Jian-
Guang Lou, Ting Liu, and Dongmei Zhang. 2019.
Towards Complex Text-to-SQL in Cross-Domain
Database with Intermediate Representation.

Jonathan Herzig, Pawel Krzysztof Nowak, Thomas
Miiller, Francesco Piccinno, and Julian Martin Eisen-
schlos. 2020. TAPAS: Weakly Supervised Table Pars-
ing via Pre-training. arXiv:2004.02349 [cs].

Sepp Hochreiter and Jurgen Schmidhuber. 1997.
Long Short-Term Memory. Neural Computation,
9(8):1735-1780.

Hamel Husain, Ho-Hsiang Wu, Tiferet Gazit, Miltiadis
Allamanis, and Marc Brockschmidt. 2020. Code-
SearchNet Challenge: Evaluating the State of Seman-
tic Code Search.

Mandar Joshi, Danqi Chen, Yinhan Liu, Daniel S. Weld,
Luke Zettlemoyer, and Omer Levy. 2020. Span-
BERT: Improving Pre-training by Representing and
Predicting Spans.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. /CLR.

11076

http://arxiv.org/abs/2212.08780
http://arxiv.org/abs/2212.08780
http://arxiv.org/abs/1909.02164
http://arxiv.org/abs/1909.02164
http://arxiv.org/abs/2004.07347
http://arxiv.org/abs/2004.07347
http://arxiv.org/abs/2004.07347
http://arxiv.org/abs/2109.07323
http://arxiv.org/abs/2109.07323
http://arxiv.org/abs/2204.02311
http://arxiv.org/abs/2204.02311
http://arxiv.org/abs/2003.10555
http://arxiv.org/abs/2003.10555
http://arxiv.org/abs/2003.10555
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/2201.09745
http://arxiv.org/abs/2201.09745
http://arxiv.org/abs/2201.09745
http://arxiv.org/abs/2112.06905
http://arxiv.org/abs/2112.06905
http://arxiv.org/abs/2010.00571
http://arxiv.org/abs/2010.00571
https://doi.org/10.1145/3534678.3539173
https://doi.org/10.1145/3534678.3539173
https://doi.org/10.1145/3534678.3539173
https://doi.org/10.18653/v1/2020.findings-emnlp.301
https://doi.org/10.18653/v1/2020.findings-emnlp.301
https://doi.org/10.18653/v1/2020.findings-emnlp.301
http://arxiv.org/abs/1905.08205
http://arxiv.org/abs/1905.08205
http://arxiv.org/abs/2004.02349
http://arxiv.org/abs/2004.02349
http://arxiv.org/abs/1909.09436
http://arxiv.org/abs/1909.09436
http://arxiv.org/abs/1909.09436
http://arxiv.org/abs/1907.10529
http://arxiv.org/abs/1907.10529
http://arxiv.org/abs/1907.10529

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Ves Stoyanov, and Luke Zettlemoyer. 2019. BART:
Denoising Sequence-to-Sequence Pre-training for
Natural Language Generation, Translation, and Com-
prehension. arXiv:1910.13461 [cs, stat].

Peter J. Liu, Mohammad Saleh, Etienne Pot, Ben
Goodrich, Ryan Sepassi, Lukasz Kaiser, and Noam
Shazeer. 2018. Generating Wikipedia by Summariz-
ing Long Sequences.

Qian Liu, Bei Chen, Jiaqi Guo, Morteza Ziyadi, Zeqi
Lin, Weizhu Chen, and Jian-Guang Lou. 2022.
TAPEX: Table Pre-training via Learning a Neural
SQL Executor.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
RoBERTa: A Robustly Optimized BERT Pretrain-
ing Approach. arXiv:1907.11692 [cs].

Linyong Nan, Chiachun Hsieh, Ziming Mao, Xi Vic-
toria Lin, Neha Verma, Rui Zhang, Wojciech
Kryscinski, Hailey Schoelkopf, Riley Kong, Xian-
gru Tang, Mutethia Mutuma, Ben Rosand, Isabel
Trindade, Renusree Bandaru, Jacob Cunningham,
Caiming Xiong, Dragomir Radev, and Dragomir
Radev. 2022. FeTaQA: Free-form Table Question
Answering. Transactions of the Association for Com-
putational Linguistics, 10:35-49.

Linyong Nan, Dragomir Radev, Rui Zhang, Amrit
Rau, Abhinand Sivaprasad, Chiachun Hsieh, Xi-
angru Tang, Aadit Vyas, Neha Verma, Pranav Kr-
ishna, Yangxiaokang Liu, Nadia Irwanto, Jessica
Pan, Faiaz Rahman, Ahmad Zaidi, Mutethia Mutuma,
Yasin Tarabar, Ankit Gupta, Tao Yu, Yi Chern Tan,
Xi Victoria Lin, Caiming Xiong, Richard Socher,
and Nazneen Fatema Rajani. 2021. DART: Open-
Domain Structured Data Record to Text Generation.
In Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 432—447, Online. Association for Computa-
tional Linguistics.

Ankur P. Parikh, Xuezhi Wang, Sebastian Gehrmann,
Manaal Faruqui, Bhuwan Dhingra, Diyi Yang, and
Dipanjan Das. 2020. ToTTo: A Controlled Table-To-
Text Generation Dataset.

Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio.
2013. On the difficulty of training recurrent neural
networks. JMLR, page 9.

Bowen Qin, Binyuan Hui, Lihan Wang, Min Yang,
Jinyang Li, Binhua Li, Ruiying Geng, Rongyu Cao,
Jian Sun, Luo Si, Fei Huang, and Yongbin Li. 2022.
A Survey on Text-to-SQL Parsing: Concepts, Meth-
ods, and Future Directions.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Lan-
guage Models Are Unsupervised Multitask Learners.
page 24.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2020. Exploring the Lim-
its of Transfer Learning with a Unified Text-to-Text
Transformer. arXiv:1910.10683 [cs, stat].

Nils Reimers and Iryna Gurevych. 2019. Sentence-
BERT: Sentence Embeddings using Siamese BERT-
Networks. In EMNLP.

Ohad Rubin and Jonathan Berant. 2021. SmBoP:
Semi-autoregressive Bottom-up Semantic Parsing.
In NAACL-HLT. arXiv.

Victor Sanh, Albert Webson, Colin Raffel, Stephen H.
Bach, Lintang Sutawika, Zaid Alyafeai, Antoine
Chaffin, Arnaud Stiegler, Teven Le Scao, Arun Raja,
Manan Dey, M. Saiful Bari, Canwen Xu, Urmish
Thakker, Shanya Sharma Sharma, Eliza Szczechla,
Taewoon Kim, Gunjan Chhablani, Nihal Nayak, De-
bajyoti Datta, Jonathan Chang, Mike Tian-Jian Jiang,
Han Wang, Matteo Manica, Sheng Shen, Zheng Xin
Yong, Harshit Pandey, Rachel Bawden, Thomas
Wang, Trishala Neeraj, Jos Rozen, Abheesht Sharma,
Andrea Santilli, Thibault Fevry, Jason Alan Fries,
Ryan Teehan, Tali Bers, Stella Biderman, Leo Gao,
Thomas Wolf, and Alexander M. Rush. 2022. Mul-
titask Prompted Training Enables Zero-Shot Task
Generalization. arXiv:2110.08207 [cs].

Torsten Scholak, Nathan Schucher, and Dzmitry Bah-
danau. 2021. PICARD: Parsing Incrementally for
Constrained Auto-Regressive Decoding from Lan-
guage Models. arXiv:2109.05093 [cs].

Peng Shi, Patrick Ng, Zhiguo Wang, Henghui
Zhu, Alexander Hanbo Li, Jun Wang, Ci-
cero Nogueira dos Santos, and Bing Xiang. 2020.
Learning Contextual Representations for Semantic
Parsing with Generation-Augmented Pre-Training.
arXiv:2012.10309 [cs].

Chang Shu, Yusen Zhang, Xiangyu Dong, Peng Shi, Tao
Yu, and Rui Zhang. 2021. Logic-Consistency Text
Generation from Semantic Parses. In Findings of
the Association for Computational Linguistics: ACL-
IJCNLP 2021, pages 44144426, Online. Association
for Computational Linguistics.

Samuel L. Smith, Pieter-Jan Kindermans, Chris Ying,
and Quoc V. Le. 2017. Don’t Decay the Learning
Rate, Increase the Batch Size.

Tao Yu, Rui Zhang, Alex Polozov, Christopher Meek,
and Ahmed Hassan Awadallah. 2021. SCoRe: Pre-
Training for Context Representation in Conversa-
tional Semantic Parsing. In ICLR.

Yi Tay, Mostafa Dehghani, Vinh Q. Tran, Xavier Garcia,
Jason Wei, Xuezhi Wang, Hyung Won Chung, Dara
Babhri, Tal Schuster, Huaixiu Steven Zheng, Denny
Zhou, Neil Houlsby, and Donald Metzler. 2022. UL2:
Unifying Language Learning Paradigms.

11077

http://arxiv.org/abs/1910.13461
http://arxiv.org/abs/1910.13461
http://arxiv.org/abs/1910.13461
http://arxiv.org/abs/1910.13461
http://arxiv.org/abs/1801.10198
http://arxiv.org/abs/1801.10198
http://arxiv.org/abs/2107.07653
http://arxiv.org/abs/2107.07653
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
https://doi.org/10.1162/tacl_a_00446
https://doi.org/10.1162/tacl_a_00446
https://doi.org/10.18653/v1/2021.naacl-main.37
https://doi.org/10.18653/v1/2021.naacl-main.37
http://arxiv.org/abs/2004.14373
http://arxiv.org/abs/2004.14373
http://arxiv.org/abs/2208.13629
http://arxiv.org/abs/2208.13629
http://arxiv.org/abs/1910.10683
http://arxiv.org/abs/1910.10683
http://arxiv.org/abs/1910.10683
http://arxiv.org/abs/1908.10084
http://arxiv.org/abs/1908.10084
http://arxiv.org/abs/1908.10084
http://arxiv.org/abs/2010.12412
http://arxiv.org/abs/2010.12412
http://arxiv.org/abs/2110.08207
http://arxiv.org/abs/2110.08207
http://arxiv.org/abs/2110.08207
http://arxiv.org/abs/2109.05093
http://arxiv.org/abs/2109.05093
http://arxiv.org/abs/2109.05093
http://arxiv.org/abs/2012.10309
http://arxiv.org/abs/2012.10309
https://doi.org/10.18653/v1/2021.findings-acl.388
https://doi.org/10.18653/v1/2021.findings-acl.388
https://doi.org/10.48550/ARXIV.1711.00489
https://doi.org/10.48550/ARXIV.1711.00489
http://arxiv.org/abs/2205.05131
http://arxiv.org/abs/2205.05131

Romal Thoppilan, Daniel De Freitas, Jamie Hall,
Noam Shazeer, Apoorv Kulshreshtha, Heng-Tze
Cheng, Alicia Jin, Taylor Bos, Leslie Baker, Yu Du,
YaGuang Li, Hongrae Lee, Huaixiu Steven Zheng,
Amin Ghafouri, Marcelo Menegali, Yanping Huang,
Maxim Krikun, Dmitry Lepikhin, James Qin, Dehao
Chen, Yuanzhong Xu, Zhifeng Chen, Adam Roberts,
Maarten Bosma, Vincent Zhao, Yanqi Zhou, Chung-
Ching Chang, Igor Krivokon, Will Rusch, Marc
Pickett, Pranesh Srinivasan, Laichee Man, Kathleen
Meier-Hellstern, Meredith Ringel Morris, Tulsee
Doshi, Renelito Delos Santos, Toju Duke, Johnny So-
raker, Ben Zevenbergen, Vinodkumar Prabhakaran,
Mark Diaz, Ben Hutchinson, Kristen Olson, Ale-
jandra Molina, Erin Hoffman-John, Josh Lee, Lora
Aroyo, Ravi Rajakumar, Alena Butryna, Matthew
Lamm, Viktoriya Kuzmina, Joe Fenton, Aaron Co-
hen, Rachel Bernstein, Ray Kurzweil, Blaise Aguera-
Arcas, Claire Cui, Marian Croak, Ed Chi, and Quoc
Le. 2022. LaMDA: Language Models for Dialog
Applications.

Bailin Wang, Richard Shin, Xiaodong Liu, Oleksandr
Polozov, and Matthew Richardson. 2021a. RAT-
SQL: Relation-Aware Schema Encoding and Linking
for Text-to-SQL Parsers. arXiv:1911.04942 [cs].

Yue Wang, Weishi Wang, Shafiq Joty, and Steven C. H.
Hoi. 2021b. CodeT5: Identifier-aware Unified Pre-
trained Encoder-Decoder Models for Code Under-
standing and Generation.

Zhiruo Wang, Haoyu Dong, Ran Jia, Jia Li, Zhiyi Fu,
Shi Han, and Dongmei Zhang. 2021c. TUTA: Tree-
based Transformers for Generally Structured Table
Pre-training. Proceedings of the 27th ACM SIGKDD
Conference on Knowledge Discovery & Data Mining,
pages 1780-1790.

Tianbao Xie, Chen Henry Wu, Peng Shi, Ruiqi Zhong,
Torsten Scholak, Michihiro Yasunaga, Chien-Sheng
Wu, Ming Zhong, Pengcheng Yin, Sida I. Wang,
Victor Zhong, Bailin Wang, Chengzu Li, Connor
Boyle, Ansong Ni, Ziyu Yao, Dragomir Radev, Caim-
ing Xiong, Lingpeng Kong, Rui Zhang, Noah A.
Smith, Luke Zettlemoyer, and Tao Yu. 2022. Unified-
SKG: Unifying and Multi-Tasking Structured Knowl-
edge Grounding with Text-to-Text Language Models.
arXiv:2201.05966 [cs].

Xiaojun Xu, Chang Liu, and Dawn Song. 2017. SQL-
Net: Generating Structured Queries From Natural
Language Without Reinforcement Learning.

Pengcheng Yin, Graham Neubig, Wen-tau Yih, and Se-
bastian Riedel. 2020. TaBERT: Pretraining for Joint
Understanding of Textual and Tabular Data.

Tao Yu, Chien-Sheng Wu, Xi Victoria Lin, Bailin
Wang, Yi Chern Tan, Xinyi Yang, Dragomir Radeyv,
Richard Socher, and Caiming Xiong. 2021. GraPPa:
Grammar-Augmented Pre-Training for Table Seman-
tic Parsing.

Tao Yu, Rui Zhang, Heyang Er, Suyi Li, Eric
Xue, Bo Pang, Xi Victoria Lin, Yi Chern Tan,

Tianze Shi, Zihan Li, Youxuan Jiang, Michihiro Ya-
sunaga, Sungrok Shim, Tao Chen, Alexander Fab-
bri, Zifan Li, Luyao Chen, Yuwen Zhang, Shreya
Dixit, Vincent Zhang, Caiming Xiong, Richard
Socher, Walter Lasecki, and Dragomir Radev. 2019a.
CoSQL: A Conversational Text-to-SQL Challenge
Towards Cross-Domain Natural Language Interfaces
to Databases. In Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP),
pages 1962-1979, Hong Kong, China. Association
for Computational Linguistics.

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga,
Dongxu Wang, Zifan Li, James Ma, Irene Li, Qingn-
ing Yao, Shanelle Roman, Zilin Zhang, and Dragomir
Radev. 2019b. Spider: A Large-Scale Human-
Labeled Dataset for Complex and Cross-Domain Se-
mantic Parsing and Text-to-SQL Task.

Tao Yu, Rui Zhang, Michihiro Yasunaga, Yi Chern
Tan, Xi Victoria Lin, Suyi Li, Heyang Er, Irene
Li, Bo Pang, Tao Chen, Emily Ji, Shreya Dicxit,
David Proctor, Sungrok Shim, Jonathan Kraft, Vin-
cent Zhang, Caiming Xiong, Richard Socher, and
Dragomir Radev. 2019¢c. SParC: Cross-Domain Se-
mantic Parsing in Context. In Proceedings of the
57th Annual Meeting of the Association for Computa-
tional Linguistics, pages 4511-4523, Florence, Italy.
Association for Computational Linguistics.

Victor Zhong, Caiming Xiong, and Richard Socher.
2017. Seq2SQL: Generating Structured Queries from
Natural Language using Reinforcement Learning.

A Pretraining Dataset Details

A.1 Stack Overflow Augmentations

We perform several augmentation steps on Stack
Overflow examples to construct our pretraining
dataset. Our first step is to create four augmented
versions of each question using random word dele-
tion, random word appending, synonym replace-
ment, and paraphrasing. Next, we create up to
five different combinations of input-label pairs by
re-arranging the answers.

For some pertinent background on Stack Over-
flow, each example consists of a question and one
or more answers. The user who answered the ques-
tion can mark the answer that solved their problem
as correct, and other users can upvote answers that
they found useful as well.

Let N be the number of answers for a question.
The following strategies are used to create the la-
bels for the augmented examples:

1. The accepted answer (if there is one)

2. The most upvoted answer if it has been up-
voted more than the accepted answer

11078

http://arxiv.org/abs/2201.08239
http://arxiv.org/abs/2201.08239
http://arxiv.org/abs/1911.04942
http://arxiv.org/abs/1911.04942
http://arxiv.org/abs/1911.04942
http://arxiv.org/abs/2109.00859
http://arxiv.org/abs/2109.00859
http://arxiv.org/abs/2109.00859
https://doi.org/10.1145/3447548.3467434
https://doi.org/10.1145/3447548.3467434
https://doi.org/10.1145/3447548.3467434
http://arxiv.org/abs/2201.05966
http://arxiv.org/abs/2201.05966
http://arxiv.org/abs/2201.05966
http://arxiv.org/abs/1711.04436
http://arxiv.org/abs/1711.04436
http://arxiv.org/abs/1711.04436
http://arxiv.org/abs/2005.08314
http://arxiv.org/abs/2005.08314
http://arxiv.org/abs/2009.13845
http://arxiv.org/abs/2009.13845
http://arxiv.org/abs/2009.13845
https://doi.org/10.18653/v1/D19-1204
https://doi.org/10.18653/v1/D19-1204
https://doi.org/10.18653/v1/D19-1204
http://arxiv.org/abs/1809.08887
http://arxiv.org/abs/1809.08887
http://arxiv.org/abs/1809.08887
https://doi.org/10.18653/v1/P19-1443
https://doi.org/10.18653/v1/P19-1443
http://arxiv.org/abs/1709.00103
http://arxiv.org/abs/1709.00103

3. Concatenation of all answers

4. Randomly select an answer A; and append
all answers up to and including that one to
the question, then use the concatenation of all
Air1, Ajra ... An answers as the label

5. Randomly select an answer, A;, and append
all answers up to and including that one to the
question. Randomly select another answer,
Ay, from the remaining A;11, Ajqo... An
answers and use the concatenation of all
Apy Agy1 - .. An answers as the label

Each of these strategies is constrained by a total
sequence length of 1024 tokens. If we need to trun-
cate any tokens, we truncate them in the following
order:

1. Text in Answer
2. Code in Question
3. Text in Question

Our intuition is that this is the order of least im-
portant to most important to preserve the logical
relationship between question and answer, with
code in the answer being the most critical (which
is never truncated).

A.2 Data Filtering

As briefly mentioned in 3.1, we filter noisy exam-
ples from both the table and SQL dataset. Below
we provide more details on this pre-processing step.

Table Filtering Since table data is often web-
scraped it contains many noisy examples. Specif-
ically, examples where the table information has
a tenuous relation to the paired natural language
statement. Moreover, since our initial collection
of raw data was much larger for table sources ver-
sus SQL source, we chose to implement a filtering
approach to reduce these noisy examples. Specifi-
cally, we first calculate the edit-similarity between
each sample’s table and the NL statement, after
removing special tokens or tags. We then compute
the same metric on ToTTo, which is a high-quality
table-to-text benchmark, and qualitatively chose
our filtering threshold as 50.0 which is slightly
lower than ToTTo’s average edit-similarity. All
samples from our Wiki, Web, and ArXiv tables
datasets with an edit-similarity below 50.0 are re-
moved. In total we remove approximately 74% of
samples from the raw data.

Github SQL Filtering For the Github SQL data
we again see a large proportion of noisy or repeti-
tive samples in the raw data. Specifically, Github
SQL data can contain many repetitive statements
within one sample, such as thousands of consecu-
tive INSERT statements that data into a table. The
insert statements are often either very repetitive, or
contain very noisy information like compressed im-
ages, PDFs, or spatial objects. Our filtering method
largely consists of using regular expression to iden-
tify such repetitive statements. After finding long
sequences of insert statements we keep only a ran-
dom sample of 10 insert statements if the insert
statements are repetitive but not overly long or un-
readable. However, we remove all insert statements
that load noisy information into a table. In total
the number of samples staying approximately the
same, however we reduce the size of the dataset by
approximately 61%.

A.3 Pretraining Dataset Statistics

In Table 4 we provide summary statistics for the
pretraining dataset, including each of the SQL and
Table subsets. Raw document counts help to show
the amount of filtering applied to the raw data in
order reduce noisy and potentially detrimental sam-
ples, whereas the final training sample counts show
the training dataset size after tokenizing and parti-
tioning documents into sequences.

B Pretraining Hyperparameters

Batch size. For 3B and large models we train for
at a small batch size of 64 for the first epoch, then
for most of the second and third epoch we double
the batch size to 128, and then for the final 5-10%
of training we double the batch size again to 256.
Starting with a small batch size provides better
gradient efficiency, while larger batch sizes give
more precise gradient estimates which is beneficial
later in training (Smith et al., 2017). For base sized
models we opt for a batch size of 128 for all three
epochs before the cooldown period.

Sequence length. Data are pre-processed and to-
kenized offline into sequences of at most 1024 to-
kens. We do not pack inputs, and instead use one
example in per input and then pad accordingly. For
the larger T5-3B model we found that training for
the first 75-90% of steps on data pre-processed into
a shorter max sequence length of 768 or 896, and
then the remainder of training on data with 1024
tokens provided improved computational efficiency

11079

Num. Raw Documents Num. Training Avg. Number of Tokens

Data Source Modalities Initial (K) Filtered (K) Samples (K) Context Output Total

Github SQL SQL 1,026 1,019 1,918 280 +272 283 £273 563 +£545
Stack Overflow NL, SQL 1,670 1,631 4,480 318 £215 289 £192 607 +407
Aug. TAPEX NL, Table, SQL 2,165 2,165 2,005 471 £210 30 +£14 501 +224
Wiki Tables NL, Table 6,350 3,080 3,080 148 £117 98 £68 246 +185
Web Tables NL, Table 32,295 7,032 7,032 142 £79 132497 274 +176
ArXiv Tables NL, Table 119 24 24 275 £154 184 £141 459 £295
Full Dataset ~ NL,Table, SQL | 43,766 14,991 | 18612 | 189+161 149 +139 338 +300

Table 4: STAMP Pretraining dataset statistics by source. After the raw documents are filtered, we create training
examples by partitioning documents into sequences of 1024 tokens which can result in more training samples than
the initial set of raw documents. In the case of Stack Overflow we also augment the data creating a much larger
collection of training samples from the initial pool of documents. Note: Raw document counts and final number of

training samples are listed in thousands (K), the final pretraining dataset contains 18,612,078 samples.

without a discernible degradation in performance.
Encoder inputs begin with a special token indicat-
ing the data modality, and the decoder inputs begin
with a special token indicating the desired task. All
sequences end with the same end of sequence token
as Raffel et al. (2020).

Optimization. All models are pretrained with the
AdamW (Kingma and Ba, 2015) optimizer, using
an initial learning rate of le-4, and set momen-
tum of /1 = 0.9 and B2 = 0.98. Our learning
rate warms-up linearly over the first 1% of train-
ing steps, and then decays following a fixed cosine
annealing schedule to le-7 after approximately 3
epochs. We set a gradient norm clipping with a
maximum gradient norm of 1.0 (Pascanu et al.,
2013). We train models based on T5 (Raffel et al.,
2020) using the bf16 data type, whereas for models
based on CodeT5 (Wang et al., 2021b) we use the
fp16 data type in order to match the data type from
prior pretraining. We fix the weight decay to 0.01
for all models.

C Evaluation Settings

For finetuning we follow the experimental setup
of UnifiedSKG (Xie et al., 2022). Specifically, we
use the Adafactor optimizer with decaying learning
rate that is initially set to S5e-5, we set the batch
size to 32, train for up to 200 epochs, and generate
sequences using a beam size of 1. However, for
WikiSQL we set a batch of 128, train for a maxi-
mum of 100 epochs, and use a beam size of 4. We
use the same maximum lengths for the input and
output as UnifiedSKG, except for Spider, SParC,
and CoSQL where we increase input maximum
length to 1024 and output to 256 sentence piece
tokens to avoid truncating the inputs or outputs.

Pretrained Finetune | Spider Sup. WikiSQL SParC CoSQL
Model Method | (Exec 1) (EM 1) (EM?T) (EMT
STAMP-RC STF 74.4 78.9 61.4 53.7
STAMP-RC MTF 74.0 78.6 61.9 55.0
STAMP-CC STF 76.3 79.3 59.6 51.4
STAMP-CC MTF 73.9 79.1 61.3 54.2
CodeSTAMP-RC STF 74.5 84.3 58.8 50.6
CodeSTAMP-RC MTF 733 83.9 59.4 51.9
CodeSTAMP-CC STF 72.8 84.7 58.7 52.0
CodeSTAMP-CC MTF 71.3 835 58.3 50.8

Table 5: Development set performance on text-to-SQL
benchmarks for large sized TS, STAMP CodeTS5, and
CodeSTAMP that are either Single-Task Finetuned
(STF) on each dataset individually, or Multi-Task Fine-
tuned (MTF) on all text-to-SQL datasets simultaneously.
All STAMP checkpoints are pretrained with a 50/50 mix-
ture of context-to-output and MLM-based objectives on
the full pretraining dataset. STAMP results differenti-
ated by whether they’re trained with column- CC or row-
centric RC table formats. We highlight results where
multi-task finetuning outperforms single-task finetuning
on an equivalent model in bold.

D Evaluation Datasets

We evaluate our model on each of the aforemen-
tioned datasets using the standard metrics for each
task. We use the standard train, validation, and test
splits for each of the datasets.

Spider The Spider dataset has 10,181 question-
query pairs with queries using 200 databases rep-
resenting 138 different domains and tables that are
joined via foreign keys. We use the standard train-
ing and development splits, where training, devel-
opment, and test sets have a 7:1:2 ratio, and each
database appears in only one set (Yu et al., 2019b).

Fully Supervised WikiSQL The WikiSQL
dataset has 80,564 question-query pairs, involving
over 30,000 tables from Wikipedia (Zhong et al.,

11080

Spider” Sup. WikiSQL SParC* CoSQLY SQL2Text
Model # Params (EM 1/ Exec 1) (EM 1: Dev / Test) (EM 1/ Exec 1) (EM 1/ Exec 1) (BLEC 1: Dev / Test)
(ours) STAMP-Large RC 770M 71.6+0.3/75.0£0.9 78.8+0.2/79.5+0.2 60.94+0.5/66.0+£0.6 53.7+0.3/61.9+0.5 93.5+0.4/94.840.3
(ours) STAMP-Large CC 770M 71.440.4/749+1.4 79.040.5/79.740.2 59.840.2/64.3+0.2 51.8+0.5/59.540.7 93.4+0.6/93.7+0.5
(ours) CodeSTAMP-Large RC 770M 70.5+0.3/74.340.3 84.340.1/84.340.3 59.14+0.4/63.5+0.8 51.5+1.1/59.740.6 92.240.4/91.8+0.3
(ours) CodeSTAMP-Large CC 770M 68.3+1.2/72.0+1.5 84.5+0.2/84.6+0.1 58.0+0.6/62.841.0 51.6+0.5/58.5+0.1 92.3+0.2/94.3+1.7
(ours) STAMP-3B RC 3B 74.3+1.1/78.0£0.3 79.4+0.1/80.0+0.1 63.9+£1.0/68.7+1.2 56.2+1.0/66.1+£1.2 92.8+0.4/93.2+0.6

Table 6: Average performance on SQL benchmarks over three finetuning runs with standard deviations. All
STAMP checkpoints train with a 50/50 mixture of context-to-output and MLM-based objectives. STAMP results
are separated by variations in the pretraining data, specifically CC and RC denote column- and row-centric table
formats, respectively, and w/ Tables denotes the full pretraining dataset whereas SQL-only is a subset that omits the
NL+Table datasets. Note: A dagger (1) indicates datasets where only a development set is available for assessing

variance in performance, and models in italics are our work.

2017). We use the standard train, validation, and
test splits for WikiSQL, providing 56,355 exam-
ples are set reserved for training. Note each table
in WikiSQL is present in exactly one of the data
splits.

SParC The SParC dataset consists of 4,298 ques-
tion sequences with 12,726 question-SQL pairs and
200 databases spanning 138 domains (Yu et al.,
2019c). SParC is built on Spider, however for
SParC the question sequence is based on asking
inter-related Spider questions. The question se-
quences are then paired with a manually annotated
SQL query. Similar to Spider a 7:1:2 ratio is used
to split the data into training, development, and test
sets.

CoSQL The CoSQL dataset consists of 30k+
turns and 10k+ corresponding SQL queries along
with 200 complex databases belonging to 138 do-
mains, representing a large-scale cross-domain con-
versational setting (Yu et al., 2019a). Conversa-
tions are presented as between a user and a system,
where the user provides a natural language descrip-
tion of a data table and the system must generate
the corresponding SQL query. The conversational
style of the dataset simulates the process of users
asking clarifying questions to the system. Similar
to Spider and SParC, CoSQL splits data into train-
ing, development and test sets with a ratio of 7:1:2,
where each database appears in only one data split.

SQL2Text The SQL2Text dataset consists of
5,600, 1,400, and 1,034 train, development, and
test examples, respectively (Shu et al., 2021). The
dataset is natural language descriptions paired with
their corresponding SQL queries.

E Additional Results

Single- versus Multi-Task Learning We ex-
plore the benefits of finetuning and evaluating ei-
ther individually on each dataset (Single-Task Fine-
tuning, STF) versus finetuning on all of the text-to-
SQL benchmarks simultaneously then evaluating
(Multi-Task Finetuning, MTF). For multi-task fine-
tuning we balance the size of different datasets
during training using the temperature up-sampling
method proposed in Xie et al. (2022) and set the
temperature to 2. The results of the ablation are
presented in Table 5. We find mixed the results of
multi-task finetuning. In almost every model MTF
results in noticably better performance on the con-
versational SQL datasets SParC and CoSQL, how-
ever results for Spider and WikiSQL are slightly
worse. We suspect that the close similarity between
SParC and CoSQL explains the mutual benefit of
multi-task finetuning. On the other hand, Spider
uses a schema-only input format, whereas Wik-
iSQL includes database content and is typically
less difficult than Spider.

Performance Confidence Intervals In Table 6
we report more a more detailed look at our main
results. Specifically, we report the average perfor-
mance of our models over three finetuning runs and
list the standard deviation in the performances.

11081

ACL 2023 Responsible NLP Checklist

A For every submission:

¥ Al. Did you describe the limitations of your work?
6

¥ A2. Did you discuss any potential risks of your work?
7

¥ A3. Do the abstract and introduction summarize the paper’s main claims?
1

A4. Have you used Al writing assistants when working on this paper?
Left blank.

B ¥ Did you use or create scientific artifacts?
Left blank.

¥/ B1. Did you cite the creators of artifacts you used?
2

B2. Did you discuss the license or terms for use and / or distribution of any artifacts?
We are first awaiting legal approval for distribution.

vf B3. Did you discuss if your use of existing artifact(s) was consistent with their intended use, provided
that it was specified? For the artifacts you create, do you specify intended use and whether that is
compatible with the original access conditions (in particular, derivatives of data accessed for research
purposes should not be used outside of research contexts)?
3

B4. Did you discuss the steps taken to check whether the data that was collected / used contains any
information that names or uniquely identifies individual people or offensive content, and the steps
taken to protect / anonymize it?

Data will not be released and models are only for research purposes.

L1 B5. Did you provide documentation of the artifacts, e.g., coverage of domains, languages, and
linguistic phenomena, demographic groups represented, etc.?
Not applicable. Left blank.

¥f B6. Did you report relevant statistics like the number of examples, details of train / test / dev splits,
etc. for the data that you used / created? Even for commonly-used benchmark datasets, include the
number of examples in train / validation / test splits, as these provide necessary context for a reader
to understand experimental results. For example, small differences in accuracy on large test sets may
be significant, while on small test sets they may not be.
Available in Appendix.

C ¥ Dpid you run computational experiments?
4

¥ C1. Did you report the number of parameters in the models used, the total computational budget
y p p p g
(e.g., GPU hours), and computing infrastructure used?
4, Appendix

The Responsible NLP Checklist used at ACL 2023 is adopted from NAACL 2022, with the addition of a question on Al writing
assistance.

11082

https://2023.aclweb.org/
https://2022.naacl.org/blog/responsible-nlp-research-checklist/
https://2023.aclweb.org/blog/ACL-2023-policy/
https://2023.aclweb.org/blog/ACL-2023-policy/

v C2. Did you discuss the experimental setup, including hyperparameter search and best-found
hyperparameter values?
4, Appendix

C3. Did you report descriptive statistics about your results (e.g., error bars around results, summary
statistics from sets of experiments), and is it transparent whether you are reporting the max, mean,
etc. or just a single run?

Unable to complete due to constraints on compute budget.

v C4. If you used existing packages (e.g., for preprocessing, for normalization, or for evaluation), did
you report the implementation, model, and parameter settings used (e.g., NLTK, Spacy, ROUGE,
etc.)?

3

D Did you use human annotators (e.g., crowdworkers) or research with human participants?
Left blank.

O DI1. Did you report the full text of instructions given to participants, including e.g., screenshots,
disclaimers of any risks to participants or annotators, etc.?
No response.

(] D2. Did you report information about how you recruited (e.g., crowdsourcing platform, students)
and paid participants, and discuss if such payment is adequate given the participants’ demographic
(e.g., country of residence)?

No response.

[0 D3. Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? For example, if you collected data via crowdsourcing, did your instructions to
crowdworkers explain how the data would be used?

No response.

0 D4. Was the data collection protocol approved (or determined exempt) by an ethics review board?
No response.

0] DS. Did you report the basic demographic and geographic characteristics of the annotator population
that is the source of the data?
No response.

11083

