Multitask Pretraining with Structured Knowledge for Text-to-SQL
Generation

Robert Giaquinto; Dejiao Zhang, Benjamin Kleiner, Yang Li
Ming Tan, Parminder Bhatia, Ramesh Nallapati, Xiaofei Ma

AWS AI Labs

{rgiag,dejiaoz, kleinerb,ylizam,
mingtan, parmib, rnallapa, xiaocofeim}@amazon.com

Abstract

Many machine learning-based low-code or no-
code applications involve generating code that
interacts with structured knowledge. For exam-
ple, one of the most studied tasks in this area is
generating SQL code from a natural language
statement. Prior work shows that incorporating
context information from the database schema,
such as table and column names, is beneficial
to model performance on this task. In this work
we present a large pretraining dataset and strat-
egy for learning representations of text, tables,
and SQL code that leverages the entire con-
text of the problem. Specifically, we build on
existing encoder-decoder architecture by intro-
ducing a multitask pretraining framework that
complements the unique attributes of our di-
verse pretraining data. Our work represents the
first study on large-scale pretraining of encoder-
decoder models for interacting with structured
knowledge, and offers a new state-of-the-art
foundation model in text-to-SQL generation.
We validate our approach with experiments on
two SQL tasks, showing improvement over ex-
isting methods, including a 1.7 and 2.2 percent-
age point improvement over prior state-of-the-
arts on Spider and CoSQL.

1 Introduction

Tables, relational databases, and other forms of
structured knowledge (SK) encompass a massive
amount of data across a wide range of applications.
Extracting insights held in such data often requires
proficiency in query languages like SQL, making
it only accessible to the minority of people with
the technical skills. A natural language interface,
however, would expand access to these information
exponentially. Likewise, querying via natural lan-
guage allows users quickly hone in on an answer
to their particular question, rather than visually
scanning dense tables where the majority of the in-
formation is irrelevant to the user. To that end, we
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explore pretraining techniques for large language
models that focus on the challenging interplay be-
tween structured and unstructured knowledge, and
target a variety of downstream text-to-SQL tasks.

Recently there have been significant advance-
ments in learning representations for tables (Yin
et al., 2020; Herzig et al., 2020; Eisenschlos et al.,
2020; Liu et al., 2022; Wang et al., 2021c; Yu et al.,
2021; Cheng et al., 2022; Dong et al., 2022), which
advanced the state-of-the-art in a range of table-to-
text tasks, like table question-answering (Nan et al.,
2022; Chen et al., 2021), fact verification (Chen
et al., 2020; Aly et al., 2021), data-to-text (Parikh
et al., 2020; Nan et al., 2021), and semantic pars-
ing (Yu et al., 2019b; Zhong et al., 2017). While
better table understanding benefits a range of tasks,
pretraining focused on text-to-SQL has thus far re-
ceived less attention. Pretrained encoders, such as
TaBERT and TAPAS (Yu et al., 2021; Yin et al.,
2020; Herzig et al., 2020), show that pretraining
BERT-style encoders (Devlin et al., 2019) on ta-
bles with mask language modeling (MLM) loss
produces a strong foundation model that can be
extended for text-to-SQL. GRAPPA includes small
amount of synthetic SQL code in the pretraining
data to more specifically target the text-to-SQL task
(Yu et al., 2021). These encoder-only approaches
are, however, restricted in their generative capabili-
ties as they must be combined with an additional
module that is carefully designed to generate valid
SQL code (Zhong et al., 2017; Wang et al., 2021a).

Encoder-decoder architectures like TS5 (Raffel
et al., 2020), on the other hand, exhibit better per-
formance on text-to-SQL to-date when constrain-
ing the decoder with rules that check for syntactic
correctness (Scholak et al., 2021). However, the T5-
based models with exceptional text-to-SQL perfor-
mance (Xie et al., 2022; Scholak et al., 2021) have
still only been pretrained on natural language (NL)

— begging the question, can text-to-SQL encoder-
decoders benefit from pretraining on structured in-
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Augmented TAPEX

table : tally_bronze | col : rank | npc | gold |
silver | bronze | total row 1 : 1 | china | 95 |
71 | 65 | 231 row 2 : 6 | united states | 31 | 29
| 38 | 98 row 3 : 10 | netherlands | 16 | 10 | 19
| 39 row 4 : total (75 npcs) | total (75 npes) |
503 | 503 | 516 | 1522

+

value clob null
);

create table site (

<NL>How many bronze medals were awarded to
citizens of Netherlands and China?

)

alter table site

<SQL>select sum ( bronze ) from tally_bronze where
npc in ( 'netherlands' ,

‘china' )

(1) Table + NL ¢ SQL

t

GitHub SQL

<SQL>create table site_property (
site_id varchar2(99) not null,
name varchar2(99) not null,

site_id varchar2(99) not null,
title varchar2(99) null,

4

<SQL>alter table site_property
add ( primary key (site_id, name) ) ;

add ( primary key (site_id) ) ;

(2) saL - saL

|

Stack Overflow

<Question> What is the difference between "INNER
JOIN" and "OUTER JOIN"? Also, how do "LEFT OUTER
RIGHT OUTER JOIN,

JOIN', and “FULL OUTER JOIN’

FAERnZ

¢

<Answer> Assuming you're joining on columns with
no duplicates, which is a very common case:

- An inner join of A and B gives the result of A
intersect B, i.e. the inner part of a Venn diagram
intersection.

- An outer join of A and B gives the results of A
union B, i.e. the outer parts of a Venn diagram
union.

Examples ...

(3) Question ¢ Answer

1

Tables: Context-to-Output

table : Pattonsburg, Missouri | col : Country |
State | County | Total | Land | Water | Elevation
| Total | Estimate (2016) | Density | Time zone |
Summer (DST) | ZIP code row 1 : United States |
Missouri | Daviess | 0.61 sq mi (1.58 km2) | 0.61
sq mi (1.58 km2) | 0 sq mi (0 km2) | 781 ft (238
m) | 348 | 343 | 570/sq mi (220/km2) | UTC-6

STAMP:
SQL & Table Aware Multi-task Pretraining

Tables: MLM-Based Objectives

<NL>Pattonsburg is a<mask_8> northwest Daviess
County, Missouri, United States. The<mask_1> at
the 2010 census. | table : Pattonsburg, Missouri |
col : Country | State | County | Total | Land |
Water |<mask_2> | Total | Estimate (2016) |
<mask_3> | Time zone | Summer (DST) | ZIP code |
<mask_4> | FIPS code row 1 : United States |
Missouri | Daviess | ©.61 sq mi (1.58 km2) | 0.61

(Central (CST)) | UTC-5 (CDT) | 64670

(4) Table - NL

12

<NL>Pattonsburg is a city in northwest Daviess
County, Missouri, United States. The population
was 348 at the 2010 census.

sq mi (1.58 km2) | 0 sq mi (B km2) |<mask_4>343 |
570/sq mi (220/km2) | UTC-6 (Central (CST)) | UTC-
(5) MLM 5 (CDT)| 64670 | 660 | 29-56558

3

<MLM><mask_0> city in<mask_1> population was

348<mask_2> Elevation<mask_3> Density<mask_4> Area
code(s)<mask_5> 781 ft (238m) | 348 |

Figure 1: STAMP’s multi-task strategy combines context-to-output with MLM-based objectives that are designed
for our diverse of pretraining data. In (1-4) we show the context-to-output format for four data sources, however in
pretraining MLM objectives are also applied. For example, (5) shows the MLM objectives applied to the same data
as (4), showing the combination of the TS style of masking with masked column recovery. For data sources (1) and
(3) we also apply dual learning, where the context and output are interchanged to better align representations.

formation or code? Most recently, Andrejczuk et al.
(2022) proposed a multi-task tabular pretraining
strategy for TS5 model, but their work introduced
the tabular knowledge to the model with a single
data source, i.e. Wikipedia tables.

In this work we introduce our SQL and Table
Aligned Multi-task Pretraining (STAMP) frame-
work, which explores pretraining encoder-decoder
models for text-to-SQL. Starting from text-only TS
(Raffel et al., 2020) checkpoints, our multi-stage
pretraining framework refines previous text-only
models by continuing training on a collection of
large multi-modal datasets that combine structured
knowledge with natural language and SQL. Addi-
tionally, inspired by the impressive generalization
of large language models incorporating code in pre-
training data (Athiwaratkun et al., 2022; Brown
et al., 2020; Chowdhery et al., 2022; Du et al.,
2022; Thoppilan et al., 2022), we apply our pre-
training framework to CodeT5 (Wang et al., 2021b)
checkpoints that are trained on code.

Building on recent work in multi-task pretrain-
ing (Tay et al., 2022; Aghajanyan et al., 2021;

Sanh et al., 2022; Aribandi et al., 2021), we com-
bine masked language modeling (MLM) with task-
aware context-to-output objectives that vary across
tasks and datasets. For pretraining datasets with
multiple modalities (i.e. combinations of NL, SQL,
and structured knowledge) or intrinsic splits (e.g.
question and answer), we explore the benefit of the
dual learning objectives (Wang et al., 2021b). We
assess our pretraining strategy on a variety of SQL
benchmarks following the UnifiedSKG framework
(Xie et al., 2022). Our approach outperforms pre-
vious text- and code-only pretraining, and gives a
new state-of-the-art on a range of benchmarks. To
better understand our strategy, we present ablation
studies on the optimal objective mix, the impact of
linearizing structured knowledge into row- versus
column-centric tables, and the effect of building on
previously pretrained text- versus code-only check-
points. Our work shows that continued pretraining
with multi-task learning is a promising direction
for advancing the capacity of language models.
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2 Related Work

Encoder-only Encoder-only transformer archi-
tectures like BERT and its successors (Devlin
et al., 2019; Liu et al., 2019; Joshi et al., 2020;
Reimers and Gurevych, 2019; Clark et al., 2020)
optimize masked language modeling (MLM) ob-
jectives while using a bidirectional receptive field
covering the whole input sequence. The encoder-
only architectures perform well across a variety of
tasks like classification, regression, sentiment anal-
ysis, question-answering, and retrieval. However,
recent work (Herzig et al., 2020; Yin et al., 2020;
Yu et al., 2021) shows that tasks like table-to-text
and text-to-SQL require additional pretraining on
structured knowledge for good generalization, and
adapting MLM objectives to the unique structure
of tabular data improves learning.

Prior to BERT, text-to-SQL models like SQL-
Net and Seq2SQL (Zhong et al., 2017; Xu et al.,
2017) encoded inputs with bidirectional LSTMs
(Hochreiter and Schmidhuber, 1997) and generated
queries via slot-filling. Text-to-SQL performance
improved with the adoption of BERT-based en-
coders, for example (Yu et al., 2021; Wang et al.,
2021a) attach feed forward networks and LSTMs
to the BERT-style encoder to generate queries. Be-
cause encoder-only architectures are restricted in
their ability to generate sequences, they require
careful design to generate valid SQL queries and
limit the complexity of those queries.

Encoder-Decoder Alternatively, encoder-
decoders like BART (Lewis et al., 2019) and T5
(Raffel et al., 2020) combine the bidirectional
encoder with a causal decoder are naturally suited
for sequence-to-sequence tasks like text-to-SQL,
and are quickly becaming the mainstream ap-
proach due to the reduced need for domain specific
solutions (Qin et al., 2022). T5 (Raffel et al., 2020)
in particular achieves impressive performance on a
range of table-to-text and text-to-SQL tasks (Xie
et al., 2022) despite pretraining that is limited
to NL. Moreover, Shi et al. (2020) and Liu et al.
(2022) leverage a BART-style encoder-decoder to
improve the performance of pretrained models for
text-to-SQL and table-to-text tasks, respectively.
We follow this line, proposing a strategy that builds
on top of TS and CodeT5 (Wang et al., 2021b).

Multi-Task Training Raffel et al. (2020) explore
various self-supervised objectives, and found the
fill-in-the-blank style of denoising objective as

most effective. Additionally, combining MLM ob-
jectives with small amounts of auxiliary objectives
is effective (Liu et al., 2019; Aroca-Ouellette and
Rudzicz, 2020). For encoder-decoder models Tay
et al. (2022); Wang et al. (2021b) show the benefit
of multi-task pretraining on a mix of the T5 span
corruption objective (Raffel et al., 2020) along with
a the causal language modeling (CLM) style of ob-
jective, similar to those used in decoder-only archi-
tectures (Brown et al., 2020). In the domain of text-
to-SQL, Yu et al. (2021); Tao Yu et al. (2021) per-
form multitask learning by combining MLM with
SQL specific objectives. Lastly, Xie et al. (2022);
Aghajanyan et al. (2021); Aribandi et al. (2021);
Sanh et al. (2022); FitzGerald et al. (2022); Chen
et al. (2022) demonstrate that multi-task learning
across a variety of datasets can improve perfor-
mance relative to the single-task, single-dataset
paradigm. Wang et al. (2021b) show that an objec-
tive mix specific to programming languages (PL)
along with dual learning on bimodal data promotes
generation on tasks combining PL and NL.

3 Multi-Task Pretraining on Structured
Knowledge

Our SQL and Table Aligned Multi-task Pretraining
(STAMP) model builds on the T5 encoder-decoder
architecture and pretraining checkpoints (Raffel
et al., 2020), and similarly our CodeSTAMP mod-
els build on the CodeT5 architecture and check-
points Wang et al. (2021b). We develop a multi-
task pretraining framework specifically designed
to leverage our large and unique collection of data
that combine various data modalities, namely natu-
ral language (NL), stuctured knowledge (SK), and
SQL. STAMP introduces a new stage of pretrain-
ing that transitions TS5 from being a purely NL
programing language (PL) trained model to a back-
bone model that excels at text-to-SQL generation.
Next, we present the construction of our pretrain-
ing dataset in Section 3.1, the mixture of objectives
designed to learn the unique structure of our data
and align the NL, SK, SQL data modalities in Sec-
tion 3.2, and our unified format for representing
tasks and structured knowledge in Section 3.3.

3.1 Datasets and Pre-Processing

Our pretraining dataset consists of 18 million exam-
ples, with various combinations of NL, SQL code,
and structured knowledge (see Figure 2). Our data
is derived from diverse sources and we propose dif-
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ferent strategies to remove many low-quality and
noisy data from each data source. We tokenize the
raw data using the corresponding TS5 and CodeT5
tokenizers, which we augment to support new spe-
cial tokens for representing input data modality,
output tasks, and table structures. We process all
data into sequences of up to 1024 tokens. More
details on pre-processing are in Appendix A.

Table Data Approximately half of our pretrain-
ing data (N = 10,136,268) combine tables with
NL. These table datasets derive from Wikipedia,
WDC’s Web Table Corpora, and arXiv. Pretraining
on table datasets acts as a bridge from the previous
text-only pretraining, while promoting alignment
between NL and structured knowledge. In initial
experiments we pretrained on all available table
and NL pairs. However, after closer examination
we discovered that a significant portion these ex-
amples exhibited minimal connection between the
table and NL — and hence are unlikely to pro-
mote the desired alignment. Therefore, we choose
to focus on high-quality examples and remove ap-
proximately 75% of the examples in which there
is a tenuous or no connection between the table
and the paired NL. To identify noisy examples we
compute an edit similarity between the NL and the
content of the table, we then drop examples with
such similarity below a threshold. Likewise, to re-
duce noise within each example we truncate tables,
keeping at most 6 rows and 25 columns which have
the highest edit similarity between table and NL.

SQL Data The remainder of our pretraining data
incorporate SQL. Approximately 10% of the exam-
ples (N = 1,918,468) are SQL code from GitHub
repositories with permissive licenses. SQL code
from GitHub only includes only a small amount NL
in code comments, and some structured knowledge
in the database schema definitions. We filter these
data to remove duplicates and repetitive statements.

Approximately 25% of the examples (N =
4,479,767) are from SQL-related posts on Stack
Overflow. These data combine NL questions and
answers with snippets of SQL code, thereby bridg-
ing the NL knowledge learned during the prior text-
only pretraining into domain-specific language, and
aligning SQL with NL. We perform augmentations
to increase the number of question-answer pairs
and leverage hidden human supervision ! in the

'As discussed in Appendix A, we consider accepted an-
swers, favorite answers, or answers that received upvotes

Github: 10% Context-to-Output: 5%

Question < Answers: 12% I

Table + NLS — SQL: 3%
Stack Overflow: 25%

Table + SQL - NLS: 3%
SQL Data: 46%

Aug. TAPEX: 11% MLM: 23%

Training: 100%
Wiki Tables: 17%
Table - NLS: 27%

Table Data: 55%

WDC Web Tables: 37%

MLM + MCR: 27%

ArXiv: 1%

Figure 2: Pretraining data sources and objective mix
ratios. Left side: Proportion of total pretraining data (N
= 18,612,078) contributed by each data source. Right
side: The corresponding objective mix during training
when using an equal ratio of MLM-based to context-to-
output objectives. Flow colors indicate which datasets
feed into which objectives, except for MLM which is
applied to all SQL data sources.

data. We first create five augmented versions of
each question using random word deletion, ran-
dom word appending, synonym replacement, and
paraphrasing. We then create up to six versions of
each original example by pairing combinations of
answers with augmented versions of the questions.
Lastly, approximately 11% of the examples (N
=2,005,456) in our data derive from TAPEX (Liu
et al., 2022), a dataset consisting of SQL generated
from templates along with their corresponding ex-
ecution result. To improve the quality and better
align these data with downstream tasks we perform
the following modifications. First, we remove 2.3
million duplicates (of the original 5 million exam-
ples), add a FROM clause to the SQL code with a
fictitious table name using a random combination
of 1-3 column names, and filter out any examples
that could not be parsed by mo-sql-parsing®. Next,
we train a SQL-to-Text model (T5-3B) on the Spi-
der (Yu et al., 2019b) dataset in order to generate
natural language statements for each SQL query.

3.2 Objectives for Multi-Task Pretraining

MLM-Based Objectives A critical component
in pretraining encoder-decoder models is a MLM-
based objective. In STAMP we follow the span
corruption style of MLM from Raffel et al. (2020),
which involves replacing contiguous whole words

above some fixed threshold as latent human supervision.
Zhttps://github.com/klahnakoski/mo-sql-parsing
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from the text with sentinel tokens in the inputs, and
then the decoder generates the replaced text pre-
ceded by the corresponding to sentinel token. We
set the mean span to 3, with a denoising rate of
15% following the default TS5 configuration. This
span corruption objective is applied to sequences
of NL and SQL code. For pretraining datasets that
also include structured knowledge we apply the
masked column recovery (MCR) objective, as in-
troduced in Yin et al. (2020), which encourages
the model to learn table schemas using the natural
language statement and row information as con-
text. In our implementation, 25% of the column
names and data types (when available) are masked
with a sentinel token. Note, only MCR is applied
to the sequence containing the column names to
avoid overlapping MLM and MCR masking. More
concretely, let x™%k = (xMIM xMCR) pe the in-
put sequence combining MLM and MCR masking,
then our masked span prediction loss £ over a
sequence of length T is:

T

ﬁM(@) = Z _ log P, (x?ask | X\mask’ X??“) 7
t=1

where "X is the masked token for the decoder to

predict, x\™#k g the encoded masked input, x 3
is the sequence generated by the decoder up to

token ¢, and 6 are the model parameters.

Context-to-Output Objectives In addition to
MLM-based objectives we include causal language
modeling objectives (Radford et al., 2019; Liu
et al., 2018), which partition sequences into con-
texts and outputs in order to mimic the format of
many down-stream tasks. For unimodal datasets,
such as GitHub SQL, we create the context and out-
put by uniformly sampling a split point based on
line-breaks within each code example. For tabular
datasets we treat the table as input and the paired
NL as output, thereby teaching the model to con-
nect the structured and unstructured information.
For Stack Overflow, the natural partition be-
tween a question and each of the answers defines
the context to output splits. We use the augmenta-
tions described in 3.1 to create additional unique
question-to-answer pairs. We apply dual learning
to better align the question prompt with the answer.
Finally, for trimodal data like our augmented-
TAPEX we model Table + NL — SQL, or in the
dual learning (Wang et al., 2021b) setting we model
Table + SQL — NL. Thus for a sequence x of

length 7" with a split point S € (0, T) that is either
randomly selected or based a natural split in the
data, we define the context-to-output loss L0 as:

T

Lo(0) =Y —log Py (yr | 2,y<1)
=S

where z = x_g is the left context and y = xg<
the right output.

Combining Objectives Prior work shows the
importance of MLM (Liu et al., 2019; Aroca-
Ouellette and Rudzicz, 2020; Raffel et al., 2020)
and the benefit of including a small percentage
of context-to-output objectives. For instance, Tay
et al. (2022) recommend approximately 20% of the
objective mixture to be context-to-output. How-
ever, unlike Tay et al. (2022) we are not pretraining
from scratch, rather we seek to build on existing
checkpoints and hence we consider greater rates
of context-to-output. In our implementation, we
sample an objective per-example during pretrain-
ing, where the pool of objectives depends on the
data source of each example. Hence, each training
mini-batch combines examples from multiple data
sources that are formatted as a mix of objectives.
Figure 2 summarizes our dataset and objective mix,
showing the connection between each input data
source and a corresponding objective.

table : racetracks |
col : track | city | state |
opened | surface | length
altamont park | tracy | california |
1966-2008 | asphalt | 0.5 miles

row 1 :

Figure 3: Row-centric format for tables.

<table> racetracks

<column_name> track<column_value> altamont park
<column_name> city<column_value> tracy
<column_name> state<column_value> california
<column_name> opened<column_value> 1966-2008
<column_name> surface<column_value> asphalt
<column_name> length<column_value> 0.5 miles

Figure 4: Column-centric format for tables.

3.3 Unified Format for Learning from
Structured Knowledge

In order to bridge the gap between pretraining and
downstream tasks, we explore unified formats for
structured knowledge. Connecting NL to struc-
tured knowledge is challenging with limited data.
A unified table format, however, allows the model
to leverage learning from large scale pretraining
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for smaller datasets. Moreover, in some cases Xie
et al. (2022) report worse performance for multi-
task versus single-task training, which we suspect
is due to inconsistent formatting. Thus, we lin-
earize structured knowledge into both row- and
column-centric formats. Figure 3 shows the row-
centric format, and Figure 4 shows the equivalent
information in the column-centric format.

Lastly, we use special tokens in the encoder to
preface each data modality (NL, structured knowl-
edge, and SQL), and encourage sharing across
tasks with common modalities. Additional tags
prompt the decoder with the desired task, reflecting
each of our objectives: MLM, table-to-text, SQL-
to-SQL, Table and NL-to-SQL, Stack Overflow
question answering, and dual learning variations.

4 [Experiments

4.1 Evaluation Setup

We evaluate our pretrained checkpoints on SQL
tasks following the UnifiedSKG framework (Xie
et al., 2022). Specifically, for text-to-SQL bench-
marking we evaluate on Spider without database
row information (Yu et al., 2019b) and WikiSQL
with row information (Zhong et al., 2017), as well
as conversational text-to-SQL datasets SPaRC (Yu
et al., 2019¢) and CoSQL (Yu et al., 2019a), and
in alignment with our bimodal objectives we also
evaluate on SQL2Text (Shu et al., 2021). For each
dataset we use pre-defined train, validation, and
test splits. In Appendix C lists our evaluation set-
tings, Appendix D contains details on the evalua-
tion datasets, and Appendix E includes additional
results.

4.2 Main Results

We present our main results in Table 1, with base-
line results as reported in each comparison ap-
proach. We group models with SQL-specific de-
coders on top, and encoder-decoders like STAMP
that have more general token decoders on bottom.
Overall we find that our STAMP yields better re-
sults than domain specific solutions and text- or
code-only pretrained models. SMBOP + GRAPPA
(Rubin and Berant, 2021) is similar to our work
with multi-task learning and additional pretraining,
however they rely on a SQL specific parsing algo-
rithm. Whereas, our framework focuses on larger,
more diverse sources of structured knowledge and
a complementary multi-task learning strategy.

We highlight that pretraining on structured in-
formation alone like TABERT (Yin et al., 2020),
or a general code pretraining dataset like CodeT5
(Wang et al., 2021b) does not produce exceptional
results on text-to-SQL. Likewise, a large multi-
task learning approach like TO performs worse than
STAMP models and vanilla T5, indicating that the
benefits of multi-task learning depend on having
a degree of domain relevance. Specifically TO’s
multi-task learning approach, which centers on text-
only domains, does not benefit SQL tasks. Lastly,
despite constrained decoding being very different
than our approach, we include results for PICARD
(Scholak et al., 2021) because it is an extremely
effective approach that complements STAMP.

4.3 Ablation Studies

Denoising versus Context-to-Output In Table 2
we report development set performance of STAMP
models that build on the T5-base checkpoint. We
train each model on our full row-centrically ori-
entated dataset and only vary the objective mix-
ture. Unlike prior work (Tay et al., 2022; Aroca-
Ouellette and Rudzicz, 2020) that pretrains from
scratch, during our additional structured knowledge
pretraining we observe that higher rates context-to-
output objectives tend to perform best.

At the extremes of the objective mix we see
mixed results. Setting MLLM / context-to-output
ratios to 100% / 0%, improves performance on
text-to-SQL — indicating the benefit from our
pretraining data. However, on the other extreme,
model performance suffers with no MLM and only
context-to-output. Nonetheless, by combining the
two objectives we see the best performance overall.
Specifically, an equal mix of MLM and completion
either throughout pretraining or after one epoch of
entirely MLM training results in noticeably higher
performance compared to vanilla T5.

Our results complement those in literature (Tay
et al., 2022; Wang et al., 2021b; Aghajanyan et al.,
2021; Aribandi et al., 2021; Sanh et al., 2022;
FitzGerald et al., 2022), showing the importance
of mixing additional objectives with MLM. Unlike
Tay et al. (2022), however, our results show that
higher rates of context-to-output are optimal, which
we attribute to our approach of building on prior
checkpoints and not pretraining from scratch.

Tables versus SQL Datasets Table 3 presents
an ablation study comparing of STAMP and
CodeSTAMP models trained on different pretrain-
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Spider Sup. WikiSQL  SParC = CoSQL  SQL2Text

Model # Params | (EM 1/ Exec 1) (EM 1) (EM1T) (EM?T) (BLECY)
Seq2SQL (Zhong et al., 2017) —— 49.5 - - -
SQLNET (Xu et al., 2017) _—— 63.2 - - -
5 IRNet (Guo et al., 2019) 554/ — - - - -
£ RAT-SQL (Wang et al., 2021a) 62.7/ — - - — -
g TABERT (Yin et al., 2020) 345M+ 652/ — - - - -
Q SCoRE (Tuo Yuetal., 2021) 500M —— - 62.2 52.1 -
é BERT + RAT-SQL (Wang et al., 2021a) 500M 69.7/ — - - - -
“ RAT-SQL + GAP (Shi et al., 2020) 71.8/ — - - - -
SMBOP + GRAPPA (Rubin and Berant, 2021) 74.7/75.0 - - - -
T5 + PICARD' (Scholak et al., 2021) 3B 74.1/76.3 - - 56.9 -
CodeT5 (Wang et al., 2021b) 770M 64.6 / — 76.6 57.9 48.4 91.9
T5 (from Xie et al. (2022)) 770M 66.6/68.3 - 56.7 48.3 93.4
_qg TS5 MT-P (Xie et al., 2022) 770M 67.6 /| — - 59.0 51.6 93.9
S TO (Sanhetal., 2022) 3B 68.1/ — — - — 92.9
8 TS5 (from Xie et al. (2022)) 3B 71.8/74.4 - 61.5 54.1 92.7
_qéj (ours) STAMP-Large RC 770M 71.6/74.4 78.9 61.4 53.7 93.0
S (ours) STAMP-Large CC 770M 71.8/76.3 79.3 59.6 514 93.3
s (ours) CodeSTAMP-Large RC 770M 70.7/74.5 84.3 58.8 50.6 92.0
(ours) CodeSTAMP-Large CC 770M 69.4/72.8 84.7 58.7 52.0 92.1
(ours) STAMP-3B RC 3B 75.2/78.0 79.4 64.4 56.4 92.6

Table 1: Development set performance on text-to-SQL benchmarks for both TS5, CodeT5, and our results with
additional pretraining on our structured knowledge. All STAMP checkpoints train with a 50/50 mixture of context-
to-output and MLM-based objectives. STAMP results are separated by variations in the pretraining data, specifically
CC and RC denote column- and row-centric table formats, respectively, and w/ Tables denotes the full pretraining
dataset whereas SQL-only is a subset that omits the NL+Table datasets. Note: A dagger (f) indicates constrained
decoding approach, which is complementary but not used in our work, models in italics are our work.

%-MLM in Spider  Sup. WikiSQL ~ SParC  CoSQL ~ SQL2Text
Objective Mix | (Exec 1) (EM D) (EM?D) (EM?T) (BLECY)
100% 63.2 782 52.0 4338 93,6
75% 64.0 78.1 523 44.0 932
50% 64.5 779 519 45 932
100—50% 62.9 78.9 52.4 03 94.2
0% 613 78.0 49.6 40.1 93.0
Vanilla T5-base |  60.1 74.1 499 424 937

Table 2: Development set performance for T5-base, and
base-sized STAMP models pretrained on our full row-
centric dataset with varying objective mixes. For each
pretrained STAMP model we specify the proportion of
training examples using the MLM-based objective, with
the remaining examples using a dataset-specific context-
to-output objective. We also explore dynamic mixing
ratios, where 100—50% represents training with 100%
MLM in the first epoch, followed by a 50%/50% mix of
during the remaining epochs.

ing data. Specifically, we report the effect of pre-
training on data where tables are in the row-centric
(RC) versus column-centric (CC) format. We also
explore the effect of pretraining on all data versus
only SQL-related data. Overall we see that pretrain-
ing on all datasets generally improves performance
on text-to-SQL — confirming the finding of Yin
et al. (2020) that aligning NL and tables improves
performance. Moreover, in comparison with Yin

et al. (2020), our results show that adding SQL
code to the data mix further boosts performance.

Row-Centric versus Column-Centric We pre-
process the pretraining and benchmark datasets
from UnifiedSKG (Xie et al., 2022) with consistent
table formatting. Row-centric formats are more
similar to natural language and do not require learn-
ing any new special tokens, which better leverages
the original NL pretraining of T5. Whereas, the
column-centric format requires special tokens that
preface the table, columns, and each value in a col-
umn. While new special tokens must be learned
from scratch, we hypothesized that the column-
centric format is advantageous since text-to-SQL
is inherently more column and schema oriented
and often not dependent on row information. Sur-
prisingly, Table 3 shows no clear advantage for
either RC or CC formats. In fact, the mixed re-
sults hold for even across model sizes (Large vs
Base) and initial pretraining (T5 vs CodeT5). Our
results suggest that further pretraining on enough
high-quality data helps to nullify the advantages or
disadvantages of each table linearization method.

TS versus CodeTS5 as Starting Point Table 3
shows the high performance of base-sized CodeT5
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Starting Additional STAMP | Spider  Sup. WikiSQL SParC  CoSQL SQL2Text
Checkpoint Pretraining Data (Exec 1) (EM 1) (EM1T) (EM1) (BLECY)
T5-Large — 71.7 75.3 57.4 48.8 93.4
T5-Large RC, w/ Tables 74.4 78.9 61.4 53.7 93.0
T5-Large RC, SQL-only 72.8 79.5 60.1 514 93.6
T5-Large CC, w/ Tables 76.3 79.3 59.6 514 93.3
T5-Large CC, SQL-only 74.5 79.1 51.9 50.9 93.3
CodeT5-Large — 68.4 76.6 57.9 48.4 91.9
CodeT5-Large RC, w/ Tables 71.9 84.4 59.7 50.9 92.1
CodeT5-Large CC, w/ Tables 72.8 84.7 58.7 52.0 92.1
T5-Base — 60.8 74.1 499 424 93.7
T5-Base RC, w/ Tables 64.5 779 51.9 44.5 93.2
T5-Base RC, SQL-only 61.7 77.8 52.4 42.8 934
T5-Base CC, w/ Tables 60.5 79.5 49.9 41.3 93.9
T5-Base CC, SQL-only 59.2 79.5 46.8 38.9 94.0
CodeT5-Base — 67.1 76.0 54.4 47.2 93.5
CodeT5-Base  RC, w/ Tables 69.0 83.5 55.6 47.7 92.9
CodeT5-Base  CC, w/ Tables 69.2 84.5 54.7 46.9 934

Table 3: Development set performance on SQL benchmarks for both the original T5-base, T5-large, CodeT5-base,
and CodeT5-large checkpoints, as well as our results with additional pretraining on our structured knowledge
pretraining dataset. All STAMP checkpoints train with a 50/50 mixture of context-to-output and MLM-based
objectives. STAMP results are separated by variations in the pretraining data, specifically CC and RC denote
column- and row-centric table formats, respectively, and w/ Tables denotes the full pretraining dataset described in 3
whereas the SQL-only subset omits the Text+Table datasets. The best performer at each model size is shown in bold.

and CodeSTAMP models. Relative to their T5* and
STAMP counterparts, the base-sized CodeT5 and
CodeSTAMP models show significant performance
gains across all text-to-SQL benchmarks. In par-
ticular, models based on the CodeT5-base check-
point show exceptional performance when given
row information in the tables, as is the case for Wik-
iSQL. Interestingly, models based on CodeT5 do
not exhibit the same performance gains compared
to those based on T5 for large-sized models. In
fact, models based on CodeT5-large only excel at
WikiSQL, whereas models based on T5-large excel
in all other tasks. We hypothesize that large-sized
models based on CodeT5 do not outperform their
peers in the same way as the base-sized models
due to scaling issues caused by CodeT5’s much
smaller CodeSearchNet (Husain et al., 2020) pre-
training dataset, especially when using a smaller
dataset to train the larger model. Additionally, we

3Our results for T5-Large on Spider, SParC, and CoSQL
differ from Xie et al. (2022) and Scholak et al. (2021). On Spi-
der we achieve 3.4%-points higher than Xie et al. (2022), and
4.5%-points higher than Scholak et al. (2021). In our imple-
mentation we use a maximum input sequence length of 1024
and an output sequence lengths of 256 to avoid truncation.

see that models based on CodeT5 checkpoints tend
to perform worse on SQL2Text, which is likely
because natural language in CodeT5’s original pre-
training data is limited to comments in code, and
hence the ability to generate natural language may
be underdeveloped relative to TS.

5 Conclusion

We present STAMP, a pretraining framework for
encoder-decoders on SQL tasks. We introduce
a large scale pretraining dataset of tables, SQL
code, discussions on Stack Overflow, and a modi-
fied TAPEX dataset (Liu et al., 2022). We comple-
ment our data with a multi-task learning framework
to align the data modalities, finding that an equal
mix of the objectives is optimal. We explore both
row- and column-centric approaches to lineariz-
ing tables, creating a unified format across training
stages. A column-centric format is often superior,
challenging the conventional row-centric approach.
Lastly, while PL pretraining may help generaliza-
tion (Athiwaratkun et al., 2022), STAMP models
based on T3 yield better performance.
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6 Limitations

While our work displays many strengths, we high-
light some important limitations in our analysis.
Namely, we pretrain our STAMP models on a range
of sources containing structured knowledge, how-
ever our analysis is limited to text-to-SQL tasks and
does not demonstrate if such pretraining helps more
generally in structured information tasks. For in-
stance, STAMP pretrains on tables with (1) masked
column recovery as a way to learn the structure of a
table using the rows and natural language statement
as context, and (2) a context-to-output objective
that always includes the table in the context (when
available) — since this matches the format of text-
to-SQL tasks. It is unclear if our objective choices
for pretraining on tables perform equally well on
the range of structured knowledge tasks, such as ta-
ble question-answering, table summarization, data-
to-text, fact verification, and others explored in Xie
et al. (2022). Second, we acknowledge that signif-
icant GPU resources are required for pretraining,
even in continued pretraining approaches like ours
which limit the breadth of ablations studies. Con-
versely, our work explores pretraining at smaller
scales where certain phenomena like strong zero-
shot performance is unlikely. Pretraining specif-
ically on structured knowledge has an unknown
value at larger scales with models having tens or
hundreds of billions of parameters.
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We acknowledge the importance of the ACL Ethics
Policy and agree with it. Large language models
can appear confident while providing false infor-
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A Pretraining Dataset Details

A.1 Stack Overflow Augmentations

We perform several augmentation steps on Stack
Overflow examples to construct our pretraining
dataset. Our first step is to create four augmented
versions of each question using random word dele-
tion, random word appending, synonym replace-
ment, and paraphrasing. Next, we create up to
five different combinations of input-label pairs by
re-arranging the answers.

For some pertinent background on Stack Over-
flow, each example consists of a question and one
or more answers. The user who answered the ques-
tion can mark the answer that solved their problem
as correct, and other users can upvote answers that
they found useful as well.

Let N be the number of answers for a question.
The following strategies are used to create the la-
bels for the augmented examples:

1. The accepted answer (if there is one)

2. The most upvoted answer if it has been up-
voted more than the accepted answer
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3. Concatenation of all answers

4. Randomly select an answer A; and append
all answers up to and including that one to
the question, then use the concatenation of all
Air1, Ajra ... An answers as the label

5. Randomly select an answer, A;, and append
all answers up to and including that one to the
question. Randomly select another answer,
Ay, from the remaining A;11, Ajqo... An
answers and use the concatenation of all
Apy Agy1 - .. An answers as the label

Each of these strategies is constrained by a total
sequence length of 1024 tokens. If we need to trun-
cate any tokens, we truncate them in the following
order:

1. Text in Answer
2. Code in Question
3. Text in Question

Our intuition is that this is the order of least im-
portant to most important to preserve the logical
relationship between question and answer, with
code in the answer being the most critical (which
is never truncated).

A.2 Data Filtering

As briefly mentioned in 3.1, we filter noisy exam-
ples from both the table and SQL dataset. Below
we provide more details on this pre-processing step.

Table Filtering Since table data is often web-
scraped it contains many noisy examples. Specif-
ically, examples where the table information has
a tenuous relation to the paired natural language
statement. Moreover, since our initial collection
of raw data was much larger for table sources ver-
sus SQL source, we chose to implement a filtering
approach to reduce these noisy examples. Specifi-
cally, we first calculate the edit-similarity between
each sample’s table and the NL statement, after
removing special tokens or tags. We then compute
the same metric on ToTTo, which is a high-quality
table-to-text benchmark, and qualitatively chose
our filtering threshold as 50.0 which is slightly
lower than ToTTo’s average edit-similarity. All
samples from our Wiki, Web, and ArXiv tables
datasets with an edit-similarity below 50.0 are re-
moved. In total we remove approximately 74% of
samples from the raw data.

Github SQL Filtering For the Github SQL data
we again see a large proportion of noisy or repeti-
tive samples in the raw data. Specifically, Github
SQL data can contain many repetitive statements
within one sample, such as thousands of consecu-
tive INSERT statements that data into a table. The
insert statements are often either very repetitive, or
contain very noisy information like compressed im-
ages, PDFs, or spatial objects. Our filtering method
largely consists of using regular expression to iden-
tify such repetitive statements. After finding long
sequences of insert statements we keep only a ran-
dom sample of 10 insert statements if the insert
statements are repetitive but not overly long or un-
readable. However, we remove all insert statements
that load noisy information into a table. In total
the number of samples staying approximately the
same, however we reduce the size of the dataset by
approximately 61%.

A.3 Pretraining Dataset Statistics

In Table 4 we provide summary statistics for the
pretraining dataset, including each of the SQL and
Table subsets. Raw document counts help to show
the amount of filtering applied to the raw data in
order reduce noisy and potentially detrimental sam-
ples, whereas the final training sample counts show
the training dataset size after tokenizing and parti-
tioning documents into sequences.

B Pretraining Hyperparameters

Batch size. For 3B and large models we train for
at a small batch size of 64 for the first epoch, then
for most of the second and third epoch we double
the batch size to 128, and then for the final 5-10%
of training we double the batch size again to 256.
Starting with a small batch size provides better
gradient efficiency, while larger batch sizes give
more precise gradient estimates which is beneficial
later in training (Smith et al., 2017). For base sized
models we opt for a batch size of 128 for all three
epochs before the cooldown period.

Sequence length. Data are pre-processed and to-
kenized offline into sequences of at most 1024 to-
kens. We do not pack inputs, and instead use one
example in per input and then pad accordingly. For
the larger T5-3B model we found that training for
the first 75-90% of steps on data pre-processed into
a shorter max sequence length of 768 or 896, and
then the remainder of training on data with 1024
tokens provided improved computational efficiency
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Num. Raw Documents Num. Training Avg. Number of Tokens

Data Source Modalities Initial (K) Filtered (K) Samples (K) Context Output Total

Github SQL SQL 1,026 1,019 1,918 280 +272 283 £273 563 +£545
Stack Overflow NL, SQL 1,670 1,631 4,480 318 £215 289 £192 607 +407
Aug. TAPEX NL, Table, SQL 2,165 2,165 2,005 471 £210 30 +£14 501 +224
Wiki Tables NL, Table 6,350 3,080 3,080 148 £117 98 £68 246 +185
Web Tables NL, Table 32,295 7,032 7,032 142 £79 132497 274 +176
ArXiv Tables NL, Table 119 24 24 275 £154 184 £141 459 £295
Full Dataset ~ NL,Table, SQL | 43,766 14,991 | 18612 | 189+161 149 +139 338 +300

Table 4: STAMP Pretraining dataset statistics by source. After the raw documents are filtered, we create training
examples by partitioning documents into sequences of 1024 tokens which can result in more training samples than
the initial set of raw documents. In the case of Stack Overflow we also augment the data creating a much larger
collection of training samples from the initial pool of documents. Note: Raw document counts and final number of

training samples are listed in thousands (K), the final pretraining dataset contains 18,612,078 samples.

without a discernible degradation in performance.
Encoder inputs begin with a special token indicat-
ing the data modality, and the decoder inputs begin
with a special token indicating the desired task. All
sequences end with the same end of sequence token
as Raffel et al. (2020).

Optimization. All models are pretrained with the
AdamW (Kingma and Ba, 2015) optimizer, using
an initial learning rate of le-4, and set momen-
tum of /1 = 0.9 and B2 = 0.98. Our learning
rate warms-up linearly over the first 1% of train-
ing steps, and then decays following a fixed cosine
annealing schedule to le-7 after approximately 3
epochs. We set a gradient norm clipping with a
maximum gradient norm of 1.0 (Pascanu et al.,
2013). We train models based on T5 (Raffel et al.,
2020) using the bf16 data type, whereas for models
based on CodeT5 (Wang et al., 2021b) we use the
fp16 data type in order to match the data type from
prior pretraining. We fix the weight decay to 0.01
for all models.

C Evaluation Settings

For finetuning we follow the experimental setup
of UnifiedSKG (Xie et al., 2022). Specifically, we
use the Adafactor optimizer with decaying learning
rate that is initially set to S5e-5, we set the batch
size to 32, train for up to 200 epochs, and generate
sequences using a beam size of 1. However, for
WikiSQL we set a batch of 128, train for a maxi-
mum of 100 epochs, and use a beam size of 4. We
use the same maximum lengths for the input and
output as UnifiedSKG, except for Spider, SParC,
and CoSQL where we increase input maximum
length to 1024 and output to 256 sentence piece
tokens to avoid truncating the inputs or outputs.

Pretrained Finetune | Spider  Sup. WikiSQL  SParC  CoSQL
Model Method | (Exec 1) (EM 1) (EM?T) (EMT
STAMP-RC STF 74.4 78.9 61.4 53.7
STAMP-RC MTF 74.0 78.6 61.9 55.0
STAMP-CC STF 76.3 79.3 59.6 51.4
STAMP-CC MTF 73.9 79.1 61.3 54.2
CodeSTAMP-RC  STF 74.5 84.3 58.8 50.6
CodeSTAMP-RC MTF 733 83.9 59.4 51.9
CodeSTAMP-CC  STF 72.8 84.7 58.7 52.0
CodeSTAMP-CC MTF 71.3 835 58.3 50.8

Table 5: Development set performance on text-to-SQL
benchmarks for large sized TS, STAMP CodeTS5, and
CodeSTAMP that are either Single-Task Finetuned
(STF) on each dataset individually, or Multi-Task Fine-
tuned (MTF) on all text-to-SQL datasets simultaneously.
All STAMP checkpoints are pretrained with a 50/50 mix-
ture of context-to-output and MLM-based objectives on
the full pretraining dataset. STAMP results differenti-
ated by whether they’re trained with column- CC or row-
centric RC table formats. We highlight results where
multi-task finetuning outperforms single-task finetuning
on an equivalent model in bold.

D Evaluation Datasets

We evaluate our model on each of the aforemen-
tioned datasets using the standard metrics for each
task. We use the standard train, validation, and test
splits for each of the datasets.

Spider The Spider dataset has 10,181 question-
query pairs with queries using 200 databases rep-
resenting 138 different domains and tables that are
joined via foreign keys. We use the standard train-
ing and development splits, where training, devel-
opment, and test sets have a 7:1:2 ratio, and each
database appears in only one set (Yu et al., 2019b).

Fully Supervised WikiSQL The WikiSQL
dataset has 80,564 question-query pairs, involving
over 30,000 tables from Wikipedia (Zhong et al.,

11080



Spider” Sup. WikiSQL SParC* CoSQLY SQL2Text
Model # Params (EM 1/ Exec 1) (EM 1: Dev / Test) (EM 1/ Exec 1) (EM 1/ Exec 1) (BLEC 1: Dev / Test)
(ours) STAMP-Large RC 770M 71.6+0.3/75.0£0.9 78.8+0.2/79.5+0.2 60.94+0.5/66.0+£0.6 53.7+0.3/61.9+0.5  93.5+0.4/94.840.3
(ours) STAMP-Large CC 770M 71.440.4/749+1.4 79.040.5/79.740.2 59.840.2/64.3+0.2 51.8+0.5/59.540.7 93.4+0.6/93.7+0.5
(ours) CodeSTAMP-Large RC  770M 70.5+0.3/74.340.3 84.340.1/84.340.3 59.14+0.4/63.5+0.8 51.5+1.1/59.740.6  92.240.4/91.8+0.3
(ours) CodeSTAMP-Large CC  770M 68.3+1.2/72.0+1.5 84.5+0.2/84.6+0.1 58.0+0.6/62.841.0 51.6+0.5/58.5+0.1  92.3+0.2/94.3+1.7
(ours) STAMP-3B RC 3B 74.3+1.1/78.0£0.3 79.4+0.1/80.0+0.1 63.9+£1.0/68.7+1.2 56.2+1.0/66.1+£1.2  92.8+0.4/93.2+0.6

Table 6: Average performance on SQL benchmarks over three finetuning runs with standard deviations. All
STAMP checkpoints train with a 50/50 mixture of context-to-output and MLM-based objectives. STAMP results
are separated by variations in the pretraining data, specifically CC and RC denote column- and row-centric table
formats, respectively, and w/ Tables denotes the full pretraining dataset whereas SQL-only is a subset that omits the
NL+Table datasets. Note: A dagger (1) indicates datasets where only a development set is available for assessing

variance in performance, and models in italics are our work.

2017). We use the standard train, validation, and
test splits for WikiSQL, providing 56,355 exam-
ples are set reserved for training. Note each table
in WikiSQL is present in exactly one of the data
splits.

SParC The SParC dataset consists of 4,298 ques-
tion sequences with 12,726 question-SQL pairs and
200 databases spanning 138 domains (Yu et al.,
2019c). SParC is built on Spider, however for
SParC the question sequence is based on asking
inter-related Spider questions. The question se-
quences are then paired with a manually annotated
SQL query. Similar to Spider a 7:1:2 ratio is used
to split the data into training, development, and test
sets.

CoSQL The CoSQL dataset consists of 30k+
turns and 10k+ corresponding SQL queries along
with 200 complex databases belonging to 138 do-
mains, representing a large-scale cross-domain con-
versational setting (Yu et al., 2019a). Conversa-
tions are presented as between a user and a system,
where the user provides a natural language descrip-
tion of a data table and the system must generate
the corresponding SQL query. The conversational
style of the dataset simulates the process of users
asking clarifying questions to the system. Similar
to Spider and SParC, CoSQL splits data into train-
ing, development and test sets with a ratio of 7:1:2,
where each database appears in only one data split.

SQL2Text The SQL2Text dataset consists of
5,600, 1,400, and 1,034 train, development, and
test examples, respectively (Shu et al., 2021). The
dataset is natural language descriptions paired with
their corresponding SQL queries.

E Additional Results

Single- versus Multi-Task Learning We ex-
plore the benefits of finetuning and evaluating ei-
ther individually on each dataset (Single-Task Fine-
tuning, STF) versus finetuning on all of the text-to-
SQL benchmarks simultaneously then evaluating
(Multi-Task Finetuning, MTF). For multi-task fine-
tuning we balance the size of different datasets
during training using the temperature up-sampling
method proposed in Xie et al. (2022) and set the
temperature to 2. The results of the ablation are
presented in Table 5. We find mixed the results of
multi-task finetuning. In almost every model MTF
results in noticably better performance on the con-
versational SQL datasets SParC and CoSQL, how-
ever results for Spider and WikiSQL are slightly
worse. We suspect that the close similarity between
SParC and CoSQL explains the mutual benefit of
multi-task finetuning. On the other hand, Spider
uses a schema-only input format, whereas Wik-
iSQL includes database content and is typically
less difficult than Spider.

Performance Confidence Intervals In Table 6
we report more a more detailed look at our main
results. Specifically, we report the average perfor-
mance of our models over three finetuning runs and
list the standard deviation in the performances.
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