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Abstract
Meta-learning has emerged as a trending tech-
nique to tackle few-shot text classification and
achieve state-of-the-art performance. How-
ever, the performance of existing approaches
heavily depends on the inter-class variance of
the support set. As a result, it can perform
well on tasks when the semantics of sampled
classes are distinct while failing to differentiate
classes with similar semantics. In this paper,
we propose a novel Task-Adaptive Reference
Transformation (TART) network, aiming to
enhance the generalization by transforming
the class prototypes to per-class fixed refer-
ence points in task-adaptive metric spaces. To
further maximize divergence between trans-
formed prototypes in task-adaptive metric
spaces, TART introduces a discriminative ref-
erence regularization among transformed pro-
totypes. Extensive experiments are conducted
on four benchmark datasets and our method
demonstrates clear superiority over the state-
of-the-art models in all the datasets. In partic-
ular, our model surpasses the state-of-the-art
method by 7.4% and 5.4% in 1-shot and 5-shot
classification on the 20 Newsgroups dataset,
respectively. Our code is available at https:
//github.com/slei109/TART

1 Introduction

Deep learning has achieved great success in many
fields but a deficiency of supervised data is often
experienced in real-world NLP applications. Few-
shot text classification aims to perform classifica-
tion with a limited number of training instances,
which is crucial for many applications but remains
to be a challenging task.

Existing approaches for few-shot text classifi-
cation mainly fall into two categories: i) prompt-
based learning (Brown et al., 2020; Gao et al., 2021;
Wang et al., 2021), which utilizes Pre-trained Lan-
guage Models (PLMs) to generate a textual answer
in response to a given prompt. Although produc-
ing promising results, these methods suffer from

Class Testing Sample

Task 1: 
Support class:
1,2,3,4

Task 2: 
Support class:
1,2,3,5

MLADA Ours MLADA Ours

1 Animal photos of the week: baby tiger goes for a swim. 1 1 1 1

2 Twitter helps confirm X-shaped bulge at Center of Milky Way. 4 2 2 2

3
Toronto van attack suspect's Facebook post praised misogynist 

mass killer.
4 3 2 3

4 Apple just solved one of the iphone's most harmful features. 2 4 - -

5 Apple fritter season is here, and so are the recipes you’ll need. - - 5 5

Class 1: Environment Class 2: Science Class 3: World News Class 4: Tech Class 5: Taste

Figure 1: Prediction results of example tasks with
different inter-class variance on the Huffpost dataset.
MLADA (Han et al., 2021) performs well on the task
with high inter-class variance (e.g., Task 2: Environment,
Science, World News, Taste), while it fails to distinguish
the samples from a task with low inter-class variance
(e.g., Task 1: Environment, Science, World News, Tech).

(1) requiring a large PLM to function properly;
and (2) favoring certain issues which can be natu-
rally posed as a “fill-in-the-blank” problem and do
not contain many output classes, rendering them
inapplicable in many real-world scenarios. For in-
stance, it is hard to run the large-scale model on
devices with limited computing resources, like mo-
bile devices. ii) meta-learning (Finn et al., 2017;
Snell et al., 2017), also known as “learning to
learn”: it improves the model’s capacity to learn
over multiple training tasks, allowing it to quickly
adapt to new tasks with only a few training in-
stances. Since meta-learning-based methods (Gao
et al., 2019; Bao et al., 2019; Han et al., 2021)
rely on learned cross-task transferable knowledge
rather than recalling pre-trained knowledge gained
through PLMs, these methods have no constraints
on the target problem and are broadly studied on
the small-scale model, making them more applica-
ble to real-world applications.

Despite the extraordinary effectiveness, we no-
tice that current meta-learning-based approaches
may have several limitations. For those methods
that learn to represent each class independently in
one feature space (Snell et al., 2017; Gao et al.,
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Figure 2: Feature representations in original metric
space (bottom) and task-adaptive metric space (top).

2019; Han et al., 2021), their performance is heav-
ily dependent on the inter-class variance of the sup-
port set. Specifically, they address the overfitting
issue in few-shot learning by directly adopting the
hidden features of support samples as a classifier.
Thus, they can perform well on tasks when the sam-
pled classes are distinct while failing to differenti-
ate classes with similar semantics. As illustrated in
Figure 1, MLADA (Han et al., 2021), which leads
to state-of-the-art performance, misclassifies the
testing samples of Science, World News and Tech
during the testing stage, mostly because Science
and Tech are similar and all three samples contain
technology companies, which are difficult to dis-
tinguish. If we substitute the support class Science
with Taste, which has clearly different semantic
from Tech, it can recognize all testing samples ex-
cept the third one. This example indicates that
ignoring task-specific features and treating all tasks
identically is inadequate. It is essential to consider
the inter-class variance of support sets, particularly
when annotated data is scarce. Recently, Bao et al.
(2019) leveraged distributional signatures to esti-
mate class-specific word importance. However, it
requires extracting relevant statistics of each word
from the source pool and the support set for each
task, which is time-consuming. A natural ques-
tion arises: how can we design an efficient method
capable of capturing both cross-task transferable
knowledge and task-specific features to enhance
the model’s generalization ability?

To tackle these issues, we resort to constructing
a task-adaptive metric space via the meta-learning
framework. Figure 2 presents the key idea of
the proposed method. Intuitively, for comparable
classes that cannot be distinguished in the original
feature space, if we can project their class proto-
types to per-class fixed points, referred to as refer-
ence points, in another small space, it is helpful to
enhance the divergence between class prototypes
in the transformed space. Consequently, we pro-

pose a novel Task-Adaptive Reference Transfer
Module that uses a linear transformation matrix
to project embedding features into a task-specific
metric space. In addition, we design a discrim-
inative reference regularization to maximize the
distance between transformed prototypes in the
task-adaptive metric space for each task. We find
the proposed method promotes the model to learn
discriminative reference vectors and construct a
stable metric space.

Our key contributions can be summarized as fol-
lows. 1) We propose a Task-Adaptive Reference
Transformation (TART) network for few-shot text
classification. The model enhances the generaliza-
tion by transforming the class prototypes to per-
class fixed reference points in task-adaptive met-
ric spaces. 2) We propose a novel discriminative
reference regularization to maximize divergence
between transformed prototypes in task-adaptive
metric spaces to further improve the performance.
3) We evaluate the proposed model on four popular
datasets for few-shot text classification. Compre-
hensive experiments demonstrate that our TART
consistently outperforms all the baselines for both
1-shot and 5-shot classification tasks. For instance,
our model outperforms MLADA (Han et al., 2021)
model by 7.4% and 5.4% in 1-shot and 5-shot clas-
sification on the 20 Newsgroups dataset, respec-
tively.

2 Related Work

Few-shot learning Few-shot learning aims to learn
a new concept representation from only a few
annotated examples. Most existing works can
be categorized into three groups: (1) Gradient-
based meta-learners, including MAML (Finn et al.,
2017), MAML++ (Antoniou et al., 2018), and
MetaNets (Munkhdalai and Yu, 2017). The promi-
nent idea is to learn a proper initialization of the
neural network, one can expect the network to
adapt to novel tasks via backpropagation from lim-
ited samples. (2) Graph neural network (Garcia
and Bruna, 2017; Liu et al., 2019) based meth-
ods, which cast few-shot learning as a supervised
message passing task and utilize graph neural net-
works to train it end-to-end. (3) Metric-based meth-
ods (Vinyals et al., 2016; Snell et al., 2017; Sung
et al., 2018), which aim to optimize the transfer-
able embedding using metric learning approaches.
Specifically, Matching networks (Vinyals et al.,
2016) learns sample-wise metric, where distances
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to samples are used to determine the label of the
query. Prototypical Networks (Snell et al., 2017)
extends the idea from samples to class-wise met-
ric, where all the samples of a specific class are
grouped and considered as class prototypes. Then
the prototypes are subsequently used for inference.

Transfer learning and Prompt learning for
PLMs Few-shot text classification relates closely
to transfer learning (Zhuang et al., 2020) that aims
to leverage knowledge from source domains to tar-
get domains. Fine-tuning Pre-trained Language
Models (PLMs) (Devlin et al., 2018; Raffel et al.,
2020; Brown et al., 2020; Lei et al., 2022) can
also be viewed as a type of transfer learning. Re-
cently, Gao et al. (2021) proposed a prompt-based
approach to fine-tune PLMs in a few-shot learning
setting for similar tasks, which adapts PLMs to
producing specific tokens corresponding to each
class, instead of learning the prediction head. Meta-
learning deviates from these settings by learning
to quickly adapt the model to different tasks with
little training data available (Wang et al., 2021),
typically formulated as a N -way K-shot problem.

Few-shot text classification Few-shot text clas-
sification has gained increasing attention in recent
years. Yu et al. (2018) used an adaptive metric
learning approach to select an optimal distance met-
ric for different tasks. Induction Network (Geng
et al., 2019) aims to learn an appropriate distance
metric to compare validation points with train-
ing points and make predictions through match-
ing training points. DMIN (Geng et al., 2020) uti-
lizes dynamic routing to provide more flexibility to
memory-based few-shot learning in order to adapt
the support sets better. Bao et al. (2019) leveraged
distributional signatures (e.g. word frequency and
information entropy) to train a model within a meta-
learning framework. Another group of methods is
to improve performance with the help of additional
knowledge, including pre-trained text paraphrasing
model (Dopierre et al., 2021; Chen et al., 2022)
and class-label semantic information (Luo et al.,
2021). Recently, Hong and Jang (2022) constructed
a meta-level attention aspects dictionary and deter-
mined the top-k most relevant attention aspects
to utilize pre-trained models in few-shot learning.
MLADA (Han et al., 2021) is an adversarial net-
work, which improves the domain adaptation abil-
ity of meta-learning. However, none of these meth-
ods consider task-specific features, which is a key
factor for few-shot text classification.

3 Model

In this section, we initially discuss the problem
setting of few-shot text classification. Then, the
overview of the proposed TART is presented in
Section 3.2. The technical details for the Task-
Adaptive Reference Transfer Module and Discrim-
inative Reference Regularization are described in
Sections 3.3 and 3.4, respectively.

3.1 Problem Setting

In N -way K-shot text classification, the objective
is to train a model fθ(·) that can classify a given
query example using the support set S , which com-
prises K examples for each of the N different
classes considered. Note that fθ(·) has not been
pre-trained on any large datasets in advance. In
accordance with prior works (Bao et al., 2019; Han
et al., 2021), we use the episode training and testing
protocols on account of their effectiveness.

Consider that we are given texts from two non-
overlapping sets of classes Ctrain and Ctest, i.e.,
Ctrain ∩ Ctest = ∅. The training set Dtrain is
constructed from Ctrain, whereas the test set Dtest

is derived from Ctest. The model fθ(·) is trained
on Dtrain and evaluated on Dtest. Both the train-
ing set Dtrain and testing set Dtest are comprised
of multiple episodes. Each episode consists of a
support set S = {(xi, yi)}N×K

i=1 and a query set
Q = {(xj , yj)}Qj=1, where x represents a text, y is
a corresponding class label and Q is the number of
query samples. Due to the fact that each episode
comprises distinct classes, the model is trained to
generalize effectively to few-shot scenarios. After
meta-training is completed, we evaluate the per-
formance of its few-shot text classification on the
test set Dtest over all the episodes. For better un-
derstanding, we denote “episode" as “task" in the
following context.

3.2 Overview

In this work, we resort to constructing a task-
adaptive metric space to boost the performance
of few-shot text classification. In contrast to pre-
vious approaches that construct the metric space
using task-agnostic features, we propose to con-
struct a task-adaptive metric space that enlarges the
relative differences among sampled classes within
a task. Figure 3 illustrates an overview of the pro-
posed TART model. Using a shared feature ex-
tractor, we encode contextual embeddings of the
support and query texts for each episode. Each
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Figure 3: Illustration of the pipeline of TART for a 3-way 3-shot task with three query examples. After obtaining the
embeddings of support and query inputs, the Task-Adaptive Reference Transfer Module is introduced to transform
the embedding features into task-specific ones with a linear transformation matrix. Then, the query texts are
classified by measuring the distance between each transformed prototype and transformed query embeddings in the
task-adaptive metric space.

class prototype is produced by averaging the sup-
port contextual embeddings. Then, we offer a novel
module, dubbed Task-Adaptive Reference Transfer
Module, to construct a task-adaptive metric space
and project contextual embeddings from the task-
agnostic space to task-specific ones. The classifica-
tion of the query texts is accomplished by assigning
each text the category of the closest prototype in
the newly generated task-specific metric space. To
learn discriminative reference vectors and construct
a stable metric space, we also propose Discrimina-
tive Reference Regularization (DRR), which mea-
sures the distance between transformed prototypes
in the task-adaptive metric space.

3.3 Task-Adaptive Reference Transfer
Module

The key idea of the Task-Adaptive Reference Trans-
fer Module is to acquire a feature transformer to
construct a task-adaptive metric space. Intuitively,
for comparable classes that cannot be distinguished
in the original feature space, if we can project their
class prototypes to per-class fixed points, referred
to as reference points, in another small space, it is
helpful to enhance the divergence between class
prototypes in the transformed space. Below, we
describe how to construct a task-adaptive metric
space and make a classification based on it.

Different from learning a non-linear transforma-
tion matrix directly, our model adopts a linear trans-
formation matrix calculated by using the reference
layer and the prototypes of the support set. This
can effectively avoid overfitting since it introduces
fewer learnable parameters. First, we introduce a

set of reference vectors {r1, . . . , rN} as the fixed
points for the transformed space, which are learned
via a linear layer, dubbed reference layer. We use
the weight matrix of the reference layer and the
prototype set of the support contextual embedding
to compute the transformation matrix. Formally,
let R represent the weight matrix of the reference
layer and P denote the prototype matrix of the sup-
port texts. We construct the transformation matrix
W by finding a matrix such that PW = R.

Specifically, given a N -way K-shot episode
(task), each class prototype is obtained by aver-
aging the support contextual embeddings:

pc =
1

|Sc|
∑

(xi,yi)∈Sc

fθ(xi), (1)

where Sc denotes the support samples for the class
c. Accordingly, the reference weight matrix R is de-
fined as [ r1

∥r1∥ , . . . ,
rN

∥rN∥ ], where R ∈ RN×E . Note
that each row in R is the per-class reference vector
and is learned during the training stage. In general,
P is a non-square matrix and we can calculate its
generalized inverse (Ben-Israel and Greville, 2003)
with P+ = {P TP}−1P T . Thus, the transforma-
tion matrix is computed as W = P+R, where
W ∈ RE×E .

For each query input, we calculate the probabil-
ity of belonging to class c by applying a softmax
function over the distance between the transformed
query embeddings and each transformed prototype
in the task-adaptive metric space. Concretely, given
a distance function d, for each query input xq and
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prototype set P = {p1, . . . ,pN}, we have

p(y = c|xq) =
exp (−d(fθ(xq)W,pcW ))∑
pc∈P exp (−d(fθ(xq)W,pcW )

(2)

The distance function d commonly adopts the co-
sine distance or squared Euclidean distance. Learn-
ing proceeds by minimizing the classification loss
Lcls, which is formatted as:

Lcls =
1

|Q|
∑

xq∈Q
[d(fθ(xq)W,pcW )

+ log
∑

pc∈P
exp (−d(fθ(xq)W,pcW ))]

(3)

3.4 Discriminative Reference Regularization
To further improve TART, we propose a Discrimi-
native Reference Regularization (DRR) for more
discriminative metric spaces. Since the transfor-
mation matrix is only decided by the reference
layer and the prototype set of the given task, these
task-independent reference vectors are the key ele-
ments to constructing discriminative metric spaces.
For training the reference vectors, we propose to
maximize the distance between all transformed pro-
totypes in the task-adaptive metric spaces during
training. Different from contrastive learning, our
DRR requires no additional data and focuses more
on learning task-independent reference vectors in-
stead of the feature encoder for the downstream
task. Formally, for a particular episode, given the
prototype set P = {p1, . . . ,pN} and the transfor-
mation matrix W , the discriminative loss Ldrr is
defined as:

Ldrr =
∑

i ̸=j,p∈P
−d(piW,pjW ) (4)

The total loss for training our TART model is thus
L = Lcls + λLdrr, where λ serves as regulariza-
tion strength. Empirically, we set λ = 0.5 in our
experiments.

For better understanding, the whole training pro-
cedure for TART is summarized in Algorithm 1.
The model parameters and reference layers are ran-
domly initialized. Given each training episode, we
randomly chose T episodes of the support set and
query set from the training dataset, each episode
consists of K labeled samples over N classes.
Then, with the support set Sc for class c, the proto-
type pc is obtained for each class (in line 5). Based
on the prototype set and the reference layers, the

Algorithm 1 TART Training Procedures
Input: A feature encoder fθ , a training set
Dtrain = {(S1,Q1), . . . , (ST ,QT )}, reference
layers {r1, . . . , rN}.

1: Randomly initialize the model parameters and reference
layers.

2: for each episode (Si,Qi) ∈ Dtrain do
3: Lcls ← 0, Ldrr ← 0
4: for k in {1, . . . , N} do
5: pc ← 1

|Sc|
∑

(xi,yi)∈Sc
fθ(xi)

6: end for
7: R← [ r1

∥r1∥ , . . . ,
rN

∥rN∥ ]

8: Pi ← [ p1
∥p1∥ , . . . ,

pN
∥pN∥ ]

9: Wi = {PT
i Pi}−1PT

i R
10: for k in {1, . . . , N} do
11: for (x, y) inQi do
12: Compute Lcls using Eq.3
13: end for
14: end for
15: Compute Ldrr using Eq.4
16: Update model parameters minimizing L via optimizer
17: end for

transformation matrix W is computed as a task-
adaptive projection matrix (in lines 7-9). For each
query input, the distances between the transformed
query embeddings and each transformed prototype
are measured in the task-adaptive metric space, and
the classification loss Lcls is computed using these
distances (in lines 10-12). The discriminative loss
is obtained over the prototype set for each episode
(in line 15). The learnable parameters of the fea-
ture encoder and the reference layers are updated
based on the total loss L (in line 16). This process
gets repeated for every remaining episode with new
classes of texts and queries.

4 Experiments

4.1 Datasets

We use four benchmark datasets for the evaluation
of few-shot text classification task, whose statistics
are summarized in Table 1.

HuffPost headlines consists of news head-
lines published on HuffPost between 2012 and
2018 (Misra, 2018). These headlines are split into
41 classes. In addition, their sentences are shorter
and less grammatically correct than formal phrases.

Amazon product data contains product reviews
from 24 product categories, including 142.8 million
reviews spanning 1996-2014 (He and McAuley,
2016). Our task is to identify the product categories
of the reviews. Due to the huge size of the original
dataset, we sample a subset of 1,000 reviews from
each category.

Reuters-21578 is collected from Reuters arti-
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Dataset # samples Avg. # tokens/sample Vocab size # train/val/test classes
Huffpost 36,900 11 8,218 20/5/16
Amazon 24,000 140 17,062 10/5/9
Reuters 620 168 2,234 15/5/11

20 Newsgroups 18,820 340 32,137 8/5/7

Table 1: Statistics of the four benchmark datasets. Avg. # tokens/sample denotes the average tokens per sample.

cles in 1987 (Lewis, 1997). We use the standard
ApteMode version of the dataset. Following Bao
et al. (2019), we evaluate 31 classes and eliminate
articles with multiple labels. Each class comprises
a minimum of twenty articles.

20 Newsgroups is a collection of approximately
20,000 newsgroup documents (Lang, 1995), parti-
tioned equally among 20 different newsgroups.

4.2 Baselines.

We compare our TART with multiple competitive
baselines, which are briefly summarized as follows:
(i) MAML (Finn et al., 2017) is trained by maxi-
mizing the sensitivity of the loss functions of new
tasks so that it can rapidly adapt to new tasks once
the parameters have been modified via a few gradi-
ent steps. (ii) Prototypical Networks (Snell et al.,
2017), abbreviated as PROTO, is a metric-based
method for few-shot classification by using sample
averages as class prototypes. (iii) Latent Embed-
ding Optimization (Rusu et al., 2018), abbreviated
as LEO, learns a low-dimensional latent embed-
ding of model parameters and performs gradien-
t-based meta-learning in this space. (iv) Induc-
tion Networks (Geng et al., 2019) learns a class–
wise representation by leveraging the dynamic rout-
ing algorithm in meta-learning. (v) HATT (Gao
et al., 2019) extends PROTO by adding a hybrid
attention mechanism to the prototypical network.
(vi) DS-FSL (Bao et al., 2019) maps the distri-
bution signatures into attention scores to extract
more transferable features. (vii) MLADA (Han
et al., 2021) adopts adversarial networks to improve
the domain adaptation ability of meta-learning.
(viii) Frog-GNN (Xu and Xiang, 2021) extracts
better query representations with multi-perspective
aggregation of graph node neighbors. (ix) P-Tun-
ing (Liu et al., 2021) is a prompt-based method
that employs soft-prompting techniques to opti-
mize prompts in continuous space. (x) LEA (Hong
and Jang, 2022) determines the top-k most relevant
attention aspects to utilize pre-trained models in
few-shot learning.

4.3 Implementation Details

In accordance with prior work (Bao et al., 2019),
we use pre-trained fastText (Joulin et al., 2016) for
word embedding. As a feature extractor, we employ
a BiLSTM with 128 hidden units and set the num-
ber of hidden units for the reference layers to 256.
We take cosine similarity as the distance function.
The model is implemented in PyTorch (Paszke
et al., 2017) using the Adam (Kingma and Ba,
2014) optimizer with a 10−4 learning rate. For
the sake of a fair comparison, we follow the iden-
tical evaluation protocol and train/val/test split as
Bao et al. (2019). The model parameters and ref-
erence layers are randomly initialized. During
meta-training, we perform 100 training episodes
per epoch. Meanwhile, we apply early stopping if
the accuracy on the validation set does not increase
after 20 epochs. We evaluate the model perfor-
mance based on a total of one thousand testing
episodes and present the average accuracy across
five different random seeds. All experiments are
conducted with NVIDIA V100 GPUs.

4.4 Comparisons

The experimental results are shown in Table 2 in
terms of various datasets, methods, and few-shot
settings. As demonstrated in Table 2, our model
outperforms recent methods across all datasets,
with the exception of Amazon’s 1-shot setting. In
particular, our model achieves an average accu-
racy of 69.0% for 1-shot classification and 82.3%
for 5-shot classification. Our model surpasses
the state-of-the-art approach MLADA (Han et al.,
2021) by an average of 5.1% in 1-shot and 0.9%
in 5-shot, demonstrating the effectiveness of task-
adaptive metric space. Specifically, our method
delivers a substantial improvement, 9.9% in 1-shot
on Reuters, and 7.4% and 5.4% in 1-shot and 5-
shot on 20Newsgroup, respectively. The average
length of texts in these datasets is longer than in the
other datasets, verifying its superiority in the longer
texts. Moreover, we show that our model achieves
a more significant boost in the 1-shot than in the
5-shot, indicating that our model contributes more
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Method
HuffPost Amazon Reuters 20 News Average

1 shot 5 shot 1 shot 5 shot 1 shot 5 shot 1 shot 5 shot 1 shot 5 shot
MAML (2017) 35.9 49.3 39.6 47.1 54.6 62.9 33.8 43.7 40.9 50.8
PROTO (2017) 35.7 41.3 37.6 52.1 59.6 66.9 37.8 45.3 42.7 51.4
LEO* (2018) 28.8 42.3 39.5 52.5 35.4 54.1 36.4 52.2 35.0 50.3
Induct (2019) 38.7 49.1 34.9 41.3 59.4 67.9 28.7 33.3 40.4 47.9
HATT (2019) 41.1 56.3 49.1 66.0 43.2 56.2 44.2 55.0 44.4 58.4

DS-FSL (2020) 43.0 63.5 62.6 81.1 81.8 96.0 52.1 68.3 59.9 77.2
MLADA (2021) 45.0 64.9 68.4 86.0 82.3 96.7 59.6 77.8 63.9 81.4

LEA (2022) 46.2 65.8 66.5 83.5 69.0 89.0 54.1 60.2 58.9 74.6
TART w/o DRR 48.4 66.0 68.9 83.5 90.4 96.2 66.4 82.2 68.5 81.9

TART 46.9 66.8 70.1 82.4 92.2 96.7 67.0 83.2 69.0 82.3

Table 2: Results of 5-way 1-shot and 5-way 5-shot classification on four datasets. The bottom two rows present our
ablation study. *Reported by Hong and Jang (2022).

Method PLM EK
HuffPost Amazon Reuters 20 News Average

1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot
LEA × × 48.4 71.6 63.6 82.7 71.6 83.1 53.5 65.9 59.3 75.8

Frog-GNN × × 54.1 69.6 71.5 83.6 - - - - - -
P-Tuning ✓ × 54.5 65.8 62.2 79.1 90.0 96.7 56.2 77.7 65.7 79.8

ContrastNet × ✓ 53.1 65.3 76.1 85.2 86.4 95.3 71.7 81.6 71.8 81.9
TART × × 46.5 68.9 73.7 84.3 86.9 95.6 73.2 84.9 70.1 83.4

Table 3: 5-way 1-shot and 5-way 5-shot classification on four datasets using BERT. PLM denotes prompting language
model and EK denotes extra knowledge. Note that ContrastNet utilizes a pre-trained short-texts paraphrasing model
to generate data augmentation of texts.

to a generation of distinguishable class representa-
tion, particularly when the labeled class sample is
limited.

4.5 Ablation Study
We conduct extensive studies to examine the ef-
fects of DRR, contextualized representations and
reference vectors.

First, we study how the DRR affects the per-
formance of our model. The results are presented
at the bottom of Table 2. With the use of DRR,
the model can construct a more discriminative sub-
space for classification, especially in 1-shot set-
tings. This empirical study validates the effective-
ness of DRR in enhancing performance.

We also experiment with contextualized rep-
resentations, given by the pure pre-trained
bert-base-uncased model, dubbed
BERTBASE (Devlin et al., 2018). The re-
sults are shown in Table 3. We observe that
BERT improves classification performance for
the text-level dataset. Even while ContrasNet
requires a pre-trained short-texts paraphrasing
model to generate data augmentation, our model
can outperform it without requiring any additional
knowledge on the 5-shot setting.

The introduction of the reference vectors is to
enhance the divergence between class prototypes
in the metric space. Even though adding more lay-
ers to the feature encoder could theoretically make
it better, the small number of labeled samples is
probably causing it to overfit. Moreover, we inves-
tigate the performance of the feature encoder with
multiple layers. We adopt MLADA as the basic
model, which leads to state-of-the-art performance.
The results are shown in Table 4. We found that
the feature encoder with two layers of Bi-LSTM
achieves better performance than one layer in a
1-shot setting. But the accuracy decreases when
the number of layers increases further. In contrast,
our model uses a linear transformation matrix that
is figured out by using the reference layer and the
prototypes of the support set. This can effectively
enhance generalization while avoiding overfitting
since it introduces fewer learnable parameters.

4.6 Hyperparameter Analysis

We analyze the effect of different settings of hyper-
parameter λ. Table 5 demonstrates the accuracy
in different settings on the validation set of the
Reuters and 20 Newsgroup datasets. We discover
that λ = 0.5 yields the optimum performance, and
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(a) AVG (b) MLADA (c) TART

Figure 4: t-SNE visualization of the input representation of the classifier for a testing episode (N = 5, K = 5, Q =
100) sampled from 20 Newsgroups. Note that the 5 classes are not seen in training set. The input representation of
the classifier is given by (a) the average of word embeddings (b) MLADA and (c) TART (ours).

Method
HuffPost Amazon Reuters 20 News Average

1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot
1 layer Bi-LSTM 45.0 64.9 68.4 86.0 82.3 96.7 59.6 77.8 63.9 81.4
2 layer Bi-LSTM 45.2 65.2 67.1 83.7 85.5 96.4 64.0 78.6 65.5 81.0
3 layer Bi-LSTM 45.4 63.6 66.0 83.2 84.3 97.9 64.4 78.5 65.0 80.8

TART 46.9 66.8 70.1 82.4 92.2 96.7 67.0 83.2 69.0 82.3

Table 4: Comparison of the feature encoder with different numbers of layers.

Settings Reuters 20 News
1-shot 5-shot 1-shot 5-shot

λ = 0.3 91.5 96.3 66.6 82.9
λ = 0.5 92.2 96.7 67.0 83.2
λ = 0.7 89.5 95.4 66.1 82.0
λ = 0.9 89.1 94.9 65.7 81.7

Table 5: Evaluation accuracy on the validation set of
Reuters and 20 Newsgroup datasets. Different settings
adjust the proportion of Ldrr.

further reduction/increase in the ratio lead to per-
formance degradation. It is likely because Ldrr can
improve the divergence of the class prototypes. But
a too-large ratio of Ldrr would make the model fo-
cus more on the task-independent reference vectors
while ignoring the learning for a unique feature
space, which may lead to an over-fitting problem.

4.7 Visualization

We utilize visualization experiments to demonstrate
that our model can build high-quality sentence em-
beddings and identify significant lexical features
for unseen classes.

To illustrate that our model can generate
high-quality sentence embeddings for unseen
classes, we view the high-dimensional features
as two-dimensional images using the t-SNE algo-

rithm (Van der Maaten and Hinton, 2008). Figure 4
depicts the 256-dimension feature representations
for a 5-way 5-shot testing episode sampled from
the 20 NewsGroup dataset. From the results, it is
evident that the distances between the inter-classes
are much larger than those of the average word
embeddings and MLADA depicted in Figure 4(a)
and Figure 4(b), respectively. This enlarged inter-
class spacing shows that our method can construct
a more distinct feature space for each episode.

In addition, the weight vectors on the same sup-
port samples are depicted in two testing episodes.
The example is drawn from the Huffpost dataset.
Figure 5 demonstrates that our apporach is capable
of generating task-specific attention. Even with the
same text, the attention of each word varied based
on the different combinations of categories in the
task. Specifically, as compared to Science and Edu-
cation class, Word “Crisis", “attack" and “climb"
become more important for World News, Tech and
Education class, respectively.

5 Conclusion

In this work, we propose a novel TART for few-
shot text classification, which can enhance the gen-
eralization by transforming the class prototypes
to per-class fixed reference points in task-adaptive
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World News, Science, Tech, Environment, Education

Reuters journalists charged in Myanmar after reporting on 
Rohingya Crisis.

Pepsi is adding aspartame back into its diet drinks.

Facebook activates safety check for the fourth time in five
weeks after nice attack.

Emperor penguins forced to climb cliffs to breed as climate
change causes sea ice to melt.

Internet tax : fcc considers proposal to tax broadband service.

World News, Taste, Tech, Environment, Money

Reuters journalists charged in Myanmar after reporting on 
Rohingya Crisis.

Spacecraft lifts off in search for life on mars.

Facebook activates safety check for the fourth time in five 
weeks after nice attack.

Emperor penguins forced to climb cliffs to breed as climate 
change causes sea ice to melt.

Voucher champs take note: Illinois’$75M tax credit offset
funding does not exist

Figure 5: The visualization of task-specific attention weights generated by our model. We visualize our model’s
support sets of two different tasks (5-way 1-shot) in Huffpost dataset. Word “Crisis" is downweighed for World
News class when compared to Taste, Tech, Environment and Money classes (left), but it becomes important when
replacing Taste and Money with Science and Education (right).

metric spaces. Specifically, a task-adaptive trans-
fer module is designed to project embedding fea-
tures into a task-specific metric space by using a
linear transformation matrix. In addition, we pro-
pose a discriminative reference regularization to
maximize divergence between transformed proto-
types in task-adaptive metric spaces. The proposed
model is evaluated on four standard text classifica-
tion datasets. Without any extra knowledge or data
information, our TART outperforms previous work
by a large margin.

6 Limitations

Our approach is based on meta-learning and is de-
signed for constrained situations where comput-
ing resources are limited, such as on-device set-
tings. Therefore, using large and complex feature
encoders like LLM may pose scalability challenges.
In addition, if the task involves a significant number
of new classes, the model may not scale effectively.
Lastly, our method is primarily suitable for text
classification, such as news category or product
review classification. It is not appropriate for text
generation tasks.
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