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Abstract

The amount of labeled data to train models for
speech tasks is limited for most languages, how-
ever, the data scarcity is exacerbated for speech
translation which requires labeled data cover-
ing two different languages. To address this
issue, we study a simple and effective approach
to build speech translation systems without la-
beled data by leveraging recent advances in un-
supervised speech recognition, machine trans-
lation and speech synthesis, either in a pipeline
approach, or to generate pseudo-labels for train-
ing end-to-end speech translation models. Fur-
thermore, we present an unsupervised domain
adaptation technique for pre-trained speech
models which improves the performance of
downstream unsupervised speech recognition,
especially for low-resource settings. Experi-
ments show that unsupervised speech-to-text
translation outperforms the previous unsuper-
vised state of the art by 3.2 BLEU on the Libri-
Trans benchmark, on CoVoST 2, our best sys-
tems outperform the best supervised end-to-end
models (without pre-training) from only two
years ago by an average of 5.0 BLEU over five
X-En directions. We also report competitive
results on MuST-C and CVSS benchmarks.

1 Introduction

Training supervised speech systems requires large
amounts of labeled data which is often not avail-
able for all but a small fraction of the over 7,000
languages spoken around the world (Lewis et al.,
2022). Despite much recent effort in creating
speech translation corpora (Di Gangi et al., 2019a;
Wang et al., 2021b), only a few dozen language
directions are covered. The lack of labeled train-
ing data is even more acute for speech translation
because it requires aligned labeled data in two lan-
guages which increases the effort to create such
datasets. This poses the question of whether speech
translation systems can be built using less labeled
data or no labeled data at all.

Recent work on unsupervised speech recognition
has achieved performance that can enable useful
systems using no labeled data (Yeh et al., 2019;
Liu et al., 2018; Chen et al., 2019; Baevski et al.,
2021; Liu et al., 2022a), enabled in large part by
the advances in self-supervised speech represen-
tation learning (Schneider et al., 2019; Baevski
et al., 2020). These techniques were also used
to build unsupervised text-to-speech systems (Liu
et al., 2022b). Similarly, unsupervised text-to-text
machine translation has shown great promise for
certain language directions (Conneau et al., 2018;
Lample et al., 2018; Artetxe et al., 2018).

In this paper, we study a method to build end-
to-end unsupervised speech-to-text and speech-to-
speech translation systems trained on synthetic
training data obtained by cascading existing un-
supervised techniques: we first transcribe speech
utterances in the source language using unsuper-
vised speech recognition (Baevski et al., 2021; Liu
et al., 2022a), then translate the resulting transcrip-
tion using unsupervised machine translation (Lam-
ple et al., 2018; Artetxe et al., 2018; Liu et al.,
2020), and finally synthesize the translation into
a target language speech utterance using unsuper-
vised speech synthesis (Liu et al., 2022b). We
also consider applying the pipeline directly at in-
ference time. Our approach benefits from the use
of self-supervised speech models (Baevski et al.,
2020; Liu et al., 2020) and to further improve per-
formance, we present a technique to adapt existing
self-supervised models to the target domain.

2 Background

Unsupervised speech recognition. Liu et al.
(2018) presents some of the earliest work on un-
supervised phoneme recognition and their work
applies adversarial training. Wav2vec-U (Baevski
et al., 2021) effectively applied self-supervised
speech representations, introduced a new evalu-
ation metric and compared to state-of-the-art super-
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Figure 1: Overview of the proposed approach to unsupervised speech-to-text translation (S2TT) and speech-to-
speech translation (S2ST). We first adapt speech pre-trained model (wav2vec 2.0) for the input language and
domain of interest, and then cascade unsupervised speech recognition (ASR), unsupervised text de-normalization,
unsupervised machine translation (MT) and unsupervised speech synthesis (TTS) models to produce pseudo-labels
for end-to-end S2TT and S2ST model training. Our models rely only on unlabeled speech data and unpaired text
data without the need of any human annotation.

vised systems trained on large amounts of labeled
data. Wav2vec-U 2.0 (Liu et al., 2022a) simplifies
audio-side pre-processing and improves accuracy
through better architecture as well as better train-
ing objective. Lin et al. (2022) shows that out-of-
domain speech pre-training or out-of-domain text
data hurts the training robustness of Wav2vec-U
models, especially under low-resource settings.

Unsupervised speech synthesis. Recent work
has demonstrated unsupervised speech synthesis
systems to be able to achieve comparable perfor-
mance to supervised systems (Liu et al., 2022b;
Ni et al., 2022). The systems are trained on data
resulting from labeling speech audio data with un-
supervised speech recognition models and training
text-to-speech models on the resulting models.

Unsupervised machine translation. Lample
et al. (2018) and Artetxe et al. (2018) built the first
fully unsupervised machine translation (MT) sys-
tems by exploiting cross-lingual similarity of rep-
resentations in multilingual sequence-to-sequence
models, as well as back-translation for further re-
finements of the initial models. mBART (Liu
et al., 2020) used a similar model architecture and
training process to build unsupervised MT mod-
els, but it utilized a larger-scale multilingual text
corpus (Conneau et al., 2020) and an updated nois-
ing strategy for pre-training with denoising autoen-

coder objective.

End-to-end speech translation. End-to-end
sequence-to-sequence modeling has witnessed
increased applications in speech-to-text transla-
tion (Duong et al., 2016; Bérard et al., 2016; Weiss
et al., 2017; Bansal et al., 2017; Vila et al., 2018;
Di Gangi et al., 2019b; Ren et al., 2020; Li et al.,
2021) and speech-to-speech translation (Jia et al.,
2019; Kano et al., 2021; Jia et al., 2022a). Com-
pared to cascaded systems, end-to-end speech trans-
lation models have simpler pipeline and lower in-
ference latency. It is shown that recent end-to-end
speech-to-text translation (S2TT) models perform
comparably to the cascaded counterparts on the
well-established MuST-C benchmark (Bentivogli
et al., 2021). Given the scarcity of speech transla-
tion corpora, there are recent attempts on building
end-to-end S2TT models under low-resource set-
tings (Bansal et al., 2018, 2019; Cheng et al., 2021)
or unsupervised settings (Chung et al., 2019).

3 Methods

Figure 1 provides an overview of our proposed ap-
proach to unsupervised speech-to-text translation
(S2TT) and speech-to-speech translation (S2ST).
We leverage a cascade of unsupervised models to
produce pseudo-labels for end-to-end S2TT and
S2ST model training. To mitigate language and
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domain mismatch in speech pre-training (wav2vec
2.0), we finetune wav2vec 2.0 models using un-
labeled in-domain speech data, and then use the
adapted models to build downstream speech recog-
nition models.

3.1 Unsupervised Cascaded Pseudo-Labeling
We cascade unsupervised speech recognition
(ASR), unsupervised text de-normalization (TDN)
and unsupervised machine translation (MT) mod-
els to produce pseudo-labels for S2TT. For S2ST,
we additionally apply unsupervised speech synthe-
sis (TTS) models to MT model outputs to obtain
synthesized target speech.

Unsupervised ASR. We adopt wav2vec-U
2.0 (Liu et al., 2022a), which learns a mapping
from self-supervised speech representations to
phonemes via adversarial training and decodes
phonemes into words via a weighted finite state
transducer (Mohri, 1997). To improve adversar-
ial training stability and suppress overfitting in the
low-resource settings, we add Gaussian noise to
the frozen input features X

X ′ = X +N (0, σ2)

as well as R-Drop regularization (Wu et al., 2021)
to the logit outputs of the generator

Lrdp =
1

2
DKL(G1(X

′) || G2(X
′))

+
1

2
DKL(G2(X

′) || G1(X
′))

where G1 and G2 are two generator instances with
different dropout masks, and DKL is the Kullback-
Leibler (KL) divergence. We add weighted αLrdp

to the wav2vec-U 2.0 objective function, where α
is a hyper-parameter. After adversarial learning,
we follow Baevski et al. (2021) to perform self-
training with a Hidden Markov Model (HMM),
and fine-tune the adapted wav2vec 2.0 model again
with the CTC objective on the HMM labels. We
denote the final ASR model as “w2vu2-CTC”.

Unsupervised MT. We adopt mBART (Liu
et al., 2020), which has a Transformer architec-
ture (Vaswani et al., 2017) with model parame-
ters shared across all training languages. It first
obtains initial cross-lingual alignments for all lan-
guages via a denoising autoencoder objective (Vin-
cent et al., 2010), and then refines the alignments
for one specific language pair via bidirectional on-
line back-translation on that pair of languages. We
denote this model as “mBART-OBT”.

Unsupervised TDN. ASR models decode nor-
malized spoken-form texts, which have no case or
punctuation (except hyphen and apostrophe). MT
models, however, encode unnormalized written-
form texts that have case and punctuation. This dis-
crepancy leads to quality degradation when we cas-
cade the two models directly for pseudo-labeling.
To mitigate the mismatch, we de-normalize ASR
model outputs into their unnormalized written form
before feeding them into MT models. The text de-
normalizer is a mBART model pre-trained with de-
noising autoencoder objective and fine-tuned with
paired data of raw text (output) and its normalized
version (input).

Unsupervised TTS. We follow Liu et al. (2022b)
to produce phoneme labels for unlabeled speech
data with wav2vec-U 2.0, and then train an au-
toregressive Transformer TTS model (Li et al.,
2019) on the pseudo-labeled data. For wav2vec-U
2.0, we perform HMM-based self-training and fine-
tune pre-trained wav2vec 2.0 model with HMM
phoneme labels. To alleviate under-generation and
over-generation issues in autoregressive models,
we add R-Drop style consistency loss

Lc = ||PEOS
1 (X)− PEOS

2 (X)||1

to the objective function (weighted by a hyperpa-
rameter α) for better end-of-sentence (EOS) predic-
tions, where PEOS

1 and PEOS
2 are two EOS predic-

tions on the same input X with different dropout
masks.

3.2 Unsupervised Adaptation of wav2vec 2.0
Pre-trained Models

Next, we present a method to improve perfor-
mance when the domain of the data used for
self-supervised pre-training differs from the down-
stream task domain which is often the case for low-
resource languages. Specifically, we adapt out-of-
domain or out-of-language wav2vec 2.0 models to
the domain and language of interest by fine-tuning
the entire wav2vec 2.0 models on discrete labels
obtained from unlabeled in-domain data using the
CTC objective (Graves et al., 2006).

To obtain discrete labels, we first collect all the
wav2vec 2.0 speech representations for the train-
ing data, and perform k-means clustering to iden-
tify K clusters. Then for each utterance, we la-
bel each of its T speech representation frames xt
by the corresponding cluster ids yt ∈ {1, ...,K},
where t ∈ {1, ..., T}. Finally, we merge identical
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consecutive yt to obtain the final labels y′t′ , where
t′ ∈ {1, ..., T ′} and T ′ ≤ T .

After unsupervised fine-tuning with discrete la-
bels, we discard the output projection layer used for
the CTC objective, and use the resulting wav2vec
2.0 trunk instead of the original wav2vec 2.0 model
in the downstream tasks. The adapted models are
used to extract speech representations for wav2vec-
U 2.0 models, as well as pre-train encoders of the
CTC models in wav2vec-U self-training.

3.3 End-to-end Model Training with
Pseudo-labels

After obtaining pseudo-labels from the cascade of
unsupervised models, we train end-to-end S2TT
and S2TT models with supervised objectives on
these pseudo-labels. For end-to-end S2TT, we
adopt the model architecture in Li et al. (2021),
which we denote as “w2v2-mBART”. We pre-
train its encoder by the unsupervised ASR model,
w2vu2-CTC, and pre-train its decoder by the unsu-
pervised MT model, mBART-OBT. For end-to-end
S2ST, we adopt a variant of Translatotron 2 (Jia
et al., 2022a), Translatotron2+ (Inaguma et al.,
2022), which has an additional encoder in between
Translatotron 2’s two decoders, and replaces Trans-
latotron 2’s second decoder with an autoregressive
Transformer decoder (Li et al., 2019). Similar
to w2v2-mBART, we pre-train Translatotron2+’s
first encoder and first decoder by w2vu2-CTC and
mBART-OBT, respectively.

4 Experimental Setup

We evaluate our translation models on 5 directions
into English (Fr-En, Es-En, Ru-En, Et-En and Lv-
En) and 3 directions out of English (En-Es, En-Ru
and En-Fr). The 5 non-English languages are from
4 different Indo-European language family sub-
groups: Romance (Fr and Es), Slavic (Ru), Uralic
(Et) and Baltic (Lv). For the X-En directions, we
evaluate S2TT models on CoVoST 2 (Wang et al.,
2021b) and evaluate S2ST models on CVSS-C (Jia
et al., 2022b), which adds synthetic target speech
to CoVoST 2 with a single canonical speaker voice.
For the En-X directions, we only evaluate S2TT
models. We use MuST-C (Di Gangi et al., 2019a)
for En-Es and En-Ru, as well as Libri-Trans (Ko-
cabiyikoglu et al., 2018) for En-Fr. For Libri-Trans,
we follow Chung et al. (2019) to combine valida-
tion set and test set for evaluation.

Speech pre-training. We use robust wav2vec
2.0 (Hsu et al., 2021) for English speech, which
is trained on datasets from multiple domains. For
non-English speech, we adapt open-source Vox-
Populi1 (Wang et al., 2021a) models by CTC fine-
tuning with 1024 discrete labels (Fr, Es and Ru) or
128 discrete labels (Et and Lv). We use monolin-
gual VoxPopuli models for Fr and Es, and multi-
lingual models of similar languages for Ru, Et and
Lv (Slavic, Uralic and Baltic languages, respec-
tively). We extract speech representations from the
15-th layer of the original wav2vec 2.0 models for
computing discrete labels.

Speech recognition. For wav2vec-U 2.0 models,
we extract speech representations from the 19-th
(15-th) layer of the adapted (original) wav2vec 2.0
models. We increase the dropout on the batch nor-
malized input features to 0.2. We set σ = 0.1 for
input Gaussian noise and α = 1.0 for R-Drop reg-
ularization. For wav2vec-U 2.0 loss weights, we
set η = 3 and choose λ, γ and δ from 1.0 / 1.5, 1.5
/ 2.5 and 0.3 / 0.5, respectively. For text data, we
use open web crawled corpus, CC-100 (Conneau
et al., 2020), which is created with little curation
and has large language coverage. For supervised
baselines, we fine-tune adapted wav2vec 2.0 mod-
els with CTC objective on labeled data, which we
denote as “w2v2-CTC”.

Machine translation. We use CC-100 (Conneau
et al., 2020) to train bilingual mBART large mod-
els for each language pair. For bidirectional online
back-translation, we use the same CC100 data and
follow Liu et al. (2020) to apply 99% vocabulary
masking for the first 500 updates. For supervised
baselines, we fine-tune mBART models with la-
beled data, which we denote as “mBART-FT”.

Speech synthesis. We train Transformer models
(with Lc weight α = 1.0) on CVSS-C target speech
from the It-En direction to avoid content over-
laps with the selected 5 directions. For grapheme-
to-phoneme conversion, we employ g2pE (Park,
2019) for English texts and Phonemizer (Bernard,
2015) with espeak-ng2 backend for texts in other
languages. We resample audios to 22,050Hz and
extract log-Mel spectrogram with FFT size 1024,
window length 1024 and hop length 256.

1https://github.com/facebookresearch/voxpopuli
2https://github.com/espeak-ng/espeak-ng
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Fr-En Es-En Ru-En Et-En Lv-En Avg.Duration (hrs) 264 113 16 3 2

Bilingual setup
Supervised learning + pre-training
End-to-end (w2v2-mBART) 35.7 36.2 39.4 5.7 13.5 26.1

Supervised learning
End-to-end (S2T Transformer; Wang et al. 2020) 26.3 23.0 14.8 0.1 2.5 13.3

Unsupervised learning
Cascaded (ASR→TDN→MT) 24.4 23.4 27.8 8.5 7.6 18.3
End-to-end (w2v2-mBART) 24.2 24.0 25.6 3.9 2.8 16.1

Multilingual setup
Supervised learning + pre-training
End-to-end (w2v2-mBART), 21 langs.→En (Babu et al., 2021) 32.9 34.1 26.4 3.5 6.0 20.6

Supervised learning
End-to-end (S2T Transformer), 21 langs.→En (Wang et al., 2020) 26.9 26.3 9.6 0.4 0.6 12.8

Unsupervised learning
End-to-end (w2v2-mBART), {Fr,Es,Ru,Et,Lv} → En 24.3 24.0 22.8 3.1 1.0 15.0

Table 1: Bilingual and multilingual X-En speech-to-text translation results: test BLEU on CoVoST 2. Et-En
and Lv-En are low-resource with only 3h and 2h of training data, respectively. End-to-end modeling on these two
directions suffers from overfitting.

En-Es En-Ru En-Fr
Duration (hrs) 504 489 100

Supervised learning + pre-training
End-to-end (w2v2-mBART) 32.4 20.0 23.1

Supervised learning
End-to-end (S2T Transformer) 27.2† 15.3† 11.4

Unsupervised learning
Chung et al. (2019)‡ N/A N/A 12.2
Cascaded (ASR→TDN→MT) 22.0 10.0 15.4
End-to-end (w2v2-mBART) 23.8 9.8 15.3

Table 2: Bilingual En-X speech-to-text translation re-
sults: test BLEU on MuST-C (En-Es and En-Ru) and
Libri-Trans (En-Fr). Our best system outperforms pre-
vious state of the art (Chung et al., 2019) on Libri-Trans
by 3.2 BLEU. † Wang et al. (2020). ‡ We report the
Slibri-Tlibri + LMwiki + DAEwiki configuration with the
best result selected supervisedly out of 10 runs.

End-to-end speech translation. For bilingual
S2TT, we pre-train its encoder/decoder with
w2vu2-CTC/mBART-OBT for unsupervised mod-
els, or with w2v2-CTC/mBART-FT for supervised
models that leverage pre-training. To alleviate over-
fitting in low-resource settings (Ru-En, Et-En and
Lv-En), we duplicate training examples and equip
them with 2 different pseudo-labels from mBART-
OBT beam search decoding. For multilingual S2TT
and S2ST, we pre-train speech encoder with XLS-R
0.3B (Babu et al., 2021), and pre-train text decoder
with mBART-OBT from the En-Fr direction.

Checkpoint selection and averaging. For unsu-
pervised ASR, we adopt the unsupervised metric

in Baevski et al. (2021) and average the best 2
checkpoints in the same run. For unsupervised
MT and unsupervised TTS, we average the last 5
checkpoints. For end-to-end S2TT/S2ST, we sort
checkpoints by losses on the pseudo-labeled vali-
dation set and average the best 5 checkpoints.

Automatic evaluation of speech outputs. Fol-
lowing a common practice, we first transcribe En-
glish speech outputs from the TTS or S2ST model
with an open-source English ASR model3, and then
calculate WER or BLEU on the ASR transcription
for automatic evaluation scores.

5 Results

5.1 X-En Speech-to-Text Translation

For X-En S2TT, we consider models trained for a
single language direction (bilingual) and models
covering multiple directions (multilingual). Results
are reported on five translation directions into En-
glish of the CoVoST 2 benchmark and we focus on
end-to-end systems but we also consider a cascade
of unsupervised models. Supervised models are
purely trained on labeled data without pre-training,
while as supervised models with pre-training use
wav2vec and mBART models, unsupervised mod-
els also use pre-trained models but no labeled data.

Table 1 shows that unsupervised end-to-end mod-
els outperform the supervised baselines by 5.0

3https://github.com/facebookresearch/fairseq/tree/main/
examples/wav2vec (“Wav2Vec 2.0 Large (LV-60) + Self Train-
ing”)
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Fr-En Es-En Ru-En Et-En Lv-En Avg.Source duration (hrs) 264 113 16 3 2

Supervised learning + pre-training
End-to-end (Spec-T2), {Fr,Es,Ru,Et,Lv} → En 31.8 32.3 32.9 5.2 7.5 21.9

Supervised learning
End-to-end (Spec-T2), {Fr,Es,Ru,Et,Lv} → En 27.4 27.7 25.4 4.1 2.5 17.4

Unsupervised learning
Cascaded (ASR→TDN→MT→TTS), bilingual 21.6 21.2 25.3 7.2 7.7 16.6
End-to-end (Spec-T2), {Fr,Es,Ru,Et,Lv} → En 21.2 20.1 19.9 3.2 2.8 13.4

Table 3: Multilingual X-En speech-to-speech translation results: test BLEU on CVSS-C. Our multilingual model
is trained on a subset of 5 directions out of the 21 available directions. Appendix A.1 presents a comparison of our
supervised model to Jia et al. (2022b) in the 21-direction setting, which performs roughly similarly.

wav2vec 2.0 Domain Hours Multi- Seen Fine- Fr Es Ru Et Lv
features lingual lang. tuning 264h 113h 16h 3h 2h

VoxPopuli out 21K- ∗ ∗ none 26.7 21.4 > 60 > 60 > 60
(Wang et al., 2021a) 89K unsup. 21.4 18.3 25.6 22.4 27.8

XLS-R in+out 436K ✓ ✓ none 26.1 21.9 32.8 > 60 > 60
(Babu et al., 2021) unsup. 23.4 19.0 28.3 26.4 > 60

Robust wav2vec 2.0 out 63K none > 60 29.3 > 60 > 60 > 60
(Hsu et al., 2021) unsup. 31.5 22.7 35.2 35.1 > 60

Table 4: Different wav2vec 2.0 features for non-English unsupervised ASR (wav2vec-U 2.0) training: validation
PER on CoVoST 2 with Viterbi decoding. All models use the wav2vec 2.0 large configuration. We unsupervisedly
finetune wav2vec 2.0 models to the language and domain of interest. “∗”: Monolingual models for Fr and Es;
multilingual models of similar languages for Ru, Et and Lv (trained on the Slavic, Uralic and Baltic languages in
VoxPopuli, respectively).

BLEU on average over the five translation direc-
tions of the bilingual setup. The supervised models
represent the best supervised end-to-end models
from two years ago. These improvements are due
to advances in unsupervised modeling as well as
self-supervised pre-training. The supervised mod-
els with pre-training perform generally far above
the unsupervised models and shows that there is po-
tential to improve unsupervised speech translation
in the future.

The cascaded unsupervised setup performs better
than the end-to-end approach for directions with
little synthetic training data such as Ru-En, Et-En
and Lv-En. This is because end-to-end models
are trained on datasets comprising as little as two
hours of synthetic speech translation data on which
they overfit. Cascaded unsupervised models do not
suffer under this issue because they exploit more
text for unsupervised machine translation (Table 7).

Supervised learning with pre-training for the
bilingual setup performs better than the multilin-
gual setup because only a single translation direc-
tion needs to be modeled and because the mBART
model was pre-trained on 50 languages while as

only a single language is being used in the X-En
setup.

5.2 En-X Speech-to-Text Translation

For bilingual En-X S2TT, we compare our unsuper-
vised models to the previous state of the art (Chung
et al., 2019) on Libri-Trans (En-Fr) and we also
evaluate them on the MuST-C benchmark for En-
Es and En-Ru directions. Table 2 shows the test
BLEU of our models and the baselines on both
benchmarks. On Libri-Trans, our best system out-
performs the previous state of the art, an alignment-
based cascaded system, by 3.2 BLEU (Chung et al.,
2019). On MuST-C, our models also achieve
competitive results in this high-resource setting of
around 500 hours of training data, with 3.4 BLEU
and 5.5 BLEU behind the supervised baselines on
En-Es and En-Ru, respectively.

5.3 X-En Speech-to-Speech Translation

To train a multilingual X-En speech-to-speech
translation model, we combine pseudo-labeled
bilingual data for multiple translation directions
and use the Translatotron2+ architecture, a variant
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Fr Es Ru Et Lv En Avg.Duration (hrs) 264 113 16 3 2 504

Supervised learning + pre-training
w2v2-CTC 15.7 7.0 7.1 11.1 5.9 6.3 8.9

Supervised learning
Transformer† 18.3 16.0 31.4 65.7 51.8 12.1 32.6

Unsupervised learning
w2vu2-CTC 23.2 10.3 15.7 17.6 14.8 12.7 15.7

Table 5: Speech recognition results: test WER on CoV-
oST 2 and MuST-C (En-Es). Semi-supervised and un-
supervised models are decoded with 4-gram language
model. † Wang et al. (2020).

CVSS Libri-Trans MuST-C
JS Divergence 0.207 0.376 0.369

Supervised learning
Transformer 12.8 15.0 16.8

Unsupervised learning
Transformer 15.2 17.1 20.1

Table 6: Speech synthesis results: validation WER for
re-synthesis on CVSS-C, Libri-Trans and MuST-C. To
quantify training-inference time domain similarity, we
follow Lin et al. (2022) to compute Jensen–Shannon
divergence (“JSD”) on 4-gram phoneme distributions.
Low JSD suggests high similarity.

of Translatotron 2. We build supervised Transla-
totron2+ baselines with and without pre-training
and evaluate on the CVSS-C benchmark. Table 3
shows that the best unsupervised system is on av-
erage only 0.8 BLEU below the supervised base-
line. We believe that the unsupervised approach
is less effective for speech-to-speech translation
compared to speech-to-text translation because of
the increased error accumulation in the synthetic
data creation process due to the addition of the un-
supervised speech synthesis component to which
we input unsupervised translation output which in
turn is based on unsupervised speech recognition
transcriptions. Similarly to speech-to-text transla-
tion, the cascaded unsupervised model performs
better than the end to end approach and this is most
prominent for low-resource directions.

5.4 Speech Pre-training

We evaluate the effectiveness of the unsupervised
adaptation technique of wav2vec 2.0 models (§3.1)
on the five non-English languages, which have less
training data than English. We train wav2vec-U
2.0 models on CoVoST 2 with features extracted
from three different wav2vec 2.0 models and their

adapted versions: 1) Out-of-domain models, “Vox-
Populi” (Wang et al., 2021a), that are trained with
data in the same language (for Fr and Es) or similar
languages (for Ru, Et and Lv) from the same lan-
guage family subgroup; 2) a massively multilingual
model for 128 languages, “XLS-R” (Babu et al.,
2021), whose training data contains CoVoST 2; 3)
a multi-domain English model, “robust wav2vec
2.0” (Hsu et al., 2021), where the target languages
are unseen. We report validation PER on Viterbi
predictions in Table 4. Speech pre-training on mis-
matched domains or languages (“VoxPopuli” and
“robust wav2vec 2.0”) leads to training convergence
failure on three low-resource languages (Ru, Et and
Lv). The two languages with the least amount of
data, Et and Lv, even fail with in-domain multilin-
gual pre-training. Unsupervised adaptation signif-
icantly improves training convergence and model
performance for all the 3 scenarios of speech pre-
training. In an example worst case scenario, Et-En
wav2vec-U 2.0 model is successfully trained with
only 3 hours of Et speech data and features from an
adapted out-of-language out-of-domain wav2vec
2.0 model (“robust wav2vec 2.0”).

5.5 Speech Recognition
Next, we evaluate the performance of unsupervised
speech recognition in our setting. We decode our
pre-trained supervised baselines (“w2v2-CTC”)
and unsupervised models (“w2vu2-CTC”) with 4-
gram language model. They are compared with pre-
vious un-pre-trained supervised baselines (Wang
et al., 2020) on CoVoST 2 and MuST-C (for En),
whose results (test WER) can be found in Table 5.
We see that our unsupervised end-to-end models
outperform un-pre-trained supervised baselines on
average over the six languages, with an average
16.9 WER reduction over the supervised one. Un-
supervised ASR works best for languages with little
labeled data due to the use of pre-trained features
and advances in unsupervised algorithms.

5.6 Speech Synthesis
In our unsupervised setting, the target speech data
does not share the same domain as the source one.
This realistic setting leads to training-inference
time domain mismatch on TTS models. We eval-
uate the effects of this mismatch by a re-synthesis
task on 3 different datasets: CVSS-C (from It-En),
Libri-Trans and MuST-C. We synthesize speech
using validation texts and report WER on the ASR
transcription of the synthesized speech. To quan-
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Fr-En Es-En Ru-En Et-En Lv-En En-Es En-Ru En-Fr
Avg.2.1B En text, non-En text 428M 379M 849M 46M 68M 379M 849M 428M

Bitext 207K 79K 12K 1.8K 2.3K 259K 259K 47K

Supervised learning + pre-training
mBART-FT 46.7 46.0 48.4 23.3 29.6 38.7 23.1 21.5 34.6

Supervised learning
Transformer 37.9† 36.3† 19.8† 0.3† 0.2† 33.8 15.8 17.9 20.3

Unsupervised learning
mBART-OBT 40.1 43.8 48.6 19.0 25.0 38.5 22.2 22.1 32.4

Table 7: Machine translation results: test BLEU on CoVoST 2 (X-En), MuST-C (En-Es and En-Ru) and Libri-Trans
(En-Fr). We finetune mBART model with bitext data for supervised learning and with unpaired pre-training data for
unsupervised learning. † Wang et al. (2020).

Fr-En Es-En Ru-En Et-En Lv-En En-Es En-Ru En-Fr Avg.

BLEU on raw text
ASR→TDN→MT 24.4 23.4 27.8 8.5 7.6 22.0 10.0 15.4 17.4
Remove TDN 17.2 18.3 20.7 5.7 7.8 17.2 8.9 10.4 13.3

BLEU on normalized text (case and punctuation removed)
ASR→TDN→MT 25.0 23.9 28.7 7.9 9.5 23.7 9.4 15.5 18.0
Remove TDN 23.1 24.1 26.9 7.2 9.4 23.1 9.4 15.1 17.3

Table 8: Effectiveness of text de-normalization in the unsupervised pipeline evaluated in terms of speech-to-text
translation on CoVoST 2 (X-En), MuST-C (En-Es and En-Ru) and Libri-Trans (En-Fr). We report test BLEU on
either raw text or normalized text. TDN not only recovers case and punctuation, but also leads to better translation
of content.

tize domain similarity, we follow Lin et al. (2022)
to compute Jensen–Shannon divergence (“JSD”) on
4-gram phoneme distributions, where low JSD sug-
gests high similarity. Table 6 shows the results. We
see that both supervised and unsupervised models
have higher WER on less similar domains (Libri-
Trans and MuST-C).

5.7 Machine Translation

We evaluate our unsupervised models (“mBART-
OBT”) on the CoVoST 2, MuST-C and Libri-
Trans benchmarks with test BLEU. For compar-
ison, we also build supervised Transformer base-
lines (“Transformer”) and supervised mBART base-
lines (“mBART-FT”). Results are shown in Table 7.
We observe that our unsupervised models outper-
form supervised baselines by 12.1 BLEU on aver-
age over the eight considered translation directions.
They are behind supervised baselines by only 2.2
BLEU on average. In contrast to supervised base-
lines that leverage in-domain paired data, the unsu-
pervised models use unpaired CC100 data, which
is noisy web data.

5.8 Text De-normalization

We verify the effectiveness of text de-normalization
(TDN) by ablating it in the unsupervised cascaded
pipeline. In Table 8, we show test BLEU calcu-
lated on either raw text (BLEUraw) or normalized
text (BLEUnorm) for the ablation. We see that
TDN improves BLEUraw greatly by 4.1 on aver-
age over all the directions. From the improvements
on BLEUnorm, we conclude that TDN not only re-
covers case and punctuation, but also improves
translation of the content.

6 Conclusion

In this paper, we present a simple and effective ap-
proach to unsupervised speech-to-text translation
(S2TT) and speech-to-speech translation (S2ST).
Our S2TT systems outperform the previous state of
the art on Libri-Trans by 3.2 BLEU as well as the
best supervised end-to-end models (without pre-
training) on CoVoST 2 from only two years ago
by an average of 5.0 BLEU over five translation
directions into English. Our S2TT and S2ST sys-
tems also perform competitively on the MuST-C
and CVSS-C benchmarks.
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7 Limitations

Our unsupervised speech recognition approach re-
quires tools to phonemize text for the language
of interest. Phonemizers are not available for all
languages and this presents a bottleneck. To ad-
dress this, future work may develop phonemiz-
ers for more languages, explore phonemization
approaches that generalize across languages, or
wav2vec-U 2.0 model training with graphemic text
units such as letters.

We train bilingual unsupervised machine trans-
lation models with 2.1B English sentences and at
least 46M sentences for the non-English language.
For extremely low-resource languages, collecting
millions of sentences for model training can be
challenging. The feasibility of mBART-based on-
line back-translation approach in this setup remains
to be validated.
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A Appendix

A.1 Comparison of our CVSS-C supervised
baseline to previous work

X-En direction Fr Es Ru Et Lv Avg.

Evaluated by a proprietary ASR
Jia et al. (2022b) 32.4 33.4 23.2 3.2 2.8 19.0

Evaluated by an open-source ASR
Ours 33.8 34.6 29.4 3.1 3.2 20.8

Table 9: Multilingual supervised baselines on CVSS-C
for translating 21 languages into English. We report test
BLEU on ASR transcription of the translated speech.

For evaluation of CVSS-C models, we use an
open-source English ASR model4 to transcribe
translated speech for BLEU calculation. The pre-
vious work (Jia et al., 2022b), however, used tran-
scription from a proprietary ASR model which we
do not have access to. As a result, BLEU num-
bers reported for our model and the previous work
are not directly comparable, but the small differ-
ence suggests that the two models perform roughly
similarly.

A.2 Data Overview for Supervised Learning
and Unsupervised Learning

Fr-En Es-En Ru-En Et-En Lv-En

Supervised learning
Src. paired speech 264 113 16 3 2
Src. paired text 207K 79K 12K 1.8K 2.3K
Tgt. paired speech 174 70 13 3 1
Tgt. paired text 207K 79K 12K 1.8K 2.3K
Unsupervised learning
Src. speech 23K 21K 89K 43K 28K
Src. text 428M 379M 849M 46M 68M
Tgt. speech 29 29 29 29 29
Tgt. text 2.1B 2.1B 2.1B 2.1B 2.1B

En-Es En-Ru En-Fr

Supervised learning
Src. paired speech 504 489 100
Src. paired text 259K 259K 47K
Tgt. paired text 259K 259K 47K
Unsupervised learning
Src. speech 63K 63K 63K
Src. text 2.1B 2.1B 2.1B
Tgt. text 379M 849M 428M

Table 10: Overview of the speech data (hours) and text
data (sentences) used in supervised learning and unsu-
pervised learning.

4https://github.com/facebookresearch/fairseq/tree/main/
examples/wav2vec (“Wav2Vec 2.0 Large (LV-60) + Self Train-
ing”)

Table 10 provides an overview for the speech
and text data used in supervised learning and unsu-
pervised learning.
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