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Abstract

Conceptual metaphors present a powerful cog-
nitive vehicle to transfer knowledge structures
from a source to a target domain. Prior neural
approaches focus on detecting whether natu-
ral language sequences are metaphoric or lit-
eral. We believe that to truly probe metaphoric
knowledge in pre-trained language models,
their capability to detect this transfer should be
investigated. To this end, this paper proposes to
probe the ability of GPT-3 to detect metaphoric
language and predict the metaphor’s source do-
main without any pre-set domains. We experi-
ment with different training sample configura-
tions for fine-tuning and few-shot prompting on
two distinct datasets. When provided 12 few-
shot samples in the prompt, GPT-3 generates
the correct source domain for a new sample
with an accuracy of 65.15% in English and
34.65% in Spanish. GPT’s most common er-
ror is a hallucinated source domain for which
no indicator is present in the sentence. Other
common errors include identifying a sequence
as literal even though a metaphor is present
and predicting the wrong source domain based
on specific words in the sequence that are not
metaphorically related to the target domain.

1 Introduction

Metaphor processing with pre-trained language
models (e.g. Conneau et al., 2020; Brown et al.,
2020) has been dominated by metaphor detec-
tion, that is, the classification of expressions into
metaphoric or literal (e.g. Aghazadeh et al., 2022;
Leong et al., 2020). In metaphor interpretation, a
common approach is to paraphrase metaphoric ex-
pressions into literal ones (e.g. Stowe et al., 2021a).
Few approaches target metaphor identification, e.g.
predicting the source domain of a metaphor in a lin-
guistic sequence. For instance, Rosen (2018) relies
on grammatical constructs and pre-defined labels.
Instead, in this paper, we test a generative language
model’s ability to predict the source domain given

a target domain and sequence without grammatical
assumptions or fixed source domain labels.

Conceptual metaphor theory (CMT) (Lakoff and
Johnson, 1980) starts from the assumption that
metaphors represent a powerful cognitive mech-
anism to transfer physical knowledge structures to
abstract domains. In natural language, He was
bombarded by insults or Your words pierce my
heart transfers the concrete domain of weapons
to the abstract domain of words in the metaphor
WORDS ARE WEAPONS. On the assumption that
our cognitive organization relies on metaphors, au-
tomatically identifying metaphoric transfer holds
the promise of contributing to more human-like
computational models. From the overall success of
pre-trained language models in metaphor detection,
a certain degree of metaphoric knowledge in these
models can be assumed (Aghazadeh et al., 2022).

This paper aims to evaluate whether this inherent
knowledge extends beyond contextual clues to pre-
dict the concrete domains in the metaphoric trans-
fer. Detecting a metaphor entails contrasting the
physical with the abstract meaning of a sequence.
However, the source domain is frequently a non-
contextual attribute (Aghazadeh et al., 2022), while
the target domain can be found directly using con-
textual clues. For instance, in the above example,
pierce is more implicitly related to WEAPONS
than the explicit words is to WORDS. To deter-
mine the accuracy of the predicted source domains
from fine-tuning and few-shot prompting GPT-3
(Brown et al., 2020), we manually evaluate the re-
sults. To this end, we propose a classification of
error types from too generic domains to relying
on words in the sentence that are not connected to
the metaphor, which we call trigger words. This
provides further intuition on the nature and extent
of metaphoric knowledge encoded in pre-trained
language models. We compare methods to elicit
metaphoric knowledge without any assumptions
on grammar or source domains and test if it ex-
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tends across languages, i.e., Spanish in addition to
English. Finally, we evaluate its generalization by
testing on two distinct datasets and a set of non-
metaphoric sentences.

2 Preliminaries

Two major pillars that build the foundation for this
approach are conceptual metaphors and generative
language models, which we briefly introduce here.

2.1 Conceptual Metaphors

The idea of metaphoric projection from a physi-
cal source domain to an abstract target domain is
deeply rooted in the tradition of embodied cogni-
tion, which assumes that higher-level cognition is
shaped by physical experiences (Barsalou, 1999).
For instance, actual physical movement recruits
similar areas in the brain as communicating with
action verbs (Durand et al., 2018; Gibbs, 2006).
Conceptual metaphors are deeply entrenched in
our knowledge organization system and utilized in
everyday communication to convey thoughts more
precisely. In a large-scale study, Prabhakaran et al.
(2021) evaluate the persuasiveness of metaphors
and show that metaphoricity in political posts in-
creases social media engagement. Citron and Gold-
berg (2014) show that metaphoric emotional lan-
guage elicits a higher emotional response by recip-
ients than literal use. To provide complex analy-
ses of metaphoricity in language and analyze the
metaphoric knowledge of generative language mod-
els, we believe that identifying concrete metaphoric
projections in natural language is required.

2.2 Generative Language Models

Large generative language models are trained with
the objective of predicting the next token in a se-
quence. During inference, this allows them to be
prompted with some text by a user and then gen-
erate what they predict to be most likely to come
next. Scaled to large training corpora based on
web-data and multi-billion parameter architectures,
this simple objective resulted in models such as
GPT-3 (Brown et al., 2020) or its open-source vari-
ants BLOOM (Luccioni et al., 2022) and OPT-175
(Zhang et al., 2022). For a specific task, these
models can be used either in a zero-shot, few-shot,
or fine-tuning manner. For zero-shot text comple-
tion, the model is prompted with an instance of
a task without being provided any example solu-
tion of other task instances. In comparison, for

few-shot completions, the prompt already contains
some samples of the task and the respective solu-
tions. In both variants, the model weights are not
changed anymore, only the prompt differs. In con-
trast, when fine-tuning the model, its weights are
optimized to predict the task-specific output given
some input/output task samples.

3 Related Work

Tong et al. (2021) provide a recent overview of
architectures used for metaphor detection, avail-
able datasets, and further metaphor-related tasks.
An overview by Rai and Chakraverty (2020)
takes many different approaches to computational
metaphor processing into account, additionally re-
flecting on the different theoretical and linguistic
views on the definition of metaphors. While there
are many metaphor-related tasks, the closest to ours
are presented in the sections on paraphrasing and
connecting source and target domains.

Detection. Metaphor detection, the simplest form
of computational metaphor processing, is a binary
classification task in which each word of a sentence
is labeled as being used metaphorically or literally.
In a 2020 shared task on metaphor detection, fine-
tuning pre-trained language models led to the best
results (Leong et al., 2020). To achieve small im-
provements in accuracy, different approaches en-
rich the model input by, for instance, providing
dictionary definitions of the words being classified
(Babieno et al., 2022) or concreteness measures
that indicate to what extent something can be ex-
perienced via the senses (Brysbaert et al., 2014).
Commonly used datasets for this task are the VU
Amsterdam Metaphor (VUA) Corpus (Steen et al.,
2010) and the TOEFL corpus (Klebanov et al.,
2018), both human-annotated based on different
protocols.

Model Insights. Other research explores the em-
beddings generated by language models and how
they relate to metaphoricity. Pedinotti et al. (2021)
show that BERT’s likelihood scores show a de-
creasing likelihood from literal sentences to con-
ventional and novel metaphors and, lastly, to non-
sense sentences; thus, BERT’s scores correlate with
human-annotated plausibility scores. Moreover,
for different layers, they explore cosine similari-
ties between words used metaphorically, e.g., the
flowers nodded in the wind, and their metaphori-
cal paraphrases and literal synonyms. Similarly,
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Aghazadeh et al. (2022) investigate which layers
of different language models encode metaphoric
knowledge across different languages and datasets
via probing.

Paraphrasing. One common approach to
metaphor interpretation is paraphrasing the
metaphorical expression using only literal words.
For example, the phrase to devour a novel could
be rephrased as to enjoy a novel. An example
of metaphor interpretation is the work by Mao
et al. (2018), who propose to query WordNet
for possible candidate translations, from which
the best is selected based on similarities in the
embedding space. On the other hand, there is also
research on generating metaphoric paraphrases
given a literal sentence as input. Recent work in
metaphoric paraphrasing uses text-to-text models,
such as T5 or BART (Stowe et al., 2021b,a). Most
recently, Liu et al. (2022) proposed a new task for
which they created a dataset of novel metaphors
in the form of similes, for example The meteor
was as bright as (New York City | coal), which
the language model has then to interpret as very
bright or not bright at all. A fine-tuned RoBERTa
model outperforms various GPT variants on the
task and comes close to human performance. The
authors also show that the reverse of the tasks,
i.e., predicting the metaphoric language given the
literal answer, is more difficult.

Connecting Source and Target Domains. Try-
ing to automate the process of identifying metaphor
mappings is not a new endeavor. For instance,
given manually collected metaphoric phrases of a
specific target domain, Chung et al. (2004) propose
to facilitate the identification of source domains by
querying WordNet senses and the ontology SUMO.
More recent research makes use of syntactical pat-
terns metaphoric language often occurs in (Sullivan,
2013), thereby narrowing down the pool of sen-
tences considered as metaphoric candidates. Dodge
et al. (2015) use such patterns to find metaphor
candidates that are further analyzed by identifying
evoked frames and checking for whether the frames
relate in MetaNet. Given a target domain and a cor-
pus, they can use this system to see which source
domains are frequently used to metaphorically talk
about a target domain. This system, however, is
limited by existing frame resources and relies on
pre-defined grammatical structures. Also querying
an existing database, Ge et al. (2022) use hypernym

relations from WordNet to identify the source and
target domains for pairs of literally used nouns and
literally or metaphorically used verbs or adjectives.
While the target domain identification reaches an
accuracy of 87.3%, the source domain identifica-
tion only reaches 67.3% based on the manual eval-
uation of a small subset of the data. Shutova et al.
(2017) explore unsupervised methods for identify-
ing clusters of source and target concepts as well
as the connections between them. They limit their
approach to verb–noun constructions, from which
the verbs constitute the source domain clusters and
the nouns the target domain clusters.

Mohler et al. (2016) provide a dataset with
sentences from government discourse annotated
with scores from -1 to 3 to indicate the level of
metaphoricity. More importantly, 7,941 sentences
are annotated for source–target domain mappings
with 108 different source domains. Rosen (2018)
uses this dataset to build a model to predict the
source domain of a metaphor given a contextual
sentence and a target domain referent. Compared
to our approach, this work presupposes that a given
sentence is metaphoric while also depending on
specific grammatical dependencies when construct-
ing the model input. Most importantly, it is limited
to the 77 labels sub-sampled from the overall avail-
able 108 domains as experiments are done using
feed-forward neural networks and LSTMs instead
of text-to-text networks. Rosen also shows that the
inter-annotator agreement for the original source
domain annotations is rather low with a Cohen’s
kappa of 0.544, which indicates the difficulty and
potential ambiguity of the task.

In contrast to the existing work on computational
extraction of source and target domains, our ap-
proach does not rely on any assumptions about
grammatical structure or word types that suppos-
edly indicate metaphorical language. Moreover,
we are not limited to a pre-defined set of source or
target domains due to the text-to-text approach.

4 Method

4.1 Task

In our experiments, we use GPT-3 to predict a
metaphor’s source domain given a sentence and
a target domain. For example, a prompt to identify
the conceptual metaphor underlying the sentence
You are wasting my time could look like this:

E x t r a c t t h e c o n c e p t u a l metaphor from t h e
f o l l o w i n g s e n t e n c e :

1020



S e n t e n c e : Our r e l a t i o n s h i p i s a t
c r o s s r o a d s

T a r g e t Domain : R e l a t i o n s h i p
Source Domain : J o u r n e y
S e n t e n c e : You a r e w a s t i n g my t im e
T a r g e t Domain : Time
Source Domain : <<model com pl e t i o n >>

In this prompt, the model is provided with one
example of a metaphor mapping, which is RE-
LATIONSHIP IS A JOURNEY. Afterwards, it is
provided with the sentence and target domain for
which we want to know the source domain. A cor-
rect prediction, in this case, would be TIME IS
MONEY or TIME IS A RESOURCE.

4.2 Dataset

The main dataset was gathered by retrieving all
natural language examples annotated with source
and target domain from Lakoff’s Master Metaphor
List1, called Metaphor List in the following. For
this task, we randomly selected 446 sentences, with
a maximum of three per metaphor, i.e., per unique
combination of source and target domain. To en-
sure that the model does not simply assume all sen-
tences to be metaphoric, we use non-metaphoric
English sentences from the VUA corpus (Steen
et al., 2010) by extracting sentences for which each
word is labeled as literal by the annotators. For in-
stance, He did not even see an English newspaper
is an example of a non-metaphoric sentence. From
the extracted non-metaphoric sentences, we manu-
ally chose 50 to be added to our dataset as many of
the sentences were wrongly labeled or extremely
short.

The resulting dataset is split into a train, vali-
dation, and test set detailed in Table 1. A unique
combination of source and target domain, for ex-
ample, BELIEFS (target) ARE PLANTS (source),
does not appear in the validation or test set if it
already appeared in the training set. This allows
us to test whether the model can generalize to new,
unseen metaphors. As the Metaphor List data only
contains a limited number of domain combinations,
the validation and test set contain the same com-
binations of source and target domains, however,
with different unique sentences. Entirely new do-
main combinations in the test set are evaluated via
sentences from additional datasets.

To test the ability to generalize across datasets,

1http://www.lang.osaka-u.ac.jp/~sugi
moto/MasterMetaphorList/metaphors/index.
html copyright (c) 1994 by George Lakoff, University of
California, Berkeley

we use sentences from the LCC dataset (Mohler
et al., 2016) (CC BY-NC-SA v4.0), where we use
the provided source and target domains and the
raw sentences without indication of the precise
metaphor location. From the English and Span-
ish sentences, we use a subset of maximally 10
sentences per target domain, resulting in a set of
284 (EN) and 110 (ES) sentences. In comparison
to the Metaphor List samples, the LCC dataset con-
sists of much longer sentences using complicated,
expert language from the political domain.

All multilingual samples, as well as sentences
from the LCC corpus, are solely used as hold-out
test set and do not play a role in the model and
prompt selection process. These sentences, thus,
test the model’s generalization ability to new source
domains, a different language, i.e., Spanish, and
more complex sentences. Model and prompt se-
lection is based on the validation set created from
the Metaphor List samples and the non-metaphoric
VUA sentences. The number of samples from the
training set that are actually used depends on the
prompting type.

4.3 Experiments and Evaluation

Using two automated evaluation metrics (Sec.
4.3.1), we compare few-shot prompts and fine-
tuned models on the validation set (Sec. 4.3.2). The
test set evaluation is done manually (Sec. 4.3.3)

4.3.1 Evaluation Metric
While we manually evaluate the model on the test
set, we use two automatically computed scores to
evaluate on the validation set. The validation per-
formance is used to select the best way to prompt
or fine-tune the model. As the first score, we com-
pute the embedding similarity of the gold standard
source domain and the GPT-3-generated domain.
We compute the similarity using the Gensim library
(Řehůřek and Sojka, 2010) with 300-dimensional
GloVe vectors (Pennington et al., 2014).

To provide more context to the automated eval-
uation, we also use knowledge graph embeddings.
We rely on the KGvec2go Web API (Portisch et al.,
2020) created from the resources WordNet, Wik-
tionary, DBpedia, and WebIsALOD. We average
the four returned similarity scores based on the dif-
ferent resources, called KB score in the following.

4.3.2 Prompt Selection
To see with what prompts the model returns the
best source domains, we vary the number of labeled
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Dataset Train
Sentences

Val. Sen-
tences

Test Sen-
tences

Target
Domains

Source
Domains

Metaphor List 117 105 224 91 94
VUA non-metaphoric 15 15 15 47 -
LCC EN 0 0 284 30 90
LCC ES 0 0 110 11 67
Total 132 120 633 179 251

Table 1: Number of sentences and unique target and source domains in the different datasets.

few-shot samples provided at the beginning of each
prompt. We compute the scores described in Sec-
tion 4.3.1 for generations obtained through prompts
containing 2, 4, 6, 8, and 12 labeled samples. That
means, in each few-shot setting, the model has at
least 2 examples of correct domain mappings for
orientation. For each of these five prompt varia-
tions, we choose three distinct sets of training sam-
ples. Thus, we generate three solutions to evaluate.
This allows us to observe how much the model
depends on specific training samples, and we can
compute average scores and standard deviations.
Moreover, we also fine-tune GPT-3 by using our
samples to train the model for 4 epochs, during
which the model’s weights are adapted, instead of
just providing the samples as few-shot samples in
the prompt. After fine-tuning, the model does not
require any few-shot samples in the prompt, but can
directly classify a sample from the validation set.
We fine-tune two variants: (1) a model fine-tuned
with all 132 sentences from the training set; and
(2) a model fine-tuned with 34 sentences from the
training set, one per unique source domain. The
experiments of comparing different prompts with
each other and the fine-tuned variants use the vali-
dation set. With GPT-3 being proprietary licensed
by the OpenAI, L.L.C Terms of Use, the text gen-
erations with its API cost 42.73$. Our code is
available online2.

For all generations, we set the temperature pa-
rameter to 0, which means that the text generation
model samples words in a greedy fashion, i.e., it al-
ways generates the most likely next word. Increas-
ing the temperature changes the likelihood with
which words are sampled. For now, a temperature
of 0 allows us to generate words in a deterministic,
repeatable fashion. However, future experiments
could include the temperature as a hyperparame-
ter to be optimized. The GPT-3 architectures we

2https://github.com/lwachowiak/Metaphor-Extraction-
With-GPT-3

used are davinci-002, the most powerful available
model variant at the time of the experiments3, and
curie-001, the second most powerful variant.

4.3.3 Manual Evaluation
Issues with the gold standard source domains, as
well as the fact that the source domains can be
phrased with different expressions and differ in
their level of precision, make it difficult for the
automated scores to be reliable enough to directly
derive an accuracy score from them. Thus, to com-
pute the final accuracy on the test set, we manu-
ally check the model’s output. After experimenting
with the different prompting styles on the validation
set, we choose the model with the best combined
KB score and embedding similarity for manual
evaluation on the hold-out test set. Two annota-
tors, the authors of this paper, manually evaluate
the correctness of the generated answers for En-
glish. Both annotators independently evaluated the
model output and then discussed disagreements.
One annotator evaluates the answers for Spanish.
The source domain was considered correct if it
corresponded to the gold standard or was deemed
correct by the annotator(s).

While hard to automate, for humans it is often
easy to detect a close correspondence between a
gold domain, e.g. “musical harmony”, and a pre-
dicted domain, e.g. “music”. In difficult cases,
annotators, following the Metaphor Identification
Procedure (MIP) (Group, 2007), analyze words for
their more basic, physical meaning and see if these
are in concordance with the predicted source do-
main. For instance, the gold standard for You make
me sick! is “nausea”, whereas sick is also defined
as physically ill and thus related to the predicted
“disease” domain. To gather more insights into
the type of issues that can be observed from the
predicted source domains, all predictions deemed

3In November 2022, OpenAI released davinci-003, an
InstructGPT variant (Ouyang et al., 2022).
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Figure 1: Automatically computed scores on the valida-
tion set in relation to the number of examples provided
in the prompt

incorrect are classified by type of error as detailed
in Section 5.3.

5 Results

This section describes the results from the experi-
ments that determine the manually evaluated test
set predictions, their accuracy, and types of errors.

5.1 Prompt Selection Results

Figure 1 shows the automatically computed scores
on the validation set achieved by davinci-002 and
curie-001 with different numbers of few-shot sam-
ples. We can see that davinci-002 outperforms the
smaller architecture by about 0.15 to 0.2 points.
The highest embedding similarity and highest KB
score are achieved by davinci-002 when prompted
with 12 different few-shot training samples, achiev-
ing an embedding similarity of 0.505 and a KB
score of 0.553. However, the standard deviation is
very high for the models prompted with 12 samples,
thus, showing the importance of the quality of those
samples. Due to this fluctuation in performance,
the average KB score over all three runs is highest
for davinci-002 models prompted with 8 samples,
and the average embedding score is highest for
davinci-002 models prompted with 4 samples. The
prompt based on 12 few-shot samples that led to
the overall best results is available in the appendix.

In comparison, the fine-tuned models perform
better than the curie-001 models but worse than
the davinci-002 models. Fine-tuning a model with
36 samples, each with a unique source domain,
leads to an embedding similarity of 0.303 and a
KB score of 0.386. Fine-tuning GPT-3 on all avail-
able training samples results in improved scores of
0.413 and 0.513. Examining the completions of the
model fine-tuned on all samples, we can see that it

sticks more to the source domains already present
in the training data while also predicting fewer
distinct source domains overall: the completions
from the best performing few-shot variant contain
74 unique source domains, from which 7 are also
present in the training data; the completions of the
model fine-tuned on 36 contain 78 unique source
domains, from which 13 are present in the training
data; and the completions of the model fine-tuned
on all data contain only 50 unique source domains,
from which 18 are present in the training data.

5.2 Manual Evaluation Results

We used the best prompt identified in the previous
section to generate the source domains for the test
set samples. The correctness of the generations
was manually verified by two annotators. We used
Cohen’s Kappa, a chance-corrected coefficient of
agreement, to compute the inter-annotator agree-
ment. Across all test data points, we obtained a Co-
hen’s Kappa of 0.51, corresponding to a moderate
agreement according to Landis and Koch (1977).
After disagreements were resolved through discus-
sion, we computed the model’s accuracy, which is
reported by dataset in Table 2. The model achieved
an accuracy of 81.33% on the Metaphor List cor-
pus, 53.74% on the English part of the LCC corpus,
and 34.65% on the Spanish part of the LCC cor-
pus. In addition, the model was able to achieve an
accuracy of 42.11% in predicting a sentence is non-
metaphoric instead of predicting a source domain.
Averaged by sample, this results in an accuracy of
60.22%. The decrease in performance on the LCC
test set is not surprising as the sentences are on av-
erage much longer and often use domain-specific
language. Moreover, the target domains specified
by the LCC gold standard are often much harder to
identify in the sentence as they are less precisely
matched to the sentence’s words.

To provide insights into the adequacy of the eval-
uation metrics, we evaluate their correlation with
the manual annotation decisions. As we have an
ordinal variable (correctly classified, wrongly clas-
sified) and a continuous variable (KB score and
embedding similarity), we used Spearman’s rank
correlation coefficient. We achieve a correlation of
0.43 for the KB score and 0.40 for the embedding
similarity. Both scores are statistically significant
with p < 0.05, and can be interpreted as a moderate
correlation (Dancey and Reidy, 2007).
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Dataset Accuracy Inter-annotator Agreement

Cohen’s Kappa Agreement in %
Metaphor List 81.33% 0.55 (Moderate) 87.6%
VUA non-metaphoric 42.11% 0.89 (Almost perfect) 94.7%
LCC EN 53.74% 0.45 (Moderate) 72.5%
LCC ES 34.65% - -
Average (weighted by samples) 60.22% 0.51 (Moderate) 79.7%
Average (unweighted) 52.96% 0.63 (Substantial) 84.9%

Table 2: Manually evaluated test performance

5.3 Type of Errors

We manually classified all errors on the English
test sets based on the typology presented in Ta-
ble 3: wrong with trigger, wrong without trigger,
too literal, should be non-metaphoric, should be
metaphoric, too specific, too general, wrong subele-
ment mapping. Trigger here refers to words in
the input that are clearly related to the predicted
source domain. For instance, any mentions of
animal-related terms, e.g. bullish mindset or trough
of poverty, led the model to predict “animals” as
source domain. The most common error class is be-
ing wrong without any trigger in the sentence, fol-
lowed by erroneous predictions of non-metaphoric
and being wrong with trigger. Some instances in-
dicate a misinterpretation of words, e.g. dumb-
founded likely leads to the entertaining prediction
of “being_stupid”. Furthermore, interesting errors
can be found in the category of wrong subelement
mappings, where the model identifies the general
source domain but fails to pick the correct element
of that domain for its prediction. For instance,
in the sentence China is a fertile ground for re-
volt, the gold standard refers to “plants”, and the
model predicts “land”, which is in the same domain
of cultivation but not entirely the correct domain.
Similarly, when a metaphor involved movement
and locations and the true source domain referred
to only one of them, the model regularly picked
the wrong subelement. For instance, the model
wrongly predicts EXISTANCE IS MOTION for
the sentence It came into existence, where the true
source domain would have been “location”.

For the Spanish LCC data, one annotator classi-
fied erroneous predictions according to our error
typology. A vast majority of 62.12% of errors were
predictions of non-metaphoric sequences which
should be metaphoric, followed by 19.70% wrong

without trigger. A trend to predict “family” without
any trigger in the sentence for the target domain
“government” in half of its occurrences could be
observed. In the 13.64% cases of wrong with trig-
ger, the model’s predictions mostly represented lit-
eral English translations of context words from the
Spanish sentence. All source domain predictions
were made in English, which was expected given
that the source and target domains in the prompt
were also in English. In total, 12 LCC sentences
were disregarded since the gold standard was faulty.

6 Discussion

We experimented with different GPT-3 variants and
prompts containing varying numbers of few-shot
samples to see whether GPT-3 can generate the
source domain of a conceptual metaphor mapping
given a context and a target domain. The best re-
sults were achieved with a long few-shot prompt
containing 12 example completions. The largest
model variant davinci-002 strongly outperformed
the next biggest variant and a fine-tuned GPT-3.

We also saw that fine-tuning the model can
lead to a decrease in expressiveness, that is, fewer
unique source domains being generated. In our
case, this might be because the model fine-tuned
on all data sees each source domain around three
times per training. It might be possible to counter-
act the decrease in expressiveness by increasing the
temperature parameter, thus, making less probable
generations more likely.

Manually coding the errors made by the model,
we saw that the model often fabricates source do-
mains for which no related words are present in the
sentence. Other common errors included predicting
a literal meaning although a metaphor was present,
and generating wrong source domains based on
trigger words that were not metaphorically related
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Error Code Definition Example % of All
Errors

Sentence Wrong Prediction

Wrong with trig-
ger

The model predicts a
wrong source domain due
to words in the sentence re-
lated to that domain

The arms race COMPETITION IS
WAR

21.31

Wrong without
trigger

The model predicts a
wrong source domain
without any noticeable
triggers for that domain in
the sentence

Sally gave the idea
to Sam

IDEAS ARE CHIL-
DREN

27.32

Too literal The model predicts a lit-
eral relationship instead of
a metaphoric mapping

I’m down to my bot-
tom dollar

MONEY IS IN-
VESTMENT

7.10

Should be non-
metaphoric

The model predicted a
metaphoric source domain
instead of non-metaphoric

They saw him ad-
vancing

MOVING IS COM-
ING

7.65

Should be
metaphoric

The model wrongly pre-
dicted non-metaphoric

Under the cover of
darkness

DARKNESS IS
non-metaphoric

25.14

Too specific The predicted metaphor is
more specific than what
the sentence implies.

He finally caught
up to schedule

SCHEDULE IS
PEOPLE

2.73

Too general The predicted source do-
main is too unspecific

The idea slipped
through my fingers

MIND IS SPACE 1.09

Wrong subele-
ment mapping

The model predicts an as-
pect of the correct source
domain, however, it is not
the exact element

Let’s strip away the
unimportant details

IMPORTANCE IS
CLOTHING

7.65

Table 3: The different types of errors made by the model

to the target domain. Discerning whether to predict
a source domain for a given sentence or to label it
as non-metaphoric seems to be quite challenging
for the model as well. Analyzing the errors of large
language models as done here is essential to build
appropriate trust or distrust in the model and allow
for the use of error-correction methods in the fu-
ture, for instance, the selection of better prompts or
training samples.

In the context of analyzing the model’s misclas-
sifications, we also experienced issues with the
dataset, e.g. unintuitive metaphor mappings or
lack of contextual clues for the provided target
domain. The dataset’s quality strongly affected
the Spanish test results and clearly indicated that

more multilingual resources for metaphor identi-
fication are needed. The difference in the nature
and quality of the datasets is also the main reason
for the strong variation in accuracy results. The
Metaphor List dataset provides prototypical, gen-
eral language examples, while the LCC dataset
annotated real-world, domain-specific expert lan-
guage. This affects the complexity as well as the
length of sentences, both contributing to the differ-
ence in accuracy across datasets.

Application. Using GPT-3 to analyze metaphors
used in an unlabeled corpus comes with two prob-
lems: (1) we do not know what target domains are
the right ones to provide to the model, (2) there will
be an overwhelming amount of output given that
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most sentences contain at least subtle metaphoric
language that will largely not even be relevant to the
domain we are interested in. Therefore, it would be
useful to first filter sentences based on seed words
whose usage interests us or that belong to a spe-
cific target domain we want to analyze (Wachowiak
et al., 2022). As such an approach already narrows
down the candidate sentences to a pre-specified
target domain, we can include that target domain
in the prompt for the language model. Lastly, it
might help to restrict the context window around
the words of interest so that the model is not dis-
tracted by other metaphors in the sentence. How-
ever, to confirm this, further research is needed.

Considering precise element mappings. As the
capabilities of large neural language models con-
tinue to grow, it will be interesting to see if they can
identify not only the correct source domains but
also precise element-wise mappings between the
concepts of the target and source domain. For ex-
ample, the conceptual metaphor LOVE IS A JOUR-
NEY involves mapping lovers to travelers, difficul-
ties to roadblocks, and progress to distance traveled
forward. Querying such an element-wise mapping
could be facilitated through a set of the target do-
main’s core elements being provided to the model.

OpenAI Transparency Issues. An issue with re-
searching the capabilities of large language models,
such as GPT-3, is the accessibility and transparency.
While GPT-3 variants are easily accessible via an
API, the model stays a black-box, and researchers
can not investigate the specific model weights.
Moreover, there is no explicit mapping available of
how the models advertised on the website relate to
those described in OpenAI’s papers (Leike, 2022).
Lastly, the model variant accessible for fine-tuning
differs from the one accessible for direct zero- and
few-shot text generation, which might also explain
the drop in performance observed in our metaphor
extraction task. On the other hand, comparable
models for which the weights are publicly released,
such as BLOOM (Luccioni et al., 2022) or OPT-
175 (Zhang et al., 2022), have the issue that they
are not hosted anywhere. Thus, researchers must
provide the infrastructure to run them, which is
only possible for very few academic institutions.

7 Conclusion

We analyzed how well GPT-3 can identify source
domains of metaphors in natural language. Across

three different datasets in English and Spanish,
GPT-3 predicts the source domain with an accuracy
of 60.22%. The best performance was achieved
given 12 few-shot examples in the prompt, al-
though the average performance was highest with
4 to 8 few-shot examples. However, the model
still suffers from specific error types, such as hal-
lucinating domains without any indicators being
present. We believe future iterations of large lan-
guage models like GPT-3 will become important
tools in computational metaphor analysis, where
one investigates conceptual metaphors in different
domains, for instance, literature or political dis-
course. In the future, we want to experiment with
using large language models to generate complete
metaphors, i.e., generate both, source domain and
target domain, given a sentence. We also plan to
use the developed techniques in corpus analyses.

Limitations

The approach of identifying source domains relies
on having a contextual sentence but also a target
domain available. The datasets available for evalu-
ation do not always provide precise target domains.
For example, the LCC dataset provides the target
domain gun ownership for the sentence I just don’t
know what it will take for people in this country to
embrace gun safety, or the target domain climate
change for the sentence The event is billed as the
largest meeting of influential figures within the re-
newable energy field. This mismatch often makes
it difficult to provide precise source domains. A
similar problem also exists when wanting to use
our source domain prediction approach in the wild
as we have to somehow provide the model with
a target domain. While we can provide a target
domain by selecting sentences based on seed-word
lists designed for specific domains, we do not know
how precisely this matches the target domain occur-
ring in the sentence. In a multilingual setting, the
issue becomes more pressing since there are very
few multilingual metaphor datasets and for semi-
automated approaches the seed-word lists would
have to be provided for each language.

Another challenge is connected to the fact that
the model output requires time-consuming man-
ual evaluation to obtain a precise accuracy score.
However, deciding what counts as a correct source
domain can be difficult and might change depend-
ing on how strictly the annotators apply certain
rules. For instance, whether an annotator sees a pre-
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dicted source domain as too general or too specific
is a matter of degree. Overall, this makes it hard
to benchmark different approaches across papers,
which is why further investigation of automated
metrics, as presented in this paper, is crucial.

Lastly, there are issues regarding the accessibil-
ity of large neural language models, such as GPT-3,
and the transparency of OpenAI’s API as described
in the discussion section.

Ethics Statement

Metaphor identification represents an analysis of
people’s usage of language in communication as
well as its grounding in the physical world. Using
metaphoric language has been shown to increase
the speaker’s persuasiveness and the listener’s emo-
tional response. On the one hand, people might
unconsciously use metaphors and might not appre-
ciate their language being automatically analyzed
in this regard. On the other hand, a model able to
identify metaphors can be trained to actively uti-
lize metaphoric language and thus become more
persuasive and elicit a higher emotional response.
In the long run, this could be viewed as a means
to train language models to become more manip-
ulative in their interaction with humans, e.g. in
speech assistance or chat applications. The pro-
posed approach served the purpose of probing the
extent of metaphoric knowledge in a pre-trained
language model and not to train it to manipulate
users. As a matter of fact, the proposed method can
also be utilized to detect the extent of metaphoric
language produced by a language model and, thus,
counteract this development. Nevertheless, we pro-
pose that the aspect of metaphoricity in language
models might be worth including in discussions on
ethics in AI.

The nature of the datasets utilized herein might
also represent a number of biases. The Metaphor
List has been introspectively curated by a white
male Western person, i.e., George Lakoff, while
the LCC dataset stems from online websites and
political debates in American English respectively
Mexican Spanish where the profile of the annota-
tors remains unclear. Thus, the first bias is that not
all genders, communities of speakers, and language
varieties have been represented in this experiment.
Second, the domains are limited to political and
general language domains and the results might
differ when applied to other domains. Third, the
coverage of languages is limited to two due to the

lack of datasets and annotators, i.e., for Russian
in the case of the LCC dataset. Thus, it would
be interesting and important to extend the scope
of the experiment to investigate the utilization of
metaphoric language by different speaker profiles
of different languages and language varieties in the
future.
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Appendix

The 12 few-shot samples included in the best iden-
tified prompt and used for the generation of the
completions on the test set:
E x t r a c t t h e c o n c e p t u a l metaphor from t h e

f o l l o w i n g s e n t e n c e :
S e n t e n c e : I ’ ve l o s t a l l hope o f a

s o l u t i o n .
T a r g e t Domain : hope
Source Domain : p o s s e s s i o n s
E x t r a c t t h e c o n c e p t u a l metaphor from t h e

f o l l o w i n g s e n t e n c e :
S e n t e n c e : Even i n b a c k r u p t c y he managed

t o hang on to h i s c a r c o l l e c t i o n .
T a r g e t Domain : p o s s e s s i o n
Source Domain : h o l d i n g
E x t r a c t t h e c o n c e p t u a l metaphor from t h e

f o l l o w i n g s e n t e n c e :
S e n t e n c e : A t i g r e s s i n bed .
T a r g e t Domain : l u s t
Source Domain : an im a l
E x t r a c t t h e c o n c e p t u a l metaphor from t h e

f o l l o w i n g s e n t e n c e :
S e n t e n c e : He ’ s r e a l l y h igh .
T a r g e t Domain : e u p h o r i a
Source Domain : up
E x t r a c t t h e c o n c e p t u a l metaphor from t h e

f o l l o w i n g s e n t e n c e :
S e n t e n c e : We were made f o r each o t h e r .
T a r g e t Domain : l o v e
Source Domain : p a r t −whole
E x t r a c t t h e c o n c e p t u a l metaphor from t h e

f o l l o w i n g s e n t e n c e :
S e n t e n c e : Many t h e o r i e s s p r a n g up o u t o f

t h e f e r t i l e s o i l o f h i s d i s c o v e r i e s
.

T a r g e t Domain : t h e o r i e s
Source Domain : b e i n g s
E x t r a c t t h e c o n c e p t u a l metaphor from t h e

f o l l o w i n g s e n t e n c e :
S e n t e n c e : Her b lood r a n c o l d
T a r g e t Domain : f e a r
Source Domain : c o l d
E x t r a c t t h e c o n c e p t u a l metaphor from t h e

f o l l o w i n g s e n t e n c e :
S e n t e n c e : t h e c o n t a g i o n o f d e m o c r a t i c

i d e a s
T a r g e t Domain : b e l i e f
Source Domain : d i s e a s e
E x t r a c t t h e c o n c e p t u a l metaphor from t h e

f o l l o w i n g s e n t e n c e :
S e n t e n c e : She i s made of t o u g h e r s t u f f .
T a r g e t Domain : p e r s o n a l i t y
Source Domain : s u b s t a n c e
E x t r a c t t h e c o n c e p t u a l metaphor from t h e

f o l l o w i n g s e n t e n c e :
S e n t e n c e : Th ings a r e a t a s t a n d s t i l l .
T a r g e t Domain : p r o g r e s s
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Source Domain : mot ion
E x t r a c t t h e c o n c e p t u a l metaphor from t h e

f o l l o w i n g s e n t e n c e :
S e n t e n c e : She took i n v e n t o r y o f h e r

b e l i e f s .
T a r g e t Domain : b e l i e f s
Source Domain : commodi t i e s
E x t r a c t t h e c o n c e p t u a l metaphor from t h e

f o l l o w i n g s e n t e n c e :
S e n t e n c e : But he he s a i d , don ’ t wash i t

I wanna wear i t .
T a r g e t Domain : washing
Source Domain : n o t m e t a p h o r i c
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