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Abstract

We present bgGLUE (Bulgarian General Lan-
guage Understanding Evaluation), a benchmark
for evaluating language models on Natural Lan-
guage Understanding (NLU) tasks in Bulgarian.
Our benchmark includes NLU tasks targeting
a variety of NLP problems (e.g., natural lan-
guage inference, fact-checking, named entity
recognition, sentiment analysis, question an-
swering, etc.) and machine learning tasks (se-
quence labeling, document-level classification,
and regression). We run the first systematic
evaluation of pre-trained language models for
Bulgarian, comparing and contrasting results
across the nine tasks in the benchmark. The
evaluation results show strong performance on
sequence labeling tasks, but there is a lot of
room for improvement for tasks that require
more complex reasoning. We make bgGLUE
publicly available together with the fine-tuning
and the evaluation code, as well as a public
leaderboard at https://bgglue.github.io, and we
hope that it will enable further advancements
in developing NLU models for Bulgarian.

1 Introduction

Natural Language Understanding (NLU) bench-
marks, such as GLUE (Wang et al., 2019b) and
SuperGLUE (Wang et al., 2019a), were designed
for a rigorous evaluation of language models on
a diverse set of natural language understanding
(NLU) tasks. The wide adoption of such bench-
marks has driven the rapid development of models
that perform well on the tasks that are part of these
benchmarks, but also beyond (Devlin et al., 2019;
Liu et al., 2019). However, until recently, the focus
of such benchmarks has been on English, with lit-
tle interest in other languages (Bender, 2011; Ponti
etal., 2019).

*Work done while Momchil was in the Sofia University,
prior to joining Amazon.

Meta Al is not involved in the creation, release, or hosting
of the datasets in the benchmark.

Preslav Nakov
MBZUAI

Dragomir Radev
Yale University

To address this, recent work has designed bench-
marks to test models on NLU tasks on non-English
languages (Le et al., 2020; Rodriguez-Penagos
et al., 2021; Shavrina et al., 2020) or on multiple
languages (Liang et al., 2020; Hu et al., 2020).

Here, we aim to improve the diversity of the lan-
guages represented in NLU benchmarks by propos-
ing bgGLUE, a benchmark for Bulgarian that con-
sists of nine NLU tasks, including token classifica-
tion, regression, and classification. Thus far, only
individual datasets in Bulgarian have been used for
model development and evaluation. Small subsets
of up to three downstream tasks in Bulgarian have
also been included in some multilingual bench-
marks (Liang et al., 2020; Hu et al., 2020). Addi-
tionally, there are existing benchmarks focusing on
other Balto-Slavic languages, such as the Russian
SuperGLUE (Shavrina et al., 2020) and the Slovene
SuperGLUE (Zagar and Robnik-Sikonja, 2022).
However, there are no comprehensive benchmarks
for representatives of the Eastern South-Slavic lan-
guage subgroup, and for Bulgarian in particular.
We aim to address these limitations with bgGLUE.

bgGLUE unifies and facilitates access to exist-
ing datasets and tasks for Bulgarian. By including
more challenging tasks such as natural language in-
ference, fact-checking, and question answering, we
ensure that it comprises a rigorous test set for NLP
models developed for Bulgarian. We also provide
access to the benchmark through the HuggingFace
Hub (Lhoest et al., 2021) to allow for ease of use
and we encourage model sharing for Bulgarian.
Moreover, we fine-tune and run the first systematic
evaluation of existing language models for Bul-
garian, comparing and contrasting results across
all tasks in the benchmark. Our evaluation results
show that larger and more robustly pre-trained mod-
els yield better performance on all tasks, but also
that efficiently distilled models are a strong com-
petitor to their larger counterparts.
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# Corpus |Train| |Dev| |Test| Splits Task Metrics Domain
Token Classification

1 BSNLP 724 301 301 < Named Entities Macro F1 Misc.

PAN-X 16,237 7,029 7,263 Q Named Entities Macro F1 Wikipedia

3 U.Dep 8,907 1,115 1,116 POS Tagging Macro F1 Misc.
Regression / Ranking

4  Cinexio 8,155 811 861 Sentiment Pear./Spear. Corr.  Movies

5 CT21.T1 2,995 350 357 Check-Worthiness Avg. Precision Tweets
Classification Tasks

6 Cred.-N 19,227 5949 17,887 &<  Humor Detection Binary F1 News

7 Fake-N 1,990 221 701 < Fake News Binary F1 News

8 XNLI 392,702 5,010 2,490 NLI Accuracy Misc.

9 EXAMS 1,512 365 1,472 + Multi-Choice QA Accuracy HS Exams

Table 1: Summary of the tasks included in the bgGLUE benchmark. The numbers in the train, development, and
test columns are in terms of examples. The following columns define the structure of the tasks. The domain is based
on the source of the texts. The EXAMS dataset is collected from high school (HS) examinations. Splits: & new
splits; @ removed duplicates; 4 new examples added/collected.

The models show strong performance on part-
of-speech tagging and named entity recognition,
but struggle on tasks that require more complex
reasoning such as solving matriculation exams, or
evaluating the credibility and the veracity of news
articles. Our contributions are as follows:

* We propose the first benchmark for evaluating
the capabilities of language models on NLU
in Bulgarian, bgGLUE, which includes nine
diverse and challenging downstream tasks. !

* While creating the benchmark, we curated the
datasets and created standard splits, where
those have not been previously available in the
original publications. This facilitates the prin-
cipled evaluation of all datasets in bgGLUE.

* We train and share 36 models for Bulgarian
and provide the first comparative evaluation
of existing models on all tasks in bgGLUE.

2 Tasks

Table 1 shows the nine datasets that are included
in the bgGLUE benchmark. Table 2 shows ex-
amples from each dataset and their corresponding
labels (translations are available in Table 17 in the
Appendix). We present additional details such as
word overlaps, domain, topic, label distributions,
etc. about each dataset in Appendix C.

'The bgGLUE code, data, and models are available at
https://github.com/bgGLUE/bgglue.

2.1 Token Classification

BSNLP The dataset is released as part of the
Balto-Slavic NLP workshop series (Piskorski et al.,
2017, 2019, 2021). The task focuses on cross-
lingual document-level extraction of named enti-
ties: the systems should recognize, classify, extract,
normalize, and make a cross-lingual linking of all
named entity mentions in a document; detecting
the position of each named entity mention is not
required. The target tags are person (PER), organi-
zation (ORG), location (LOC), product (PRO), and
event (EVT).

PAN-X (WikiANN) The PAN-X dataset (Pan
et al,, 2017) has Named Entity Recognition
(NER) annotations for persons (PER), organiza-
tions (ORG), and locations (LOC). It has been
constructed using the linked entities in Wikipedia
pages for 282 different languages.

Universal Dependencies (U. Dep) Universal De-
pendencies (UD) (Nivre et al., 2020) is a frame-
work for consistent annotation of grammar (part
of speech, morphological features, and syntactic
dependencies) across different human languages.
UD is an open community effort with over 300
contributors producing more than 200 treebanks
in over 100 languages. The dataset was collected,
annotated, and later transferred into the required
UD format as part of the Bulgarian treebank (BTB-
BulTreeBank) project (Osenova and Simov, 2015).
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BSNLP

Document: ... Kammepsr na {Tepmannsa}-¢ { Anrena Mepken} ™™ u npesunentsr ma {Pycus} °¢ {Bramn-

}PER ca obenmumm 1o Tenedona peanusaruara na npoekrta “{ Cesepen norox - 217507 | Tlo -
JORG »

mup [lyTun
pano kommnanusita “‘{Hopx crpum , KOSITO BOJU CTPOMTEJICTBOTO ...
Possible Tags: Person (PER), Organization (ORG), Location (LOC), Product (PRO), Event (EVT)

User Review: Iler 3Be3/u ca My MaJIKO - 3aCJly?KaBa IIOHE OIIe TOJIKOBA :)
Rating: 5.0

Cred.-N |Cinexio

Body: /Inec m3tuya CpoKbT, B KONTO ObJarapuTe, KMUBEEIU B 4y:KOMHA, MOTAT Ja IO/I3IaT 3asIBJICHUE
3a paskpuBaHe Ha M300pHaA CeKIWs 3a npejcrosnms Ha 27 sayapu pedepenaym. Cropes pelieHue Ha
IenTpannara u3buparesnna komucus (IINK) 3a q0onnTBaHETO CEKIUM MOTAT JIa CE OTKPUBAT B IIOCOJICTBATA
¥ KOHCYJICTBaTa Ha CTpaHara. 3a 1ejra obade ca HyKHH noHe 20 3asBJICHIS HA YKEJIACIIH. ..

Title: /Inec n3Tuda CpoKbT 3a MOIaABAHE HA 3asBJICHIS 38 PA3KPUBAHE HA CEKIIUU B 4yKOUHA 32 pedepermayma
Correct Label: Credible

Tweet: Criopen usciensane, #COVID19 onenssa no 3 yaca B aepo30/u BbB Bb3/yXa, 10 24 dJaca Ha
XapTHeHa ¥ OKOJIO 2-3 THU Ha CTOMaHeHa MJIM IUIacTMacoBa HoBbpxHocT. [URL]
Check-worthy: Yes

EXAMS |CT21.T1

Paragraph: IIpes ecenra Ha 917 roguna TO¥ uU3Npaia apMus ... 3a jga HanagHar Cbpbus 1 Ja HaKaKaT
loitHuKOBWY 3a TTpeIATEICTBOTO My. BhiarapckusT Biageres 0OTHOBO udnpaiia Teomop Curpuria u Mapmanc,
HO TO3U II'bT T€ IIPEThPIISIBAT MOPAaXKEHNUE. .. KOETO NMPpUHYKIaBa CUMEOH Ja CKIYN IpuMupue ¢ Busanrusi...
Subject: History

Question: Kou mrbIkoBOAIM ortaBsABaT HakasaTeJ HUs moxo Ha CHUMEOoH cpellly Bb3HUKHAJIaTa CPbOCKa
omacHocT mpe3 917 1.7

Candidate answers:

(Aa) Teonop Curpuna u Mapmauc, (B) Kpakpa u Anycuan, (C) Usan u Huxkynuna, (D) Kaun, UMmauk u
Nusoknit

Fake.-N

Body: 3zcaemoBarensar Ha 6birapckute mpoporu Xpucto Pajes paskpuBa mpeackasanns Ha HeHOMEHA
Crnasa CeBpiokoBa B HHTEDBIO 3a ,,Bbirapus guec” B kpas na 80-re ronuuu CiaBa CeBpIOKOBa Ka3Ba, de
B Bbarapus wsHeBHaeuna e ce MOsIBU YOBEK, B KOWTO € MPEPOJEH AyXbT HA APBK OMOIEHCKHU Tepoii.
Nwma npensuy Jasun. Cruopen sicCHOBUIAKATA TO3U O'bJIAPUH IIe U3II'JIHA MHOI'O BayKHa POJIS B O'bJIEIIETO
Ha crpanara. JIJaHo To3u npe3usieHT na e BbhiupocHudaT doBek! Pymen Pajies uzckodu or HUIOTO, CHINO
KaTo oubJieiickust laBu...

Title: Petel.bg - noBunm - ,Buarapus naec”: Mzkomaxa narybenoro mpopodectBo Ha CiaaBa CeBprokoBa 3a
Bbarapus! To ce cobapa npenx ounte HU

Correct Label: Fake

Sentence: Buybr e pasmpocrpanen B {Bypymma}-o¢, { demoxparmama perny6mxa Korro}-o, {3ambms }-0¢
u { Tanzamms }-0¢,

Possible Tags: Person (PER), Organization (ORG), Location (LOC)

U.Dep | PAN-X

AUX

PRON
1I1e cePRO

NOUN PUNCT VERB PUNCT
’ B

Sentence: B*P? nuckycusra saceruar o parxun?’

B’])HpOCI/INOUN .PUNCT

Possible Tags: NOUN, PUNCT, ADP, VERB, ADJ, PRON, AUX, PROPN, ADV, CCONJ, DET, NUM, PART,
SCONJ, INTJ

npearoJjaram

XNLI

Text: 1 Toit kaza: Mamo, y moma cbm. Toit ce obaanm Ha MaiiKa CH BeIHATA IIOM YIUIUIIHUAT aBTOOYC TO €
OCTaBUJI.

Hypothesis: Toit ce obaan Ha Maifka cu BegHAra MOM YUMJIAITHUAT aBTOOYC TO € OCTABUII.

Entailment: Neutral

Table 2: Examples from our bgGLUE benchmark. For each task, the different parts of the example are shown in
Bold. Underlined text shows the label for that example (or the set of possible labels). The precise model’s inputs
and the expected outputs (labels) are shown in Table 6 in the Appendix. Translations for each examples are shown

in Table 17.

2.2 Natural Language Inference

XNLI This dataset (Conneau et al., 2018) is a
subset of a few thousand examples from MNLI,
which has been translated into 14 languages. As
with MNLI, the goal is to predict textual entailment:
does sentence A imply/contradict/neither sentence
B? This is a classification task: given two sentences,
predict one of the three labels.

2.3 Sentiment Analysis

Cinexio The Cinexio dataset (Kapukaranov and
Nakov, 2015) focuses on fine-grained sentiment
analysis of movie reviews. It was automatically
collected to contain movie reviews in Bulgarian
from the Cinexio ticket-booking website (which is
not available anymore).
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2.4 News Credibility / Fact-Checking

CLEF-2021 CheckThat!, Task 1A (CT21.T1)
Check-Worthiness Estimation dataset is part of the
2021 CheckThat! Lab on Detecting Check-Worthy
Claims, previously Fact-Checked Claims, and Fake
News (Task 1) (Shaar et al., 2021). The aim of the
task is to determine whether a piece of text is worth
fact-checking. More precisely, given a tweet, one
has to produce a ranked list of tweets, ordered by
their check-worthiness.

Credible News (Cred.-N) The Credible
News (Hardalov et al., 2016) dataset focuses on the
problem of automatically distinguishing credible
from fake and humorous news. The examples are
articles collected from six Bulgarian news websites.
The articles cover various topics including politics
(both local and global), sports, lifestyle, and pop
culture. The original dataset contained news from
four websites. As part of the bgGLUE initiative,
we collected 6,550 new articles (5K credible and
1.5K humorous) from two new websites, and we
release more than 30K ones that were not publicly
available.

Fake News (Fake-N) This dataset (Society,
2017; Karadzhov et al., 2017) contains Bulgarian
news articles over a fixed period of time, whose fac-
tuality was questioned. These news articles come
from 377 different sources from various domains,
including politics, interesting facts, and tips&tricks.
The dataset was prepared for and used in the Hack
the Fake News hackathon in 2017. We found and
removed instances that were duplicated across the
splits and we further randomly allocated 10% of
the training instances for a development dataset,
which was not available in the original version of
the dataset.

2.5 Question Answering

High School Examinations (EXAMS) EX-
AMS (Hardalov et al., 2019, 2020) is a benchmark
dataset for cross-lingual and multilingual question
answering for high school examinations. It con-
tains more than 24,000 high-quality exam questions
in 26 languages, covering eight language families
and 24 school subjects from the Natural Sciences
and Social Sciences, among others. EXAMS offers
a fine-grained evaluation framework across multi-
ple languages and subjects, which allows a precise
analysis and comparison of various models.

2.6 Scoring

In bgGLUE, we opt for the simple approach of
weighing each task equally, and for tasks with mul-
tiple metrics, first averaging those scores to get a
task score.

3 Data Preparation

Here, we describe the pre-processing steps we took
to prepare the datasets before including them in the
bgGLUE benchmark. Our main goal was to ensure
that the setup evaluated the language understanding
abilities of the models in a principled way and in
a diverse set of domains. Since all of the datasets
were publicly available, we preserved the origi-
nal setup as much as possible. Nevertheless, we
found that some datasets contained duplicate exam-
ples across their train/dev/test splits, or that all of
the splits came from the same domain, which may
overestimate the model’s performance. Hereby,
we removed data leaks and proposed new topic-
based or temporal-based (i.e., timestamp-based)
data splits where needed. We deduplicated the ex-
amples based on a complete word overlap in two
pairs of normalized texts, i.e., lowercased, and ex-
cluding all stop words.

For the BSNLP task, we combined the data from
three consecutive editions of the NER shared task.
We selected all Bulgarian examples, which encom-
passed six different topics. We used the latest two
topics for testing, and split the rest randomly at a
4:1 ratio for training and validation.

The Credible News dataset contained data from
six sources and various news topics. We split the
dataset both by topic and by source. In particular,
we included all news articles from the same topic
in the same split. For training and validation, we
used documents from the largest sources from the
two categories. Moreover, we extracted the same
topics from the two and grouped them together
within the splits, keeping the class ratio at 1:10. In
the test dataset, we used data points from all six
data sources.” We note that our test set contains all
data points from the two new sources, which are
more recent, making them even more challenging.
Finally, we cleaned the texts from duplicates and
removed all keywords indicating the source: the
names of the authors, the media source, the URLS,
etc. More details about the collection process of
the news articles are given in Appendix C.

*We did not have overlapping topics from the same source
in the different splits.
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We prepared an entirely new split for Cinexio, as
there was no standard one. First, we removed all
duplicate comments and we sorted the remaining
ones by publication time. Next, we split the com-
ments using half for training and the rest equally
for validation and testing. Finally, we removed
from the training set the comments for the same
movie that appeared in the other two splits, which
changed the distribution by slightly increasing the
proportion of the training set.

For EXAMS, we kept the original validation and
test splits (Hardalov et al., 2020). We added all
additional questions from Hardalov et al. (2019)
to the training set, i.e., the category history online
quizzes.

The Fake News dataset was released as part of
a shared task and it was already split into train-
ing and testing sets. After manual inspection, we
found that some of the articles had only their titles
reworded and had the same content. Therefore, we
removed duplicates based only on exact matches in
the article’s body. In addition, we designated 10%
of the training examples for validation.

PAN-X contained short sentences from
Wikipedia automatically annotated based on the
available Wiki entities. The dataset consists of
20K examples for training and 10K for validation
and testing. We kept the proposed splits, but we
checked for duplicates by converting each sentence
to lowercase and removing the punctuation. This
resulted in the removal of 10K sentences overall.

Our analysis did not find any issues with
CT21.T1, U.Dep, and XNLI, and thus we kept the
splits as provided originally.

4 Experiments

In this section, we first describe the baseline sys-
tems we experiment with and then we present the
evaluation results.

4.1 Baselines

Majority and Random Baselines The majority
class baseline is calculated from the distributions
of the labels in each test set. In the random base-
line, each test instance is assigned a target label at
random with equal probability.

Fine-tuned models Our baselines include sev-
eral prominent multilingual encoder-only pre-
trained Transformer models. We divide them,
based on their pre-training objective as follows:

I Masked language modeling:

* mBERT (Devlin et al., 2019) We use the base
cased version, trained on 104 languages, in-
cluding Bulgarian. The pre-training task is
done on a Wikipedia dump for each language.

* XLM-R (Conneau et al., 2020) We evaluate
the Base and the Large versions of the model.
They are trained on filtered CommonCrawl
data in 100 languages, including Bulgarian.

I Knowledge distillation:

* Distil-mBERT (Sanh et al., 2019) The model
is distilled using mBERT as the teacher.

* MinilLMy 5, (Wang et al., 2020) The model is
distilled using XILM-Rp,q as the teacher, on
the same pre-training corpora as the latter.

IIT Bulgarian downstream task:

e SlavicBERT (Piskorski et al., 2021) The
model is based on mBERT that is addition-
ally pre-trained with four Slavic languages:
Bulgarian, Czech, Polish, and Russian, using
a stratified dataset of Russian news and Wiki
articles for the other languages. Finally, the
model is fine-tuned on all the languages from
the BSNLP shared task.

For the token classification tasks (BSNLP,
U.Dep, PAN-X), we predict the tag for each word
based on the tag of the first sub-token. For the
sentence classification tasks, we obtain the predic-
tions based on the first special token (e.g., [CLS]).
For Cinexio, we optimize a mean squared error
loss. For CT21.T1, Cred.-N, Fake-N, and XNLI,
we optimize the cross entropy loss. Finally, for
EXAMS, we optimize a binary cross entropy for
each candidate answer. More details about the
experimental setup, the values of the model hyper-
parameters, and other training details can be found
in Appendix A. For a description of the inputs and
the outputs, we refer the reader to Appendix B.

4.2 Experimental Results

Table 3 shows the results for the baseline models
fine-tuned on the bgGLUE tasks. Each model is
trained on one task at a time. First, we see that the
random and the majority baselines achieve below
20 points bgGLUE score, and all fine-tuned models
outperform them on all tasks by a sizable margin.

Figure 1 shows the correlation between the
model size and the bgGLUE score: we can see
that scaling the model size brings additional perfor-
mance improvements (Devlin et al., 2019; Conneau
et al., 2020; Brown et al., 2020; Chowdhery et al.,
2022; Zhang et al., 2022; Scao et al., 2022).
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bgGLUE | BSNLP Cinexio CT21.T1 Cred.-N EXAMS Fake-N U.Dep PAN-X XNLI

# Model Name | Avg. — | Flpaeo P/S Corr. Avg. P Flpjpary Acc. Flpinary Flmacro Flmacro Acc.
Random Baselines

- Majority 18.52 0.00 0.00 28.41 34.14 25.68 45.08  0.01 0.00 33.33

- Random 17.59 0.75 0.00 25.06 30.14 25.54 35.65 6.31 094 3333
Fine-tuning Baselines

1 XLM-Ryyrge 75.82 63.81 85.69 69.45 79.73 36.41 7031 9930 9296 84.71

2 XLM-Rpase 73.04 62.47 84.40 63.91 75.74 33.42 66.82 99.23 91.18 80.22

3 SlavicBERT 72.12 165.28 81.71 62.70 72.01 31.86 6728 99.06 92.36 76.79

4 mBERT}c 71.08 56.13 82.07 64.79 69.17 35.39 65.65 98.99 92.11 75.39

5 MiniLMy 1 70.96 59.70 80.63 57.37 75.41 35.26 64.33 9891 90.26 76.81

6 Distil-mBERT | 69.58 52.82 80.32 65.15 67.05 34.31 65.66 98.58 90.82 71.50

Table 3: Baseline results on the bgGLUE benchmark. We show the best results in bold and we underline the second
best result. The scores for each model are the highest ones achieved during hyper-parameter search by selecting
the best model checkpoint on each task’s development set. We calculate the bgGLUE score on the raw scores
(before rounding) and then we round it to two digits. Following the notation of previous benchmarks, we multiply
the results by 100. ¥SlavicBERT is pre-trained on all languages from the BSNLP NER task (not using our splits),

therefore its score on that task is unrealistically high.
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Figure 1: Scaling curve of the bgGLUE score based on
the model size (in million parameters). The dotted line
illustrates the average increase.

Table 5 in the Appendix summarizes the number
of parameters for each model we experimented
with. We can see in that there is a linear correlation
between the number of parameters in the model
and its performance, which holds for all models
except for Distil-mBERT, where the slope is more
steep. Nonetheless, it is clear that the model size is
not the only factor that affects the downstream task
performance. Other important factors include the
pre-training dataset that was used (Liu et al., 2019;
Raffel et al., 2020), the number of tokens in that
training set (Hoffmann et al., 2022), whether the
model is distilled or is full-size (Sanh et al., 2019;
Wang et al., 2020), whether it is monolingual or
multilingual (Conneau et al., 2020), etc.

As expected, the largest model, XLM-Rp age,
outperformed its smaller version XLM-Rpase by
2.78 points absolute. Moreover, the more ro-
bustly pre-trained XLLM-R model on average out-
performed by 2 points a similar-sized mBERT, scor-
ing at 73.0 bgGLUE score. The highest differences
between BERT-based and XLM-R-based models
(including their distilled versions) are on BSNLP,
Cinexio, Cred.-N, and XNLI, in favor of XLLM; on
CT21.TI and PAN-X this is in favor of BERT.

The gap between XLM-R and mBERT is re-
duced by 1 point absolute by the SlavicBERT’s
additional fine-tuning on downstream tasks. Al-
though the largest improvement is observed for
NER tasks,> we see an increase by 1-2 points
also on Cred.-N, Fake-N, and XNLI, compared to
mBERT. However, we also see that the downstream
pre-fine-tuning is not beneficial for all tasks (Poth
et al., 2021), and we see a drop in performance
for ranking (CT21.T1) and question answering®
(EXAMS) tasks.

Our evaluation of knowledge-distilled models
shows that they are a competitive alternative to their
teacher models for Bulgarian. Although they are
ranked last in terms of performance, their results
are 1.5-2.0 points of bgGLUE score behind the
best results we obtained, and thus we believe they
are a viable alternative to the full models.

3SlavicBERT is pre-trained on data from the 2019 edition
of the BSNLP competition using different splits.

“Hardalov et al. (2019) observed the same when fine-
tuning SlavicBERT for multiple-choice QA.
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In order to measure the trade-off between model
size and model performance, we compare mBERT
to DistilBERT and XLM-R to MiniLM. In the case
of DistilBERT, we have 30% (178M — 135M)
fewer parameters, which results in a 2.2% drop in
performance. In turn, MiniLM has less than half
of the parameters of its teacher, i.e., 135% fewer
parameters (278M — 118M), which leads to only
a 2.9% relative drop in performance. The most
challenging tasks for the distilled models are NER
(BSNLP and PAN-X), NLI (Cinexio and XNLI),
where we see a sizable gap between non-distilled
models. Finally, we note that MiniLM has the
worst performance on CT21.T1, which is also so
for XLM-R. We hypothesize that this is due to
the source of the dataset being Twitter. For more
detailed results, we refer the reader to Appendix D.

5 Discussion

Software Tools As part of building the bench-
mark, we developed a set of software tools that fa-
cilitate the training and the evaluation of new mod-
els. The toolkit is implemented in PyTorch (Paszke
et al., 2019), using the transformers library (Wolf
et al., 2020). Moreover, we integrate and release
publicly all datasets (in accordance with their li-
censes; see the next paragraph) from bgGLUE in
the HuggingFace datasets repository (Lhoest et al.,
2021).°

Dataset Licenses We keep the licenses as pro-
vided by their authors for all datasets included in
the bgGLUE benchmark. Table 4 summarizes the
information about each dataset and gives links to
the external websites and code repositories pro-
vided by the authors. All datasets are available to
use for research purposes. Some of them come
with a non-commercial license, i.e., Cinexio, Cred.-
N, U.Dep, and XNLI. Cred.-N requires signing an
agreement form before obtaining the dataset.

Modeling Considerations Previous work has
shown that a model’s scale (Kaplan et al., 2020;
Hoffmann et al., 2022) is an important factor for
its performance (Radford et al., 2018; Devlin et al.,
2019; Liu et al., 2019; Radford et al., 2019; Con-
neau et al., 2020; Soltan et al., 2022; Zhang et al.,
2022), especially in zero-shot or few-shot set-
tings (Brown et al., 2020; Wei et al., 2021; Chowd-
hery et al., 2022; Ouyang et al., 2022).

Shttps://huggingface.co/bgglue

Task Public License Website Code
BSNLP  V X % -

Cinexio v = % -

cr2iTt1 v = % P
Cred.-N X = - <>
EXAMS V ) - <S>
Fake-N v ol - <>
U.Dep v = S <>
PAN-X V X : <S>
XNLI VAR 2 % <

Table 4: Dataset licensing information. The Cred.-N
dataset is not public and is distributed after filling up
an agreement form. All other datasets are publicly dis-
tributed under different licenses: X no specific license,
7= non commercial use only, € creative commons li-
cense open for commercial use, s MIT License. S the
dataset has a website. </> the authors offer a repository
with code.

Nevertheless, these models are often pre-trained
on high-resource languages such as English. A
few noteworthy alternatives for Bulgarian include
XLM-RoBERTa (Goyal et al., 2021), multilingual
T5 (Xue et al., 2021), XGLM (Lin et al., 2022),
mGPT (Shliazhko et al., 2022), and the extended
version of BLOOM (Yong et al., 2022). These
models represent different variants of the Trans-
former architecture, i.e., encoder/decoder-only or
sequence-to-sequence. In this work, we only in-
cluded encoder-only Transformer models with less
than one billion parameters (see Table 5 in the Ap-
pendix). We leave the rest to be explored by fu-
ture participants in the bgGLUE benchmark and
we note that some of the tasks, such as ranking
or regression, require additional steps to make the
different architectures work.

Although a model’s scale is important for its
performance, it comes with additional efficiency
and computational costs, among other consider-
ations (Bommasani et al., 2021). Fine-tuning
large pre-trained language models is usually time-
consuming and expensive, and it also requires a
large number of manually annotated examples. A
possible direction that alleviates these requirements
is to use adapter-based models (Rebuffi et al., 2017;
Pfeiffer et al., 2021) and other techniques for effi-
cient training (Lester et al., 2021; Hu et al., 2021;
Ben Zaken et al., 2022).
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Promising results were shown both in multilin-
gual (Pfeiffer et al., 2020) and in cross-lingual set-
tings (Muennighoff et al., 2022).

Another line of work, which we leave for future
research, is zero-shot and few-shot learning. Re-
cently, different techniques have been developed
such as learning from demonstrations Brown et al.
(2020), patterns (Schick and Schiitze, 2021a,b), in-
structions (Mishra et al., 2022; Wang et al., 2022;
Chung et al., 2022; Iyer et al., 2022), or multi-task
fine-tuning Raffel et al. (2020); Wei et al. (2021);
Chowdhery et al. (2022). These models require
fewer examples due to their extensive fine-tuning,
but they still showed Chowdhery et al. (2022) that
a model’s size is of crucial importance for their
performance.

Finally, there is a trade-off between performance
and using monolingual vs. multilingual mod-
els (Devlin et al., 2019; Conneau et al., 2020;
Pyysalo et al., 2021). Extensively pre-trained
monolingual models on language-specific corpora
often achieve better performance compared to
multilingual ones (Kuratov and Arkhipov, 2019;
Canete et al., 2020; Masala et al., 2020; Delobelle
et al., 2020; Chan et al., 2020; Martin et al., 2020;
Cui et al., 2021; Pyysalo et al., 2021; Barry et al.,
2022). However, there is no open-source large scale
pre-trained monolingual Bulgarian model with ex-
tensive pre-training: most of the existing check-
points are based on multilingual ones, and they are
fine-tuned on small corpora.®

Leaderboard We develop our leaderboard in
accordance with existing ones, e.g., the (Su-
per)GLUE (Wang et al., 2019b,a): the participants
are provided with all the training, validation, and
test examples without the gold test labels. They
submit an archive with their predictions for each
task, and then our system automatically evaluates
their predictions.

The intended use of our leaderboard is to pro-
vide a standardized way to compare the perfor-
mance of different models on specific tasks, thus
allowing researchers and practitioners to assess the
current state of the art and to identify areas where
improvements can be made. We urge against mak-
ing improperly supported claims about general lan-
guage understanding based on the performance on
our leaderboard, and on NLP leaderboards in gen-
eral (Ethayarajh and Jurafsky, 2020; Raji et al.,
2021; Blasi et al., 2022).

SReference: https://huggingface.co/models?language=bg

We believe that the bgGLUE leaderboard will in-
centivize model and resource creation in two ways:
(i) the participants are required to share details
about their submissions, and are encouraged to
release their models; we cannot force the latter, but
we can ensure that the methods are reproducible
to some extent; (ii) practice shows that the results
on such leaderboards tend to saturate in several
years, which will likely happen with this bench-
mark as well. We plan to open our platform and to
work with interested researchers, first to design new
leaderboards (Ma et al., 2021), second to include
their datasets into bgGLUE, and third to collabo-
rate to build new (including human-and-model-in-
the-loop (Kiela et al., 2021)) and refining exciting
language resources for Bulgarian.

6 Related Work

Language Understanding The release of the
code and English corpora as part of the General
Language Understanding Evaluation (GLUE Wang
et al. (2019b)) was a push towards the development
of models with improved performance on a diverse
set of downstream tasks. The GLUE benchmark
includes 11 NLU tasks, such as semantic textual
similarity, natural language inference, and other
classification tasks. Later, the benchmark was ex-
tended with additional and more sophisticated tasks
in its SuperGLUE (Wang et al., 2019a) variant.

While GLUE and SuperGLUE have been estab-
lished as the de-facto standard for evaluating ma-
chine learning models, they are limited to English.
To foster the evaluation and the development of ma-
chine learning models for other languages, several
benchmarks in other languages have been released.
They can be grouped based on their language
family as follows: Romance — French (Le et al.,
2020), Catalan (Rodriguez-Penagos et al., 2021),
Balto-Slavic — Russian (Shavrina et al., 2020),
Slovenian (Zagar and Robnik-Sikonja, 2022), Ira-
nian — Persian (Khashabi et al., 2021), Altic —
Korean (Park et al., 2021), Sino-Tibetan — both
CLUE (Xu et al., 2020), and CUGE (Yao et al.,
2021) focus on Chinese, Indic — Kakwani et al.
(2020) evaluated fine-tuned pre-trained models
on multiple Indic languages, while Doddapaneni
et al. (2022) focused on their zero-shot capabili-
ties, and Malayic — Indonesian (Koto et al., 2020).
Khanuja et al. (2020) provides further resources for
code-switched languages (English with Spanish or
Hindi).
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While Shavrina et al. (2020) provided resources
for Balto-Slavic languages, there are no existing
benchmarks for languages in the South Eastern-
Slavic subgroup or for Bulgarian in particular. We
address this deficiency by developing bgGLUE,
a benchmark for Bulgarian, which is part of the
South-Slavic subgroup. Hristova (2021) published
a survey of the language resources available for
Bulgarian, which we also include in the current
benchmark, extended with more recent datasets.

The aforementioned benchmarks focus on a sin-
gle language or on a single language family. Other
studies looked at multiple languages. Liang et al.
(2020) proposed XGLUE, a benchmark for 19 lan-
guages that covers NLU problems and language
generation tasks. Hu et al. (2020) collected a cross-
lingual evaluation dataset in 40 languages, later
extended with 10 additional (Ruder et al., 2021), in-
cluding tasks similar to the original (Super)GLUE
setup such as token classification, question answer-
ing, textual similarity, natural language inference,
etc. Both benchmarks include Bulgarian, but are
limited to three tasks: part-of-speech (POS) tag-
ging (Universal Dependencies Nivre et al. (2020)),
named entity recognition (PAN-X/WikiAnn Pan
et al. (2017)), and natural language inference
(XNLI Conneau et al. (2018)). These tasks are
also part of bgGLUE, but we extend them with ad-
ditional NLU tasks, including question answering,
fake news detection, sentiment analysis, etc.

More recently, a large-scale initiative for provid-
ing open access to large language models trained
to perform new tasks based on few demonstrations
or natural language instructions was launched as
part of the BLOOM workshop (Scao et al., 2022).
This led to the release of a new corpus, compris-
ing sources in 46 natural and 13 programming
languages, and a multilingual decoder-only Trans-
former language model pre-trained on that data.
However, BLOOM was not pre-trained on Slavic
languages, and it was only later that zero-shot sup-
port for Bulgarian was added Yong et al. (2022).

BIG-Bench (Srivastava et al., 2023) is another
such initiative that incorporates more than 200
tasks (some not related to NLP) to test the capabili-
ties of language models. The task topics are diverse,
drawing problems from linguistics, childhood de-
velopment, math, common-sense reasoning, biol-
ogy, physics, social bias, software development,
and beyond. Currently, there are a few non-English
tasks included, but none of them is for Bulgarian.

The low number of Bulgarian resources that are
part of these initiatives is yet another reason why
more publicly available Bulgarian resources and
open-access models are needed.

Other Modalities Existing work also quantifies
the abilities of state-of-the-art models in multi-
modal settings. CodeX GLUE (Lu et al., 2021)
is a benchmark for program understanding and gen-
eration. Conneau et al. (2022) proposed XTREME-
S that focuses on speech tasks, including speech
recognition, classification, speech-to-text transla-
tion, and retrieval. Finally, IGLUE (Bugliarello
et al., 2022) fills the gap in image and text evalua-
tion, including tasks such as visual question answer-
ing, cross-modal retrieval, and grounded reasoning.
Bulgarian is included as part of both XTREME-S
and IGLUE. However, here we focus only on NLP
tasks on text and currently, we do not include tasks
with multiple modalities in the present benchmark.

7 Conclusion and Future Work

We presented bgGLUE — the first holistic bench-
mark for evaluating NLU systems in Bulgarian. It
includes nine challenging tasks that cover token
classification, regression/ranking, and text classifi-
cation. We fine-tuned and evaluated six different
pre-trained state-of-the-art language models. Our
extensive evaluation showed that bgGLUE contains
challenging tasks that are far from being solved. Fi-
nally, we open-sourced the cleaned versions of the
datasets, including the new, more challenging splits,
and the source code for training and evaluation, and
we released 36 fine-tuned models (one for every
task and model combination). All the released arti-
facts are also integrated into the HugginFace Hub.
We believe that bgGLUE is a rich and challeng-
ing testbed that will cultivate prospective work on
Bulgarian language understanding.

In future work, we plan to add more tasks for
Bulgarian, e.g., toxicity detection (Dinkov et al.,
2019). We also want to use monolingual Bulgar-
ian datasets for pretraining, beyond Wikipedia and
CommonCrawl, e.g., (Simov et al., 2002, 2004;
Koeva et al., 2004, 2012, 2020), using which will
require a thorough assessment in order to prevent
introducing unwanted biases and hazardous behav-
ior in the models trained on them (Bender et al.,
2021; Liang et al., 2021). Finally, we plan to try
recent multilingual models such as mDeBERTaV3
(He et al., 2021), mT0 and BLOOMz (Muennighoff
et al., 2023).
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In Memory of Professor Dragomir Radev

We dedicate this work to the memory of Dragomir
Radev, who is a co-author of this paper. Drago had
a tremendous impact on our community, and his
legacy will live on through the countless students
and colleagues whose lives he touched. Drago was
not only an exceptional computer scientist, but one
of the kindest and most humble people many of us
have ever known. He deeply cared about Bulgarian
NLP and Bulgarian NLP researchers. He was also
the one who gave the idea and who remained the
main driving force behind the Bulgarian GLUE
project. Drago will be greatly missed...
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Limitations

Tasks in bgGLUE The bgGLUE benchmark is
comprised of nine challenging NLU tasks, includ-
ing three token classification tasks, one ranking
task and five text classification tasks. While we
cover three different types of tasks in the bench-
mark, we are restricted by the available resources
for Bulgarian, and thus we could not include some
other NLP tasks, such as language generation. We
also consider only NLP tasks and we do not include
tasks with other/multiple modalities. Finally, some
of the tasks are of similar nature, e.g., we include
two datasets for NER and two for credibility/fake
news classification (see Section 2).

Domains in bgGLUE The tasks included in bg-
GLUE span over multiple domains such as social
media posts, Wikipedia, and news articles and can
test both for short and long document understand-
ing. However, each task is limited to one domain
and the topics within the domain do not necessarily
have full coverage of all possible topics. More-
over, some of the tasks have overlapping domains,
e.g., the documents in both Cred.-N and Fake-N
are news articles.

Baseline Models As described in Section 5, the
baseline models provided for bgGLUE include
fairly small encoder-only Transformer architec-
tures. We leave for future work other modeling ar-
chitectures and modeling techniques that are known
for improving the efficiency and the computational
requirements of the used models, e.g., few-shot and
zero-shot in-context learning and instruction-based
evaluation, multi-task learning, etc.

Model Biases In this work, we did not explore
whether the datasets in bgGLUE contain unwanted
biases, which could also lead to potentially haz-
ardous behavior of the baselines we trained in our
experiments with the bgGLUE benchmark.

Ethics and Broader Impact

Dataset Collection

In bgGLUE, we include only datasets that are pub-
licly available, with a license that allows at a mini-
mum free use for academic research. We have also
referenced the original work where the correspond-
ing resources were first proposed. We encourage
the users of bgGLUE to refer to the original work
for licensing details.

Additionally, we carefully examined and re-
moved the instances of the dataset that were du-
plicated across the training/development/test splits.
Whenever development or other dataset splits were
not available, we also provide new dataset splits
as well. Section 2 points where such changes of
the corresponding original resources were required,
and the code used to filter or to produce the new
splits is available in bgGLUE’s code repository.
We believe that the selection of publicly available
datasets and the adopted dataset curation steps will
foster the development and the rigorous evaluation
of language models for Bulgarian.
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Biases and Misuse Potential

The datasets included in bgGLUE were annotated
by human annotators, who could be subject to po-
tential biases in their annotation process. Hence,
the datasets in bgGLUE could potentially be mis-
used to develop models that make predictions that
are unfair to individuals or groups. Therefore, we
ask users of bgGLUE to be aware of such potential
biases and risks of misuse. We note that any biases
that might exist in the original resources gathered
in this benchmark are unintentional and do not aim
to cause harm.

Intended Use

The bgGLUE benchmark is intended to promote
the development and the rigorous evaluation of lan-
guage models for Bulgarian. We further believe
that the benchmark will serve to examine the capa-
bilities and the limitations of existing and emerging
models on the challenging natural language under-
standing tasks in Bulgarian. Ideally, this could also
lead to raising awareness of the potential risks as-
sociated with the use of such models developed for
downstream tasks in Bulgarian.

Environmental Impact

While bgGLUE can stimulate the development of
new machine learning models, it is worth noting
that such models could require large computational
resources for training, which contributes to global
warming (Strubell et al., 2019). On the other hand,
bgGLUE is intended mainly for fine-tuning pre-
trained large language models, which requires con-
siderably smaller computations. Additionally, we
release the benchmark and the models on the Hug-
gingFace Hub, which further reduces the environ-
mental impact, as fine-tuning again is computation-
ally costly, especially for larger models.
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Appendix
A Model Hyper-Parameters and Training

Below, we first describe the values of some param-
eters that are across all models we experiment with,
and then we discuss the values of some model-
specific parameters:

¢ All our models use the AdamW (Loshchilov
and Hutter, 2019) optimizer with a weight de-
cay of 1e-8, 81 0.9, 52 0.999, € 1e-08, and
are trained for five epochs with a batch size
of 16 (gradient accumulation is applied when
needed), and a maximum length of 512 to-
kens.

* We truncate longer input sequences token by
token, if the input is formed from multiple
sequences (see Section B), i.e., pairs, we start
from the longest one.

* All models use a warmup ratio of 0.06 from
the training data. We experiment with learning
rate values {2-5}e-04 for base and distilled
models, and {1-3}e-04 for XLM-R[ yge.

* The values of the hyper-parameters (including
the number of training epochs) and the best
checkpoints were selected on the development
set. We use the target metric for each task as
a checkpoint selection criterion.

¢ We trained our models on 5x Tesla T4 GPUs.
Depending on the dataset size, the exper-
iments took between 10 minutes, for the
smaller datasets and models, and up to 2 hours,
for larger datasets. Training the XNLI model
took 10 hours with base models, and 20 hours
for large models.

* All models were trained with half-precision
(fp16) using the default PyTorch implementa-
tion.

e Table 5 shows the models’ size in terms of the
number of parameters.

* When evaluating the Token Classification
Tasks if the predicted sequence was shorter
than the target one (i.e., not all inputs fit into
512 tokens), we added empty tags (’O’) until
the target length was reached.

Model Name  #Params
XLM-Riarge 560M
XLM-Rpase 278M
SlavicBERT 178
mBERT e 178M
Distil-mBERT 135
MiniLMle 118M

Table 5: Number of parameters in millions for each
baseline pre-trained model included in the evaluation.

Il History
B Philosophy

r-_--
train

dev ll-
-
test

Figure 2: Subject distribution in the EXAMS dataset.

I Geography
B Biology

B Physics
B Chemistry

B Model Input, Output and Loss

Table 6 shows the inputs and the outputs for each
model. We selected the formats based on previous
work (Devlin et al., 2019; Liu et al., 2019) and
the proposed formats on the (Super)GLUE bench-
mark (Wang et al., 2019b,a). For all tasks we in-
troduce a projection layer on top of the pre-trained
language model’s representations. For classifica-
tion tasks, the output maps to the number of classes,
for regression, we project it to a single continuous
value, for ranking, we obtain a probability distri-
bution over two classes, for question answering,
we rank each answer based on the log probability
score, and finally, for token classification tasks, we
apply the classification head on top of each token’s
representation. It is important to note that we use
the BIO encoding for the NER tasks. We chose the
loss function based on the target value. Finally, we
replaced the special tokens with the corresponding
ones from the baseline model.
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Task Input Output Loss

BSNLP [CLS] Document [SEP] BIO Tag Per Token Cross Entropy
Cinexo [CLS] User Comment [SEP] Rating (1-5) Mean Squared Error
CT21.T1 [CLS] Tweet [SEP] Normal / Check-worthy Binary Cross Entropy
Cred.-N [CLS] Title [SEP] News Article [SEP] Credible / Humorous Binary Cross Entropy
Exams  [CLS] Context [SEP] Question + Option [SEP] Option Ranking Binary Cross Entropy
Fake-N  [CLS] Title [SEP] News Article [SEP] Credible / Fake Binary Cross Entropy
PAN-X  [CLS] Wikipedia sentence [SEP] BIO Tag Per Token Cross Entropy
U.Dep [CLS] Document [SEP] POS Tag Per Token Cross Entropy
XNLI [CLS] Hypothesis [SEP] Premise [SEP] Entailment (3-way) Cross Entropy

Table 6: Input format for each task, the special tokens are replaced with the corresponding ones from the baseline
model. Expected output, e.g., tag name, class, ranking, rating, etc. Finally, the optimization loss used for training.

Topic Examples
Brexit 598
Covid19 151
USElection2020 150
NordStream 130
AsiaBibi 94
Ryanair 84
Total 1,207

Table 7: Topic distribution in the BSNLP dataset.

Subset #Unique Movies
Train 257
Dev 25
Test 47
Total 329

Table 8: Number of unique movies in each subset in the
Cinexio dataset that the users comment about.

C Additional Task Details

In this section, we summarize some additional char-
acteristics for each task in the bgGLUE benchmark.

Figure 3 shows some statistics about the word
overlap between subsets. To calculate the statistics,
we split the texts into words using the NLTK Bird
et al. (2009) tokenizer. After that, we take the
number of unique words in each subset and we
take the union of all common words between the
first and the second subset, we then compare and
divide them by the size of the superset obtained
by combining the two. We see that most of the
datasets have high overlap between the training
and the development/testing set. This is expected
as the training sets are often significantly larger

Subset #Choices
Train 3.88
Dev 4.00
Test 4.00

Table 9: Number of options per question in the EXAMS
dataset.

P/S Corr. Pearson Spearman
XLM-Rparee 85.69 89.66 81.73
XLM-Rgase 84.40 87.91 80.90
SlavicBERT 81.71 84.76 78.66
mBERTRe 82.07 85.22 78.92
MiniLMy 1> 80.63 85.05 76.21
DistilBERT 80.32 83.55 77.09

Table 10: Fine-grained results for Cinexio.

compared to the other subsets, and also as we did
not filter out the stop words, which cover a big part
of the word tokens.

Interestingly, the only exception is the PAN-X
dataset. We attribute this to the text snippets being
short, designed to contain named entities, and being
extracted from different Wikipedia articles.

Figure 4 shows the per task label distribution.
We see that most of the tasks maintain similar dis-
tributions across labels, except for BSNLP, where
we have fewer ORG and PRO tags and more PER.

BSNLP We can see in Table 7 that the most rep-
resented topic is Brexit with 600 examples (4x com-
pared to the second topic), followed by COVID-19,
US Elections 2020, and Nord Stream, each cover-
ing well above 100 examples. The other two topics,
AsiaBibi and Ryanair, have less than 100 examples.
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Avg. P P@1 P@3 P@5 P@10 P@20 P@50 R-Precision
XLM-Rpage  69.45 100.00 100.00 100.00 90.00 90.00 70.00 59.21
XLM-Rpase 63.91 100.00 100.00 100.00 90.00 75.00 68.00 57.89
SlavicBERT  62.70 100.00 100.00 100.00 80.00 70.00 64.00 61.84
mBERTRe 64.79 100.00 100.00 80.00 90.00 85.00 72.00 60.53
MiniLMjy i2 5737 100.00 66.67 60.00 70.00 75.00 66.00 59.21
DistilBERT 65.15 100.00 100.00 80.00 90.00 90.00 68.00 56.58

Table 11: Fine-grained results for CLEF-2021 CheckThat!, Task 1A (CT21.T1).

Humorous

F1 P R
XLM-Rparee 79.73 86.52 73.93
XLM-Rpae 75.74 77.53 74.04
SlavicBERT 72.01 88.97 60.48
mBERTR,e 69.17 8891 56.60
MiniLM; ;, 7541 76.55 74.31
DistilBERT 67.05 83.27 56.11

Table 12: Fine-grained results for Credible News
(Cred.-N).

Fake

F1 P R
XLM-Rpage 70.31 6820 72.55
XLM-Rp,e 60682 6122 73.53
SlavicBERT 67.28 63.09 72.06
mBERTR,e 65.65 68.25 63.24
MiniLMp, 6433 58.10 72.06
DistilBERT 65.66 67.18 64.22

Table 13: Fine-grained results for Fake News (Fake-N).

Cinexio Table 8 shows the number of movies
in the Cinexio dataset. Each movie received 29.9
comments on average.

Cred.-N. We used a custom crawler, Beautiful-
Soup to parse the HTML, and per-site CSS selec-
tors to extract the articles’ text. The crawler was
based on simple rules that collect and follow the
links to articles on each starting page we pass. Our
starting points are pages that contain all articles
sorted by their publication date and paginated. Fi-
nally, we remove all HTML tags, images and infor-
mation about the authors and the sources, retaining
only the plain text. We annotated the articles as
credible or humorous based on the label for their
website. More details about the dataset and the
pre-processing are given in Sections 2 and 3.

High School Examinations (EXAMS) Figure 2
shows the average number of options per question
for each subset in the datasets. Both the Dev and
Test subset have four options, but Train contains
questions with three answers coming from online
history exams collected from Hardalov et al. (2019).
These examples also affect the subject distribution
for the training set.

Fake News (Fake-N.) Here, we report the num-
ber of unique and common domains:
* Train vs Dev
— #Common Domains: 106
— Only in train: 239
— Only in dev: 13
* Train vs. Test
— #Common Domains: 162
— Only in train: 183
— Only in test: 46
* Dev vs. Test
— #Common Domains: 90
— Only in dev: 29
— Only in test: 118

D Fine-Grained Results

Here, we present the fine-grained results per task.
Grouped by the task types from Table 1, we include
the following tables: (i) Regression / Ranking — In
Table 10, we present the Spearman and the Pearson
correlation values for the Cinexio task. Table 11
shows the metrics for Cr21.T1, including P@K
and R-Precision; (ii) Classification Tasks — for the
binary classification tasks Cred.-N and Fake-N we
include the Precision and Recall for the target class,
i.e., Humorous, and Fake respectively, and finally
(iti) Token Classification — Tables 14, 15, and 16
include per token type P, R, and F1.

We did not include tables for EXAMS and XNLI
as their target evaluation measure is Accuracy, and
thus they are only coarse-grained.

8752



XLM-Rpage XLM-Rpye SlavicBERT mBERTgae MiniLMyp;  DistilBERT

F1 63.81 62.47 65.28 56.13 59.70 52.82

Overall P 87.22 85.69 84.36 83.73 81.55 76.70
R 50.30 49.15 53.24 42.21 47.08 40.28

F1 4.52 5.73 10.56 3.16 0.20 1.36

EVT P 62.16 45.45 49.15 51.61 10.00 13.46
R 2.34 3.06 5.91 1.63 0.10 0.71

F1 74.95 73.89 79.25 68.46 71.45 64.94

LOC P 95.06 92.81 92.55 92.02 91.00 86.73
R 61.86 61.38 69.29 54.50 58.82 51.90

F1 55.50 53.05 57.22 49.03 50.02 42.59

ORG P 74.00 71.31 71.31 68.28 59.06 56.41
R 44.40 42.23 47.77 38.25 43.37 34.22

F1 72.83 71.58 72.55 62.84 68.83 60.92

PER P 97.80 97.15 97.57 97.27 94.05 91.60
R 58.02 56.66 57.74 46.41 54.28 45.64

F1 40.91 38.56 36.42 34.36 35.39 32.55

PRO P 40.91 40.30 34.84 35.84 40.83 33.54
R 40.91 36.96 38.14 33.00 31.23 31.62

Table 14: Fine-grained results for BSNLP.

XIM-Rpage XLM-Rpyse SlavicBERT mBERTgye MiniLMyj>  DistilBERT

F1 92.96 91.18 92.36 92.11 90.26 90.82

Overall P 92.37 90.77 91.85 91.70 89.63 90.40
R 93.55 91.59 92.88 92.52 90.91 91.24

F1 95.21 93.66 94.97 94.43 93.37 93.88

LOC P 95.03 92.85 94.53 93.80 93.07 93.57
R 95.39 94.50 9541 95.08 93.67 94.19

F1 86.33 83.50 84.75 84.81 81.82 82.80

ORG P 85.35 84.15 84.80 84.81 80.86 82.57
R 87.34 82.85 84.70 84.81 82.81 83.04

F1 95.07 93.67 94.69 94.60 92.61 92.82

PER P 94.25 92.92 93.56 94.17 91.80 92.06
R 95.90 94.43 95.84 95.03 93.43 93.59

Table 15: Fine-grained results for PAN-X (WikiAnn).
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XLM-Rpgge XLM-Rpye SlavicBERT mBERTpue MiniLMyj; DistilBERT

F1 99.30 99.23 99.06 98.99 98.91 98.58
Overall P 99.32 99.24 99.08 99.00 98.92 98.59
R 99.29 99.22 99.04 98.98 98.91 98.57
F1 99.22 99.23 98.22 97.97 97.46 96.46
ART P 99.48 98.48 96.98 96.50 96.00 94.55
R 98.97 100.00 99.48 99.48 98.97 98.45
F1 99.76 99.68 99.68 99.51 99.11 99.27
CONJ P 99.68 99.68 99.52 99.51 99.19 99.35
R 99.84 99.68 99.84 99.51 99.03 99.19
F1 99.19 98.77 98.69 98.42 98.23 97.10
DJ P 99.08 98.54 98.47 98.61 97.93 97.44
R 99.31 99.00 98.92 98.23 98.54 96.77
Fl1 99.96 99.91 99.89 99.93 99.93 99.82
Dp P 99.96 99.96 99.91 99.96 99.96 99.87
R 99.96 99.87 99.87 99.91 99.91 99.78
F1 99.35 98.52 97.94 98.93 91.77 97.39
DV P 99.18 99.01 98.83 99.18 98.67 97.23
R 99.51 98.04 97.05 98.69 96.89 97.55
F1 99.17 99.14 98.81 98.66 98.72 98.24
ERB P 99.52 99.46 99.28 98.93 99.10 98.51
R 98.81 98.81 98.34 98.40 98.34 97.98
F1 97.75 97.74 96.81 96.42 96.64 95.67
ET P 98.49 99.23 97.73 91.71 97.00 96.95
R 97.03 96.28 95.91 95.17 96.28 94.42
F1 96.97 96.97 96.97 100.00 80.00 90.32
NTJ P 100.00 100.00 100.00 100.00 77.78 100.00
R 94.12 94.12 94.12 100.00 82.35 82.35
F1 99.39 99.42 99.42 99.16 99.26 98.85
OUN P 99.29 99.61 99.41 99.29 99.23 98.85
R 99.50 99.23 99.44 99.02 99.29 98.85
F1 99.56 99.46 98.86 98.86 98.91 98.54
RON P 99.56 99.14 98.80 98.49 99.02 98.06
R 99.56 99.78 98.91 99.24 98.80 99.02
F1 97.52 97.87 97.55 97.62 97.31 97.31
ROPN P 97.83 96.69 96.95 96.96 96.79 96.94
R 97.22 99.07 98.15 98.30 97.84 97.69
F1 96.76 96.54 96.30 95.61 96.06 96.04
UM P 95.87 95.43 95.41 94.52 95.39 95.81
R 97.66 97.66 97.20 96.73 96.73 96.26
F1 99.98 99.98 99.98 99.98 99.98 99.98
UNCT P 99.95 99.95 99.95 99.95 99.95 99.95
R 100.00 100.00 100.00 100.00 100.00 100.00
F1 97.80 97.80 97.55 97.56 97.61 97.19
UX P 97.80 97.68 97.55 97.44 97.56 97.07
R 97.80 97.92 97.55 97.67 97.67 97.31

Table 16: Fine-grained results for Universal Dependencies (U. Dep).
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Figure 3: Per-task vocabulary overlap. Calculated as the number of common words in the row and the column
divided by the total number of unique words in the row.
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Figure 4: Per-task label distribution. We remove the empty tags when we plot for the NER tasks.
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5 Document: ... The chancellor of {Germany} °C {Angela Merkel)"™ and the president of {Russia)*°C {Viadimir
% Putin}PER discussed over the phone the implementation of the project “{Nord Stream - 2)P%°” ... Earlier the company
& “{Nord Stream}°RC” which leads the construction ...
Possible Tags: Person (PER), Organization (ORG), Location (LOC), Product (PRO), Event (EVT )
-E User Review: Five stars are not enough - it deserves at least that many :)
£ Rating: 5.0
o
Z Body: Today is the deadline for Bulgarians living abroad to submit an application for opening a polling station
'a:!; for the upcoming referendum on January 27. According to a decision of the Central Election Commission (CEC),
5 polling stations can be opened in the embassies and consulates of the country. However, for this purpose, at least 20
applications are needed from those who wish...
Title: Today is the deadline for submitting applications to open sections abroad for the referendum
Correct Label: Credible
2 Tweet: According to research, #COVID19 survives up to 3 hours in aerosols in the air, up to 24 hours on paper and
:; about 2-3 days on a steel or plastic surface. [URL]
5 Check-worthy: Yes
E Paragraph: In the autumn of 917 he sent an army ... to invade Serbia and punish Gojnikovi¢ for his treachery. The
< Bulgarian ruler again sends Theodore Sigritsa and Marmais, but this time they are defeated... which forces Simeon to
E conclude a truce with Byzantium...  Subject: History
Question:
Which generals led Simeon’s punitive campaign against the emerging Serbian danger in 917?
Candidate answers:
(A) Theodor Sigritsa and Marmais, (B) Cracra and Alusian, (C) Ivac and Nikulitsa, (D) Knin, Imnicus and Izvoklius
Z,- Body: The researcher of Bulgarian prophets Hristo Radev reveals predictions of the Slava Sevryukova phenomenon in
£ aninterview for “Bulgaria Today” a person in whom the spirit of a bright biblical hero has been reborn. He means
& David. According to the clairvoyant, this Bulgarian will play a very important role in the future of the country. I hope
this president is the person in question! Rumen Radev jumped out of nowhere, just like the biblical David...
Title: Petel.bg - news - “Bulgaria today”: Slava Sevryukova’s lost prophecy about Bulgaria was dug up! It is coming
true before our eyes
Correct Label: Fake
¥ Sentence: The species is distributed in {Burundi}°C, {Democratic Republic of Congo}*°C, {Zambia}*°C and {
5 Tanzania}°C.
A& Possible Tags: Person (PER), Organization (ORG), Location (LOC)
2 Sentence: In the discussion, [ guess, important questions will be discussed.
?3 Possible Tags:
NOUN, PUNCT, ADP, VERB, ADJ, PRON, AUX, PROPN, ADV, CCONJ, DET, NUM, PART, SCONJ, INTJ
3 Text: And he said, Mother, I am at home. He called his mother as soon as the school bus dropped him off.
a Hypothesis: He called his mother as soon as the school bus dropped him off.

Entailment: Neutral

Table 17: English translations of the examples shown in Table 2.
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