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Abstract

The task of generating code from a natural lan-
guage description, or NL2Code, is considered
a pressing and significant challenge in code in-
telligence. Thanks to the rapid development
of pre-training techniques, surging large lan-
guage models are being proposed for code,
sparking the advances in NL2Code. To facil-
itate further research and applications in this
field, in this paper, we present a comprehen-
sive survey of 27 existing large language mod-
els for NL2Code, and also review benchmarks
and metrics. We provide an intuitive compari-
son of all existing models on the HumanEval
benchmark. Through in-depth observation and
analysis, we provide some insights and con-
clude that the key factors contributing to the
success of large language models for NL2Code
are "Large Size, Premium Data, Expert Tun-
ing". In addition, we discuss challenges and
opportunities regarding the gap between mod-
els and humans. We also create a website
https://nl2code.github.io to track the lat-
est progress through crowd-sourcing. To the
best of our knowledge, this is the first survey of
large language models for NL2Code, and we
believe it will contribute to the ongoing devel-
opment of the field.

1 Introduction

Is it possible for novice programmers, even those
without any programming experience, to create
software simply by describing their requirements
in natural language? This is a long-standing fasci-
nating question, which poses challenges to research
areas like software engineering, programming lan-
guage, and artificial intelligence. Realizing this
scenario would have an unprecedented impact on
our lives, education, economy, and labour mar-
ket, as it would change the centralized software
development and operation paradigm. Due to its

∗ This work was done before October 2022 when the
author, Daoguang Zan, was an intern at Microsoft Research
Asia.

promising and intriguing future, natural-language-
to-code (NL2Code) has been proposed as a re-
search task that has attracted widespread interest in
both academia and industry, with the goal of gener-
ating code from natural language descriptions.

Early studies on NL2Code were mainly based on
heuristic rules or expert systems, such as probabilis-
tic grammar-based methods (Joshi and Rambow,
2003; Cohn et al., 2010; Allamanis and Sutton,
2014) and those focusing on domain-specific lan-
guages (de Moura and Bjørner, 2008; Gulwani,
2010; Jha et al., 2010), which are inflexible and
not scalable. Other studies utilized static lan-
guage models, like n-gram (Nguyen et al., 2013;
Raychev et al., 2014; Devanbu, 2012) and Hid-
den Markov (Sutskever et al., 2008), which have
sparse vector representations and cannot model
long-term dependencies. Subsequently, neural net-
works, including CNN (Liu et al., 2016; Sun et al.,
2018), RNN (Iyer et al., 2016; Wan et al., 2018),
and LSTM (Eriguchi et al., 2016; Yin and Neu-
big, 2017), were employed to model the relation-
ship between NL and code. In 2017, the Trans-
former (Vaswani et al., 2017) model was intro-
duced for machine translation and later applied to
the NL2Code task (Mastropaolo et al., 2021; Shah
et al., 2021). However, these deep learning models
require a significant amount of labelled pairs of NL
and code for training, and have limited capabilities
for the NL2Code task.

Recently, a growing number of large language
models (LLMs) with Transformer architecture have
been trained on large-scale unlabelled code cor-
pus. These models have the ability to generate
code in a zero-shot manner and have achieved
impressive results in the NL2Code task. As a
milestone, Codex (Chen et al., 2021) has shown
that an LLM with 12 billion parameters is able
to solve 72.31% of challenging Python program-
ming problems created by humans. More encourag-
ingly, Codex has been used to power a commercial
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from collections import Counter
def MostCommon(lst):

'''
Find the most common element from lst.
'''
data = Counter(lst)
return data.most_common(1)[0][0]

def check():
assert MostCommon([1, 2, 1]) == 1
assert MostCommon([4, 0, 0]) == 0
...

Figure 1: A simple example of the NL2Code task. The
code blocks marked in grey, green, and yellow represent
the natural language problem description, the predicted
code solution, and the test cases, respectively.

product1 and improve coding efficiency in prac-
tice (Sobania et al., 2022a; Barke et al., 2023).
Following Codex’s success, various LLMs for the
NL2Code task have emerged, with model sizes
ranging from millions to billions of parameters. Ex-
amples include AlphaCode (Li et al., 2022b), which
aims to solve competitive-level programming prob-
lems, and InCoder (Fried et al., 2023), which sup-
ports filling code in arbitrary positions using bidi-
rectional contexts. Other models such as Code-
Gen (Nijkamp et al., 2023), PaLM-Coder (Chowd-
hery et al., 2022), PanGu-Coder (Christopoulou
et al., 2022), CodeGeeX (Zheng et al., 2023), and
SantaCoder (Allal et al., 2023) have also gained
great attention. As the model size increases, LLMs
have been shown to exhibit some emergent capa-
bilities such as human-like programming and de-
bugging (Zhang et al., 2022; Saunders et al., 2022;
Kang et al., 2023).

Large language models have kindled hope for the
NL2Code task due to their impressive power and
potential value. Despite the significant progress,
there are still numerous challenges and opportu-
nities, calling for more advanced and innovative
future work. Currently, considering the variety
of techniques and applications, there is a grow-
ing need for a comprehensive survey to provide
a systematic overview of this field and identify
critical challenges. To this end, in this paper,
we carefully investigate 27 advanced LLMs for
NL2Code (§2), and also review benchmarks and
metrics (§4). We conduct an intuitive comparison
of all the existing LLMs on the HumanEval bench-
mark, perform a thorough analysis, and eventu-
ally attribute the success of these LLMs to "Large
Size, Premium Data, Expert Tuning" (§3). This

1https://github.com/features/copilot

Model Size L. A. H. P.
Decoder

GPT-C (2020) 366M 24 16 1, 024 ×
CodeGPT (2021) 124M 12 12 768 ✓
GPT-Neo (2021) 125M~2.7B 32 20 2, 560 ✓
GPT-J (2021) 6B 28 16 4, 096 ✓
Codex (2021) 12M~12B 40 40 5, 140 ×
GPT-CC (2021) 125M~1.3B 24 16 2, 048 ✓
CodeParrot (2021) 110M~1.5B 48 25 1, 600 ✓
LaMDA (2022) 2B~137B 64 128 8, 192 ×
PolyCoder (2022) 160M~2.7B 32 32 2, 560 ✓
CodeGen (2023) 350M~16.1B 34 24 6, 144 ✓
InCoder (2023) 1.3B~6.7B 32 32 4, 096 ✓
GPT-NeoX (2022) 20B 44 64 6, 144 ✓
PaLM-Coder (2022) 8B~540B 118 48 18, 432 ×
PanGu-Coder (2022) 317M~2.6B 32 32 2, 560 ×
FIM (2022) 50M~6.9B 32 32 4, 096 ×
PyCodeGPT (2022b) 110M 12 12 768 ✓
CodeGeeX (2023) 13B 39 40 5, 120 ✓
BLOOM (2022) 560M~176B 70 112 14, 336 ✓
SantaCoder (2023) 1.1B 24 16 2, 048 ✓

Encoder-Decoder
PyMT5 (2020) 374M 12 16 1, 472 ×
PLBART (2021) 140M~406M 24 16 1, 024 ✓
CodeT5 (2021) 60M~770M 48 16 1, 024 ✓
JuPyT5 (2022a) 350M 12 16 1, 472 ×
AlphaCode (2022b) 284M~41.1B 64 128 6, 144 ×
CodeRL (2022) 770M 48 16 1, 024 ✓
CodeT5Mix (2022) 220M~770M 48 16 1, 024 ✓
ERNIE-Code (2022) 560M 24 12 768 ✓

Table 1: Summary of 27 existing LLMs for NL2Code.
We show L. (number of layers), A. (number of atten-
tion heads), H. (hidden dimensions), and P. (model
weights public or not) for the largest size version of
each model. Note that some models, such as GPT-Neo,
GPT-J, LaMDA, GPT-NeoX, FIM, and BLOOM, are
not exclusively trained for code.

means large model and data size, high-quality train-
ing data and expert hyper-parameter tuning. We
also discuss the challenges and opportunities re-
garding the ability gap between LLMs and Hu-
mans (§5). In addition, we have built a web-
site https://nl2code.github.io to keep track
of the latest progress and support crowd-sourcing
updates. To the best of our knowledge, this is the
first survey of LLMs for NL2Code2, and we hope
it will contribute to the ongoing development of
this exciting field.

2 Large Language Models for NL2Code

Given a natural language problem description, the
NL2Code task aims to automatically generate the
demanded code. To illustrate this task visually,
we provide a Python programming problem as an
example in Figure 1, while different NL2Code
benchmarks may vary in terms of language or

2We summarize the related surveys in Appendix A.
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Figure 2: The timeline of LLMs for NL2Code, with only the largest model sizes plotted for visual clarity.

problem domain. Existing large language models
for the NL2Code task are usually based on Trans-
former (Vaswani et al., 2017) and are trained on
a large-scale code related unlabelled corpus. For
better code generation performance, most LLMs,
no matter encoder-decoder or decoder-only models,
employ the causal language modeling objective for
training, which is to predict the token following a
sequence of tokens. During inference, an LLM can
tackle NL2Code problems in a zero-shot manner
without fine-tuning its parameters. There are also
studies employing few-shot (Austin et al., 2021) or
in-context learning (Nijkamp et al., 2023) to further
boost the performance.

We conduct a comprehensive investigation of 27
representative LLMs for the NL2Code task. De-
tails of each model are summarized in Table 1,
where models vary in architecture, size, and acces-
sibility. For better visualization, we present these
models in chronological order in Figure 2, plot-
ting the largest model sizes. One trend observed is
that these large language models are consistently
growing in size as the research field advances. Ad-
ditionally, the decoder-only architecture is favoured
for pre-trained models with larger sizes.

Early works, such as GPT-C (Svyatkovskiy
et al., 2020), PyMT5 (Clement et al., 2020), and
PLBART (Ahmad et al., 2021), have relatively
small numbers of parameters and do not demon-
strate strong capabilities in zero-shot code genera-
tion. Conversely, large-scale models such as GPT-

Neo (Black et al., 2021) and GPT-J (Wang and Ko-
matsuzaki, 2021), despite their billion-level param-
eter scale, have been found to have limited power
in the NL2Code task due to the small amount of
code in their training corpus. Recently, a number of
powerful LLMs have been proposed for NL2Code,
such as Codex (Chen et al., 2021), AlphaCode (Li
et al., 2022b), and PaLM-Coder (Chowdhery et al.,
2022), which possess massive parameter scales and
high-quality training corpus with code. While they
show surprisingly good performance on NL2Code,
most of them are not readily accessible. At
present, a number of excellent open-source mod-
els have also been proposed, including CodePar-
rot (Huggingface, 2021), PolyCoder (Xu et al.,
2022), GPT-NeoX (Black et al., 2022), and San-
taCoder (Allal et al., 2023), which contribute to
the thriving of LLMs for NL2Code. Besides, re-
cent studies have proposed various approaches to
address specific NL2Code scenarios. For exam-
ple, JuPyT5 (Chandel et al., 2022a) is designed
to work within Jupyter Notebooks, while ERNIE-
Code (Chai et al., 2022), CodeGeeX (Zheng et al.,
2023), and BLOOM (Scao et al., 2022) are trained
to support multiple natural or programming lan-
guages. Additionally, InCoder (Fried et al., 2023),
FIM (Bavarian et al., 2022), and SantaCoder (Al-
lal et al., 2023) not only support left-to-right code
prediction, but also allow for infilling arbitrary re-
gions of code. As LLMs for NL2Code are evolving
rapidly, we created a website to keep up-to-date
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with the latest advances by crowd-sourcing. De-
tails of the website can be found in Appendix B.

These models are not only attractive in
academia (Chen et al., 2021; Nijkamp et al., 2023;
Li et al., 2022b), but also applied in real-world prod-
ucts to improve programming efficiency (Sobania
et al., 2022a; Barke et al., 2023). One example
is GitHub and OpenAI’s Copilot, a programming
assistance tool that utilizes Codex to provide real-
time code suggestions. Other notable products in-
clude CodeGeeX3 and CodeWhisperer4. A sum-
mary of 10 products can be found in Appendix Ta-
ble 5. Recent studies (Sobania et al., 2022b; Pearce
et al., 2022; Nguyen and Nadi, 2022) have shown
that these products can provide helpful recommen-
dations, while they also introduce minor bugs that
can cause issues for users. There is still room for
improvement before LLMs can be fully practical
and capable of coding like humans.

3 What makes LLMs successful?

We have summarized the existing large language
models for NL2Code. These LLMs vary in terms of
architecture, size, and other characteristics, making
it difficult to establish a completely fair comparison.
We evaluate these LLMs on the HumanEval bench-
mark (Chen et al., 2021) in a zero-shot manner to
provide an intuitive comparison. HumanEval, pro-
posed along with Codex, is one of the most popular
benchmarks for the NL2Code task and consists of
164 hand-written Python programming problems.
Test cases are provided for each programming prob-
lem to evaluate the correctness of generated code.
pass@k is used as the evaluation metric5, which
calculates the proportion of problems that can be
correctly answered with k tries. Table 2 shows the
results of different LLMs organized by the model
size. Implementation details and the evaluation on
the MBPP benchmark (Austin et al., 2021) can be
found in Appendix C.2.

It can be observed from Table 2 that the per-
formance of existing LLMs varies widely on Hu-
manEval, even for those with similar model sizes.
Specifically, Codex (Chen et al., 2021) holds the
leading position in various model sizes, while a
relatively small model, PyCodeGPT 110M (Zan
et al., 2022b), achieves comparable results to
Codex 85M. Other larger models such as Alpha-

3https://keg.cs.tsinghua.edu.cn/codegeex
4https://aws.amazon.com/cn/codewhisperer
5The details of pass@k can be found in Appendix C.1.

Model Size pass@k (%)

k=1 k=10 k=100

Model Size: ~100M
GPT-Neo 125M 0.75 1.88 2.97
CodeParrot 110M 3.80 6.57 12.78
PyCodeGPT 110M 8.33 13.36 19.13
PolyCoder 160M 2.13 3.35 4.88
Codex 12M 2.00 3.62 8.58
Codex 25M 3.21 7.1 12.89
Codex 42M 5.06 8.8 15.55
Codex 85M 8.22 12.81 22.40
AlphaCode(dec) 13M 1.5 3.6 8.6
AlphaCode(dec) 29M 3.4 5.8 11.2
AlphaCode(dec) 55M 4.2 8.2 16.9
AlphaCode(dec) 89M 4.3 12.2 20.0

Model Size: ~500M
CodeT5† 770M 12.09 19.24 30.93
PolyCoder 400M 2.96 5.29 11.59
JuPyT5 300M 5.40 15.46 25.60
BLOOM 560M 0.82 3.02 5.91
Codex 300M 13.17 20.37 36.27
Codex 679M 16.22 25.70 40.95
AlphaCode(dec) 302M 11.6 18.8 31.8
AlphaCode(dec) 685M 14.2 24.4 38.8
CodeGen-Mono 350M 12.76 23.11 35.19
PanGu-Coder 317M 17.07 24.05 34.55

Model Size: ~1B
GPT-Neo 1.3B 4.79 7.47 16.30
CodeParrot 1.5B 3.99 8.69 17.88
BLOOM 1.1B 2.48 5.93 9.62
BLOOM 1.7B 4.03 7.45 12.75
InCoder† 1.3B 11.09 16.14 24.20
AlphaCode(dec) 1.1B 17.1 28.2 45.3
SantaCoder 1.1B 18 29 49

Model Size: ~5B
GPT-Neo 2.7B 6.41 11.27 21.37
PolyCoder 2.7B 5.59 9.84 17.68
Codex 2.5B 21.36 35.42 59.50
PanGu-Coder 2.6B 23.78 35.36 51.24
BLOOM 3B 6.48 11.35 20.43
BLOOM 7.1B 7.73 17.38 29.47
CodeGen-Mono 2.7B 23.70 36.64 57.01
CodeGen-Mono 6.1B 26.13 42.29 65.82
GPT-J 6B 11.62 15.74 27.74
InCoder 6.7B 15.2 27.8 47.0

Model Size: >10B
Codex 12B 28.81 46.81 72.31
CodeGen-Mono 16.1B 29.28 49.86 75.00
GPT-NeoX 20B 15.4 25.6 41.2
LaMDA 137B 14.0 − 47.3
BLOOM 176B 15.52 32.20 55.45
PaLM-Coder 540B 36.0 − 88.4
code-cushman-001 − 33.5 54.3 77.4
code-davinci-001 − 39.0 60.6 84.1
code-davinci-002 − 47.0 74.9 92.1

Table 2: Performance on the HumanEval benchmark. †

denotes our reproduced results, while others are cited
from the original papers. AlphaCode(dec) means the
decoder-only version. We also compare the Codex mod-
els (code-cushman and code-davinci) provided by Ope-
nAI API. We exclude the models that cannot pass any
problem in the benchmark.
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Figure 3: (a) pass@1 and (b) syntax error rates on the HumanEval benchmark with various model sizes.

Code (Li et al., 2022b), CodeGen-Mono (Nijkamp
et al., 2023), and PanGu-Coder (Christopoulou
et al., 2022) also exhibit impressive performance.
Notably, InCoder (Fried et al., 2023) and Santa-
Coder (Allal et al., 2023), which use the FIM train-
ing method (Bavarian et al., 2022), also obtain re-
markably decent results in the left-to-right gener-
ation setting. The significant variation in perfor-
mance leads us to the question: What makes LLMs
successful in NL2Code? Given the diversity of
these models in terms of design choices, we per-
form a thorough analysis and conclude the answer:
Large Size, Premium Data, Expert Tuning. That
is, large model and data size, high-quality data and
expert hyper-parameter tuning are the key factors
for the success of LLMs in the NL2Code task. In
this section, we detail our observations and insights
from the perspectives of model, data and tuning.

3.1 Large Model Size

As shown in Figure 2 and Table 2, recent LLMs
for NL2Code exhibit larger sizes and superior per-
formance. This is consistent with prior findings
that an increased number of model parameters can
enhance model capabilities (Radford et al., 2019;
Thoppilan et al., 2022; Chowdhery et al., 2022).
We further demonstrate the correlation between
model size and performance in Figure 3a, which
compares the pass@1 results of 10 representative
models on the HumanEval benchmark. It is clear
that larger models generally result in better per-
formance. Furthermore, we also find that current
models, regardless of size, still have the potential
for improvement through further increases in size.
Additional results on the HumanEval and MBPP
benchmarks can be found in Appendix Figure 7,

which also support this conclusion.
Additionally, we conduct an experiment on the

HumanEval benchmark to examine the syntax er-
ror rates of the code generated by different models
of varying sizes. Specifically, we make the mod-
els predict 10 code samples for each programming
problem, and then calculate the percentage of code
samples that have syntax errors. As shown in Fig-
ure 3b, results indicate that larger models tend to
have lower syntax error rates. It is noteworthy that
the largest version of the CodeGen-Mono model
exhibits a remarkably low rate of syntax errors, i.e.,
6%. However, as evidenced by Figure 3a and Ta-
ble 2, the CodeGen-Mono model with 16 billion
parameters still has unsatisfactory performance in
terms of pass@k , e.g., pass@1 to be 29%. This
highlights the fact that the current limitation for
large pre-trained models is the generation of se-
mantically correct code.

3.2 Large and Premium Data

As the sizes of LLMs increase in the field of
NL2Code, the scale of the corpus used for train-
ing also increases. This highlights the importance
of selecting and pre-processing high-quality data.
In this section, we will discuss various commonly
used data sources and pre-processing strategies that
are essential for training LLMs.

Early models were trained using manually an-
notated data pairs of NL and code, and the data
sources include CodeSearchNet (Husain et al.,
2019), CoST (Zhu et al., 2022b), and XL-
CoST (Zhu et al., 2022a). However, manual an-
notation is labour-intensive and time-consuming.
There are also models like GPT-3 (Brown et al.,
2020), GPT-Neo (Black et al., 2021), and GPT-

7447



J (Wang and Komatsuzaki, 2021) that are trained
on the Pile (Gao et al., 2020), a large-scale unsuper-
vised dataset. However, these models have not yet
demonstrated exceptional code generation capabili-
ties due to the limited number of code files in the
training corpus. More recently, with the emergence
of more powerful LLMs for NL2Code, larger-scale
unlabelled code datasets have been proposed, in-
cluding BigQuery (Google, 2016), CodeParrot’s
corpus (HuggingFace, 2021a), GitHub-Code (Hug-
gingFace, 2021b), and the Stack (HuggingFace,
2022), which are collected from general domain
open-source websites like GitHub6 and Stack Over-
flow7. Furthermore, there are also specialized
datasets proposed for different scenarios, for exam-
ple, using Jupyter Notebooks or competition pro-
gramming problems as a training corpus. Released
datasets include Jupyter (HuggingFace, 2021c),
JuICe (Agashe et al., 2019), APPS (Hendrycks
et al., 2021), and CodeNet (IBM, 2021).

In order to ensure the quality of the training cor-
pus, it is common for LLMs to perform data pre-
processing on the significant amount of code in
the collected data. We carefully review the data
pre-processing methods of five powerful LLMs, in-
cluding Codex (Chen et al., 2021), AlphaCode (Li
et al., 2022b), CodeGen (Nijkamp et al., 2023), In-
Coder (Fried et al., 2023), and PyCodeGPT (Zan
et al., 2022b), and identify several commonalities.
One is the removal of likely auto-generated or un-
finished code files, as they are deemed to be mean-
ingless. Additionally, specific rules are employed
to filter out uncommon code files. These rules in-
clude factors such as the repository star rating, the
file size, the line length, and the alphanumeric rate.
In summary, the goal of these pre-processing strate-
gies is to achieve a code corpus that is unduplicated,
complete, correct, clean, and general in nature.

3.3 Expert Tuning

Training an excellent model requires careful con-
sideration of various design choices and hyper-
parameters. After reviewing the existing 27 LLMs
(summary in Appendix Table 6), we have the
following findings. Firstly, these LLMs share
some common settings. For example, we ob-
serve that the optimizer of the current models is
almost all Adam (Kingma and Ba, 2014) or its
variants (Loshchilov and Hutter, 2017). We also

6https://github.com
7https://stackoverflow.com
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find that initializing with other natural language
models yields no noticeable gain compared to train-
ing from scratch, except for accelerating conver-
gence (Chen et al., 2021). Furthermore, there are
several hyper-parameters that require expert tun-
ing, such as learning rate, batch size, window size,
warmup steps, gradient accumulation steps, and
sampling temperature. For the learning rate, we
analyze its correlation with model size using six
powerful LLMs, as shown in Figure 4. We ob-
serve that the learning rate becomes smaller as the
model gets larger. To explore the effects of temper-
ature, in Figure 5, we report the performance of two
models using multiple temperatures on HumanEval.
One observation is that higher temperature leads
to lower pass@1 and higher pass@100, which sug-
gests that a higher temperature makes LLMs gen-
erate more diverse predictions and vice versa. Be-
sides, some studies (erman Arsenovich Arutyunov
and Avdoshin, 2022) have shown that window size
is a key factor. An interesting finding is that the
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Benchmark Num. P. NL S. PL Data Statistics Scenario
T.N. P.C. P.L. S.C. S.L.

HumanEval (2021) 164 English Python 7.8 450.6 13.7 180.9 6.8 Code Exercise
MBPP (2021) 974 English Python 3.1 78.6 1.0 181.1 6.7 Code Exercise
APPS (2021) 5, 000 English Python 21.0 1743.4 41.6 473.8 21.4 Competitions
CodeContests (2022b) 165 English Multi. 203.7 1989.2 66.4 2239.3 92.1 Competitions
DS-1000 (2022) 1, 000 English Python 1.6 879.1 31.6 137.4 5.0 Data Science
DSP (2022b) 1, 119 English Python 2.1 756.9 17.8 226.3 7.6 Data Science
MBXP (2022) 974∗ English Multi. 3.1 419.9 14.8 − − Multilingual
MBXP-HumanEval (2022) 164∗ English Multi. 7.8 825.6 30.0 − − Multilingual
HumanEval-X (2023) 164∗ English Multi. 7.8 468.4 15.5 264.6 12.1 Multilingual
MultiPL-HumanEval (2022) 164∗ English Multi. 7.8 453.9 13.0 − − Multilingual
MultiPL-MBPP (2022) 974∗ English Multi. 3.1 181.2 5.4 − − Multilingual
PandasEval (2022b) 101 English Python 6.5 244.5 7.2 46.2 1.3 Public Library
NumpyEval (2022b) 101 English Python 3.5 222.9 7.0 29.9 1.1 Public Library
TorchDataEval (2022a) 50 English Python 1.1 329.0 8.6 50.7 1.3 Private Library
MTPB (2023) 115 English Python − 72.7 1.0 − − Multi-Turn
ODEX (2022c) 945 Multi. Python 1.8 26.6 2.0 50.4 1.9 Open-Domain
BIG-Bench (2022) 32 English Python 4.7 341.8 3.0 − − Code Exercise

Table 3: Summary of 17 benchmarks for NL2Code. Num. denotes the number of instances in the benchmark, P.NL
denotes Problem description’s Natural Language, S.PL denotes code Solution’s Programming Language, and T.N.
denotes the average Number of Test cases. P.C. and P.L. (S.C. and S.L.) stand for the average number of Characters
and Lines in Problem description (code Solution). ∗ denotes the number of instances per programming language.

small model with a large window size sometimes
outperforms the large model with a small window
size (details in Appendix D). In addition, power-
ful LLMs usually train a new tokenizer on code
corpus primarily using two techniques: Byte-level
Byte-Pair-Encoding (Radford et al., 2019) and Sen-
tencePiece (Kudo and Richardson, 2018). A new
tokenizer can be more effective and accurate in
splitting code content into tokens. These proven
tuning techniques will serve as valuable references
for training more powerful LLMs.

4 Benchmarks and Metrics

To evaluate the NL2Code task, high-quality bench-
marks and reliable metrics are fundamental and es-
sential. In this section, we provide a brief overview
of current benchmarks and metrics, as well as our
observations and the open challenges.

We summarize 17 well-studied NL2Code bench-
marks in Table 3, where we can find that each of
these benchmarks has its own characteristics re-
garding size, language, complexity, and scenario.
We observe that most benchmarks contain a limited
number of instances. For example, the widely used
HumanEval and MBPP have 164 and 974 instances,
respectively. This is because these benchmarks are
typically hand-written to ensure that LLMs have
not seen them during training. In the era of large
language models, it is crucial to avoid data leak-

age when creating new benchmarks. Additionally,
most current benchmarks have their problem de-
scriptions in English and code solutions in Python.
Recently, several multi-lingual benchmarks have
been proposed, such as MBXP (Athiwaratkun et al.,
2022), HumanEvalX (Zheng et al., 2023), and Mul-
tiPL (Cassano et al., 2022), which cover multi-
ple programming languages, and ODEX (Wang
et al., 2022c), which covers multiple natural lan-
guages. Details of multi-lingual benchmarks are
listed in Appendix Table 7. Furthermore, bench-
marks have been proposed for other practical sce-
narios, such as data science (Lai et al., 2022), pub-
lic library (Zan et al., 2022b), private library (Zan
et al., 2022a), multi-turn program synthesis (Ni-
jkamp et al., 2023), and code security (Siddiq and
msiddiq, 2022). For execution-based benchmarks,
comprehensive test cases with complete coverage
of the generated program can ensure the trustwor-
thiness of evaluation results. As a reference, the av-
erage number of test cases for each benchmark, as
well as the length statistics of the problem descrip-
tions and solutions are also provided in Table 3.

Manually evaluating the generated code is im-
practical, which calls for the need for automatic
metrics. The above mentioned benchmarks all
provide test cases for execution-based evaluation,
where metrics such as pass@k (Chen et al.,
2021), n@k (Li et al., 2022b), test case aver-
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age (Hendrycks et al., 2021), and execution ac-
curacy (Rajkumar et al., 2022) can be used. How-
ever, this approach has stringent requirements for
the quality of test cases and can only evaluate exe-
cutable code. For non-executable code, metrics like
BLEU (Papineni et al., 2002), ROUGE (Lin, 2004),
and CodeBLEU (Ren et al., 2020) are used, while
they can not precisely evaluate the correctness of
the code. So far, there are many open challenges
in designing metrics to evaluate various aspects of
code, such as vulnerability, maintainability, clarity,
execution complexity, and stability.

5 Challenges and Opportunities

Our investigations have revealed that advances in
LLMs for NL2Code have a considerable impact on
both academia and industry. Despite this progress,
there are still numerous challenges that need to be
addressed, offering ample opportunities for further
research and applications. In this section, we ex-
plore the challenges and opportunities in terms of
the ability gap between LLMs and humans.

Understanding Ability The inherent flexibility
of natural language allows for a variety of expres-
sions to convey functional requirements. Humans
are able to understand various descriptions at differ-
ent levels of abstraction. In contrast, current LLMs
tend to be sensitive to the given context, which may
cause unexpected performance degradation (Wang
et al., 2022a). In addition, LLMs may struggle
when faced with complex problems that have nu-
merous conditions and requirements (Barke et al.,
2022; Imai, 2022). We believe exploring the un-
derstanding abilities of LLMs is a crucial research
direction. One potential solution is to break down
complex problems into multiple steps, as is com-
monly done in reasoning tasks (Wei et al., 2022).

Judgement Ability Humans have the ability to
determine whether they can solve a programming
problem or not. While current models will al-
ways return a solution even if there is no answer
to the problem, due to the fact that they are trained
by unsupervised causal language modeling objec-
tive. This can cause problems in practical applica-
tions. To improve the judgment ability of LLMs,
researchers have employed reinforcement learning
to leverage user feedback, as seen in models like
InstructGPT (Ouyang et al., 2022) and ChatGPT8.
However, collecting high-quality feedback for code

8https://chat.openai.com

is costly and challenging. There are also ongoing
studies (Chen et al., 2023; Key et al., 2022) ex-
ploring the possibility of self-validation for LLMs,
which is also a promising research direction.

Explanation Ability It is widely acknowledged
that human developers possess the ability to inter-
pret the meaning of the code they write, which is
crucial for educational purposes and software main-
tenance. Recent studies showed that LLMs have
the potential to automatically generate code expla-
nations. MacNeil et al. (2022a) proposed using
LLMs to generate code explanations for students
during their learning process, and MacNeil et al.
(2022b) proposed explaining numerous aspects of a
given code snippet using Copilot. Further research
and explorations are necessary to fully realize the
potential of LLMs in this regard.

Adaptive Learning Ability A fundamental dif-
ference between current large language models and
humans is their ability to adapt to new and updated
knowledge. Human developers possess a unique
ability to quickly search and learn new materials,
such as programming documentation, and adapt
to changes in APIs with relative ease. However,
re-training or fine-tuning LLMs requires signifi-
cant effort and resources. This issue has inspired a
number of recent studies, such as DocCoder (Zhou
et al., 2023) and APICoder (Zan et al., 2022a),
which utilize retrieval-based methods to provide
extra or updated knowledge during model infer-
ence. Despite these advancements, it remains an
open challenge to endow LLMs with the powerful
learning capabilities humans possess.

Multi-tasking Ability Large language models
have been applied to a variety of code-related tasks,
such as code repair (Joshi et al., 2022; Prenner and
Robbes, 2021), code search (Neelakantan et al.,
2022), and code review (Li et al., 2022c) as well as
non-code tasks that can be formatted in a code-like
manner, such as mathematics (Drori and Verma,
2021; Drori et al., 2021) and chemistry (Krenn
et al., 2022; Hocky and White, 2022). However,
there are differences between LLMs and human
abilities in terms of multi-tasking. Humans can
seamlessly switch between tasks, while LLMs may
require sophisticated prompt engineering (Liu et al.,
2023). Another evidence is that LLMs lack the
ability to quickly master multiple programming
languages (Zheng et al., 2023) as humans do. These
limitations highlight areas for future research.
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6 Conclusion

In this paper, we survey 27 existing large language
models for NL2Code, and draw a thorough analy-
sis of the underlying reasons for their success. We
also provide a detailed review of benchmarks and
metrics. Regarding the gap between models and
humans, we present ongoing challenges and oppor-
tunities. In addition, we have developed a website
to track the latest findings in this field. We hope this
survey can contribute to a comprehensive overview
of the field and promote its thriving evolution.

Limitations

In this paper, we thoroughly investigate the ex-
isting large language models for NL2Code, and
summarize them from diverse perspectives with
our own thinking. However, as this field is evolv-
ing so rapidly, there may be aspects that we have
overlooked, or some new works that we have not
covered. To mitigate this issue, we have created a
website to track the latest progress through crowd-
sourcing, hoping that it will continually contribute
to the development of the field. Besides, the exist-
ing LLMs possess their own characteristics in terms
of model size, architecture, corpus, pre-processing,
tokenizer, hyper-parameters, and training platforms.
Also, some of them are currently not publicly avail-
able, such as AlphaCode (Li et al., 2022b) and
PaLM-Coder (Chowdhery et al., 2022). Therefore,
it is almost impractical to conduct a completely fair
comparison. We tried our best to show a kind of
comparison on the popular HumanEval and MBPP
benchmarks, hoping that it can provide clues to
the differences in performance of different LLMs.
In addition, evaluating LLMs has a high cost in
computational resources. We thus have made all
files generated by the LLMs publicly available on
https://nl2code.github.io.
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A Related Surveys

Previous surveys on the topic of code intelli-
gence (Allamanis et al., 2018; Le et al., 2020; Li
et al., 2022a; Xu and Zhu, 2022) and code gener-
ation (Pawade et al., 2018; Shin and Nam, 2021;
Dehaerne et al., 2022) have primarily focused on
early methodologies such as the use of program-
ming templates (Syriani et al., 2018; Luhunu and
Syriani, 2017), neural models based on CNN, RNN,
and LSTM architectures (Allamanis et al., 2018;
Sharma et al., 2021), and small-scale Transformer
models that require labelled data for training (Mas-
tropaolo et al., 2021; Shah et al., 2021). However,
with the advancement of model size, Transformer-
based models have demonstrated exceptional per-
formance in NL2Code tasks and have given rise to
the development of more capable code generation
models. In light of this, there exists a clear need for
a comprehensive survey of large language models
for NL2Code tasks to bridge this gap in knowledge.
This study endeavours to fulfill this need by pro-
viding a thorough analysis of the successful LLMs
and a detailed review of NL2Code benchmarks and
metrics. We also present the ongoing challenges
and opportunities regarding the ability gap between
LLMs and humans.

Finally, we would like to highlight some criteria
for our survey. First, we only refer to official papers
to investigate the size of the models. For example,
Codex reported the model with a maximum size of
12B in the paper, but later trained larger ones. In
this case, we only consider the 12B model as the
largest one. In addition, the publication dates of the
models in Figure 2 are taken from official papers
or blogs.

B An Online Website

To keep tracking the latest progress of LLMs for
NL2Code, we have developed an online real-time
update website at https://nl2code.github.io.
We have collected as many of the latest research
works as possible on this website. Everyone is
allowed to contribute to the website by pulling
requests on GitHub. This website also includes
features such as fuzzy search and custom tag cate-
gories, which will facilitate researchers to find the
papers they want quickly. We hope this website can
assist researchers and developers in related fields
and contribute to its advancement.

Model Size pass@k

k=1 k=10 k=100

Model Size: ~100M
GPT-Neo† 125M 0.26 2.15 7.96
CodeParrot† 110M 0.48 3.89 15.93
PyCodeGPT† 110M 9.39 28.37 48.71
PolyCoder† 160M 1.08 6.67 18.97

Model Size: ~500M
CodeT5† 770M 15.78 38.63 50.35
PolyCoder† 400M 1.31 7.98 21.55
BLOOM† 560M 0.26 2.04 8.90
CodeGen-Mono† 350M 15.44 42.50 64.40

Model Size: ~1B
GPT-Neo† 1.3B 3.77 16.26 29.51
CodeParrot† 1.5B 1.29 8.66 27.17
BLOOM† 1.1B 1.90 9.20 23.42
BLOOM† 1.7B 3.16 14.23 31.38
InCoder† 1.3B 10.00 34.02 55.50
SantaCoder† 1.1B 3.65 21.33 41.92

Model Size: ~5B
GPT-Neo† 2.7B 5.89 23.09 44.26
PolyCoder† 2.7B 4.39 17.99 38.17
BLOOM† 3B 2.25 13.58 32.08
BLOOM† 7.1B 1.01 7.91 24.12
CodeGen-Mono† 2.7B 28.80 60.73 75.41
CodeGen-Mono† 6.1B 33.70 62.70 70.25
GPT-J† 6B 11.30 35.62 53.63
InCoder 6.7B 21.3 46.5 66.2

Model Size: >10B
CodeGen-Mono 16.1B 42.4 65.8 79.1
cushman-001 − 45.9 66.9 79.9
davinci-001 − 51.8 72.8 84.1
davinci-002 − 58.1 76.7 84.5

Table 4: The performance of LLMs on the MBPP bench-
mark. † denotes our reproduced results, while others
are taken from Chen et al. (2023). We omit CodeGPT,
GPT-CC, and PLBART as their numbers are zero.

C Experimental Setup

In this section, we will first present the definition
of pass@k , followed by the details of the experi-
ments conducted on two benchmarks, namely Hu-
manEval (Chen et al., 2021) (results in Table 2) and
MBPP (Austin et al., 2021) (results in Table 4).

C.1 Definition of pass@k

We use pass@k as our metric for evaluation. For
each programming problem, we sample n candi-
date code solutions and then randomly pick k of
them. If any of the k code solutions pass the given
test cases, the problem can be regarded as solved.
So pass@k is the proportion of solved problems
in the benchmark (Chen et al., 2021). Formally,
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assuming that the number of correct ones in k sam-
ples is c, pass@k = 1 if n − c < k; otherwise,
pass@k = 1 − ∏n

i=n−c+1(1 − k/i). We chose
pass@k as our primary evaluation metric because
it offers a completely precise evaluation of code
accuracy by executing test cases, while other met-
rics mentioned in Section 4 either originate from
pass@k or have lower precision.

C.2 Implementation Details

For HumanEval, we use the original benchmark9.
Most results in Table 2 are taken from the original
papers, while we reproduce the results of GPT-CC,
PLBART, CodeT5, and InCoder 1.3B by strictly
following the same experimental setup as the other
models. In detail, we set the sample number to 200,
the maximum length of newly generated tokens to
200, and top_p to 0.95. We set the temperature
from 0.1 to 1.0 with an interval of 0.1, and report
the best performance across these temperatures.

For MBPP, we use the version from Chen et al.
(2023)10. In Table 4, the results of InCoder 6.7B
and models larger than 10B are taken from Chen
et al. (2023), while we reproduced other results.
Specifically, we set the sample number to 100, the
maximum length of newly generated tokens to 200,
top_p to 0.95, and the temperature to 0.8.

For the two benchmarks above, we employ
the same post-processing strategy. Following
Codex (Chen et al., 2021), we terminate the sam-
pling process when one of the following sequences
is encountered in the generated code: ‘\nclass’,
‘\ndef’, ‘\n#’, ‘\n@’, ‘\nif’, and ‘\nprint’. In
our experiments, CodeT5 770M refers to the ver-
sion11 with the causal language modeling objective.
For good reproducibility and further research, we
have made our code and the generated results of the
LLMs on HumanEval and MBPP publicly available
on our website.

D Context Window vs. Performance

Recent work (erman Arsenovich Arutyunov and
Avdoshin, 2022) claimed that the size of the con-
text window plays a vital role in enhancing the
performance of LLMs for NL2Code. Specifi-

9https://github.com/openai/human-eval/blob/
master/data/HumanEval.jsonl.gz

10https://github.com/microsoft/CodeT/blob/
main/CodeT/data/dataset/mbpp_sanitized_for_code_
generation.jsonl

11https://huggingface.co/Salesforce/
codet5-large-ntp-py
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Figure 6: Performance of GPT-NeoX with different
model sizes (165M and 20B) and context windows (2K,
4K, and 8K) on the APPS benchmark.

cally, experiments are conducted on the APPS
benchmark (Hendrycks et al., 2021) with GPT-
NeoX (Black et al., 2022), and we visualize the
results in Figure 6. It is found that the 165M ver-
sion model with an 8, 000 context window is com-
parable to the 20B version model with a 2, 000
context window. This observation illustrates that
the context window also needs to be considered
when training the model.
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Products Model Supported PLs Supported IDEs

tabnine (2018) −

Python, Java, Javascript, TypeScript,
Go, Ruby, PHP, C#, C, C++, Swift,
Perl, Rust, CSS, Angular, Dart, React,
Haskell, HTML, Kotlin, Matlab, Sass,
NodeJS, Objective C, Scala,

VS Code, Visual Studio, IntelliJ IDE,
Neovim, Sublime, PyCharm, Rider,
WebStorm, Android Studio, Emacs,
Vim, PhpStorm, RubyMine, DataGrip,
Jupyter Notebook, JupyterLab, Clion,
AppCode, Eclipse, GoLand

aiXcoder (2018) − Python, Java, JavaScript, Typescript,
Go, PHP, C, C++

VS Code, IntelliJ IDEA, PyCharm,
STS3, WebStorm, Rider, Clion, STS4
Android Studio, PhpStorm, Eclipse,
GoLand

IntelliCode (2019) − Python, Java, JavaScript, TypeScript,
C#, C++, SQL Server, XAML

VS Code, Visual Studio

Diffblue Cover (2020) − Java IntelliJ IDEA, CLI Tool

Copilot (2021) Codex

Python, Java, JavaScript, TypeScript,
Go, Ruby, Julia, PHP, C#, C++, Swift,
Perl, PowerShell, R, Rust, CSS, SQL,
JSON, HTML, SCSS, Less, .NET,
Markdown, T-SQL

VS Code, Visual Studio, Neovim,
JetBrains IDE

Cosy (2022) − Java IntelliJ IDEA

CodeWhisperer (2022) − Python, Java, JavaScript, TypeScript,
C#

VS Code, JetBrains IDE, AWS Cloud9,
AWS Lambda

CodeGenX (2022) GPT-J Python VS Code

CodeGeeX (2023) CodeGeeX

Python, Java, JavaScript, TypeScript,
Go, PHP, C#, C, C++, Perl, Rust, CSS,
SQL, HTML, Kotlin, Shell, R, Cuda,
Objective C, Objective C++, Pascal,
Tex, Fortran, Lean, Scala

VS Code, IntelliJ IDEA, PyCharm,
WebStorm, Android Studio, Rider,
RubyMine, Clion, AppCode, Aqua,
DataGrip, GoLand, DataSpell

FauPilot (2022) CodeGen Python, Java, Javascript, Go, C, C++ −

Table 5: Summary of products powered by LLMs. PLs and IDEs refer to programming languages and integrated
development environments, respectively. The information for these products was recorded on December 27, 2022.
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Figure 7: Performance of LLMs with varying parameter sizes on the HumanEval and MBPP benchmarks.
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Table 6: The details of LLMs for NL2Code. We list the full names of these abbreviations: de-duplication (de.),
tokenizer (token.), optimizer (opti.), batch size (bs), window size (ws), gradient accumulation steps (gss), warmup
steps (wp), learning rate (lr), weight decay (wd), decay schedule (decay), precision floating point (pr), model
initialization (init.), left-to-right (→), fill-in-the-middle (↔), byte-level byte-pair-encoding (BBPE), SentencePiece
(SP), polynomial (PN), and inverse square (IS).
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Benchmark Originate From Multilingual
MCoNaLa (2022b) CoNaLa (2018) English, Spanish, Japanese, Russian

ODEX (2022c)
CoNaLa (2018)
MCoNaLa (2022b)

English, Spanish, Japanese, Russian

MBXP (2022) MBPP (2021)
Python, Java, JavaScript, TypeScript, Go, Ruby,
Kotlin, PHP, C#, Scala, C++, Swift, Perl

MBXP-HumanEval (2022) HumanEval (2021)
Python, Java, JavaScript, Ruby, Kotlin, PHP, Scala,
Swift, Perl,

MultiPL-MBPP (2022) MBPP (2021)
Python, Java, JavaScrpt, TypeScript, Go, Ruby,
Julia, PHP, C#, Scala, C++, Swift, Perl, D, Bash,
Racket, Lua, R, Rust

MultiPL-HumanEval (2022) HumanEval (2021)
Python, Java, JavaScrpt, TypeScript, Go, Ruby,
Julia, PHP, C#, Scala, C++, Swift, Perl, D, Bash,
Racket, Lua, R, Rust

HumanEval-X (2023) HumanEval (2021) Python, Java, JavaScript, Go, C++

Table 7: Details of multilingual NL2Code benchmarks. Here we also list MCoNaLa and CoNaLa, which have no
test case for evaluation.
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