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Abstract

Capturing complex contextual dependencies
plays a vital role in Emotion Recognition in
Conversations (ERC). Previous studies have
predominantly focused on speaker-aware con-
text modeling, overlooking the discourse struc-
ture of the conversation. In this paper, we in-
troduce Dual Graph ATtention networks (Dual-
GATs) to concurrently consider the comple-
mentary aspects of discourse structure and
speaker-aware context, aiming for more pre-
cise ERC. Specifically, we devise a Discourse-
aware GAT (DisGAT) module to incorporate
discourse structural information by analyz-
ing the discourse dependencies between utter-
ances. Additionally, we develop a Speaker-
aware GAT (SpkGAT) module to incorporate
speaker-aware contextual information by con-
sidering the speaker dependencies between ut-
terances. Furthermore, we design an interac-
tion module that facilitates the integration of
the DisGAT and SpkGAT modules, enabling
the effective interchange of relevant informa-
tion between the two modules. We extensively
evaluate our method on four datasets, and exper-
imental results demonstrate that our proposed
DualGATs surpass state-of-the-art baselines on
the majority of the datasets.1

1 Introduction

With the increasing availability of conversational
data on social media platforms (Poria et al., 2019a),
Emotion Recognition in Conversations (ERC) has
emerged as a popular research topic (Poria et al.,
2019b). Its objective is to identify and track the
emotional state of each utterance. ERC plays a cru-
cial role in various applications, including opinion
mining in social media (Chatterjee et al., 2019b)
and the development of empathetic dialogue sys-
tems that can analyze user emotional states and gen-

∗Corresponding author.
1Available at https://github.com/BladeDancer957/

DualGATs.

erate emotion-aware responses (Zhou et al., 2018;
Liu et al., 2021; Peng et al., 2022, 2023).

However, analyzing emotions in conversations
poses significant challenges. Unlike emotion recog-
nition in isolated sentences (Seyeditabari et al.,
2018), ERC requires careful consideration of con-
textual dependencies. Previous ERC methods have
primarily focused on capturing speaker or tempo-
ral dependencies between utterances, making the
modeling of speaker-aware context central to these
approaches (Majumder et al., 2019).

To incorporate speaker-aware contextual infor-
mation, numerous methods have been proposed
to model conversations as sequences (Poria et al.,
2017; Hazarika et al., 2018a,b; Jiao et al., 2019; Hu
et al., 2021; Ong et al., 2022) or graphs (Ghosal
et al., 2019; Ishiwatari et al., 2020; Shen et al.,
2021b; Li et al., 2022). Sequence-based methods
capture sequential information by encoding utter-
ances temporally using Recurrent Neural Networks
(RNNs). Majumder et al. 2019 designed an inde-
pendent Gated Recurrent Unit (GRU) (Cho et al.,
2014) to track the emotional state of the speaker.
However, these sequence-based methods often rely
on limited information from nearby utterances to
update the current utterance’s representation, mak-
ing it challenging to capture distant contextual in-
formation and achieve satisfactory performance. To
address this limitation, graph-based methods simul-
taneously aggregate information from surrounding
contextual utterances to update the representation
of the current utterance using Graph Neural Net-
works (GNNs) (Kipf and Welling, 2017). These
methods typically treat the conversation as a di-
rected graph, where nodes represent utterances,
edges indicate dependency links between pairs
of nodes, and edge labels denote the dependency
types, such as speaker or temporal relationships.

Despite the remarkable progress made by
sequence-based and graph-based methods, there
is a need for greater emphasis on explicitly model-
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Speaker A Speaker B

[joy]

[surprise]

[neutral]

[neutral]

[joy]

: Umm, this is great wine. 

: It from France. Y know 
umm, I used to back-
pack in Western Europe.

: Really?

: Uh-hmm Wait! It gets better. 
Yeah I was in Barcelona. 

: I studied for a year in 
Barcelona.

Background

Acknowledgem
ent

Clarification Question

Question Answer Pair

Continuation

Figure 1: A conversation from MELD dataset (Poria
et al., 2019a) with discourse dependencies extracted
from a discourse parser (Shi and Huang, 2019).

ing discourse structure within conversations. Dis-
course structure, which includes discourse depen-
dency links and their types between utterances, of-
fers a straightforward way to capture the essential
information flow in a conversation. As illustrated
in Figure 1, highly relevant utterances are linked
based on discourse dependency types such as Back-
ground, Acknowledgement, and Question-Answer
Pair. Explicitly incorporating these discourse de-
pendencies in conversations can assist models in
capturing significant contextual cues that influence
emotions. For instance, let’s consider the first and
fourth utterances in Figure 1, where there exists
a direct discourse dependency link of Acknowl-
edge type between utterances 1 and 4. In utterance
1, Speaker A expresses a positive opinion about
wine, conveying a sense of joy emotion. Speaker B
strongly acknowledges this opinion in utterance 4,
stating that the wine improves and also experiences
a sense of joy emotion.

In this paper, we propose a novel method
called Dual Graph ATtention networks (DualGATs)
that aims to improve the accuracy of ERC by
simultaneously considering the complementarity
of discourse structure and speaker-aware context.
The DualGATs layer comprises three components:
Discourse-aware GAT (DisGAT), Speaker-aware
GAT (SpkGAT), and an interaction module. The
DisGAT module is designed to capture structural-
level correlations among the interactive turns ex-
plicitly. It propagates the message over the dis-
course dependency graph obtained from a dis-
course parser (Shi and Huang, 2019), thereby incor-

porating discourse structural information. On the
other hand, the SpkGAT module is implicitly orga-
nized to capture semantic-level correlations among
the interactive turns. It conducts message prop-
agation over the speaker dependency graph, con-
structed based on speaker identities and the relative
positions of utterances, enabling the incorporation
of speaker-aware contextual information. Further-
more, inspired by previous work (Li et al., 2021b;
Zhang et al., 2022), the interaction module lever-
ages mutual cross-attention to integrate the DisGAT
and SpkGAT modules, facilitating the exchange of
relevant information between the two modules. To
enhance the complementarity of the learned repre-
sentations from the DisGAT and SpkGAT modules
and minimize overlap, the interaction module also
includes a differential regularizer. This regularizer
encourages the two modules to capture different
contextual information.

Our contributions can be summarized as follows:

• We propose DualGATs to simultaneously con-
sider the complementarity of discourse struc-
ture and speaker-aware context for more pre-
cise and accurate ERC.

• We introduce an interaction module to ex-
change the relevant information between the
SpkGAT and DisGAT modules by mutual
cross-attention, where a differential regular-
izer is proposed to induce the two modules to
capture different contextual information.

• We conduct extensive experiments on four
publicly available ERC datasets. The results
of our experiments demonstrate that Dual-
GATs outperform state-of-the-art baselines on
most of the tested datasets. Further analyses
validate the effectiveness of the critical com-
ponents in DualGATs.

2 Related Work

2.1 ERC
Recently, due to the proliferation of publicly avail-
able conversational datasets (Chen et al., 2019;
Chatterjee et al., 2019a), ERC has increasingly be-
come a popular research topic, including the text-
modality and multi-modality settings (Zhang et al.,
2023; Chen et al., 2023). Here, we specifically
focus on the former. Previous studies primarily
concentrate on modeling speaker-aware conversa-
tional context. Early methods rely on RNNs to en-
code utterances temporally and track the speaker’s
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state (Jiao et al., 2019; Hu et al., 2021). Notably,
BC-LSTM (Poria et al., 2017) employs Long Short-
Term Memory networks (LSTMs) (Hochreiter and
Schmidhuber, 1997), while ICON (Hazarika et al.,
2018a) and CMN (Hazarika et al., 2018b) utilize
GRUs (Cho et al., 2014) and memory networks. Di-
alogueRNN (Majumder et al., 2019) utilizes three
GRUs to capture speaker, temporal, and emotional
dependencies among utterances. However, these
sequence-based methods often rely on limited infor-
mation from nearby utterances to update the state
of the current utterance, which poses challenges in
capturing long-range contextual information.

To model the global conversational context, var-
ious graph-based methods have emerged (Zhang
et al., 2019; Shen et al., 2021a). DialogueGCN
(Ghosal et al., 2019) treats each conversation as a
fully-connected graph, where nodes represent utter-
ances and edges denote speaker and temporal de-
pendencies between utterances. RGAT (Ishiwatari
et al., 2020) introduces relational position encod-
ing to incorporate position information into the
GNNs explicitly. DAG-ERC (Shen et al., 2021b)
utilizes directed acyclic graphs to model the in-
teraction between speakers and utterances. Addi-
tionally, there are several Transformer-based meth-
ods (Vaswani et al., 2017) for modeling the conver-
sational context. Since the self-attention module
in Transformer can be seen as a fully-connected
graph, we consider some Transformer-based ap-
proaches as graph-based methods. CoG-BART (Li
et al., 2022) employs BART (Lewis et al., 2020) as
an utterance encoder and incorporates an auxiliary
response generation task to enhance the model’s
ability to handle contextual information. It also
leverages contrastive learning to improve the identi-
fication of similar emotions. CoMPM (Lee and Lee,
2021) introduces a pre-trained memory module to
consider the linguistic preferences of speakers.

Since humans do not always explicitly express
their emotions in their words, there are many
methods to incorporate additional general infor-
mation into the sequence- or graph-based meth-
ods to enhance the understanding of implicit
emotions. For example, KET (Zhong et al.,
2019), KAITML (Zhang et al., 2020), and COS-
MIC (Ghosal et al., 2020) introduce common-
sense knowledge, TODKAT (Zhu et al., 2021) inte-
grates topic information, KI-Net (Xie et al., 2021)
leverages sentiment lexicons, DialogueRole (Ong
et al., 2022) incorporates utterance role informa-

tion, SKAIG (Li et al., 2021a) fuses psychological
knowledge, and CauAIN (Zhao et al., 2022) in-
cludes emotion cause information to enhance ERC.

Despite significant progress, these methods
above need to pay more attention to the impor-
tance of conversational discourse structure in cap-
turing salient contextual cues that influence emo-
tion. However, due to the complexity of human-
human interaction, GNNs (Kipf and Welling, 2017;
Yu et al., 2022) directly over the parsed discourse
dependency graph like DisGCN (Sun et al., 2021)
may not work well as expected on datasets that are
not sensitive to discourse structure. Instead of re-
lying solely on discourse structure, we integrate it
into our carefully designed DualGATs framework
to simultaneously consider discourse structure’s
and speaker-aware context’s complementarity. This
integration allows us to achieve more accurate ERC
by leveraging the benefits of both aspects.

2.2 Discourse Parsing

Recently, deep sequential models have emerged as
practical approaches for conversational discourse
parsing (Shi and Huang, 2019; Liu and Chen, 2021).
These models have proven their efficacy in vari-
ous dialogue understanding tasks, such as multi-
turn response selection (Jia et al., 2020), as well as
dialogue generation tasks, including conversation
summarization (Chen and Yang, 2021; Feng et al.,
2021). In our work, the discourse structures on
which our DisGAT module relies are also parsed us-
ing deep sequential models (Shi and Huang, 2019).
Leveraging discourse dependencies intuitively en-
ables the model to encode unstructured human con-
versations better and focus on salient utterances,
leading to more accurate predictions.

3 Methodology

We begin by providing a formal definition of the
ERC task. A conversation is represented as a se-
quence of utterances (ui, si)|i = 1, ..., N , where
each utterance ui is spoken by speaker si, and N
denotes the total number of utterances. The objec-
tive of the ERC task is to assign an emotion label
yi ∈ Y , such as joy, sadness, etc., to each utterance
ui in the conversation, where Y represents the set
of possible emotion labels.

The proposed DualGATs consist of three main
components: feature extraction, DualGATs layer,
and emotion prediction. The overall architecture of
our DualGATs is illustrated in Figure 2.
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DisGAT SpkGAT

FCN

RoBERTa RoBERTa RoBERTa RoBERTa RoBERTa

QAP
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Comment
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Self - Past
Self - Future
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Emotion 
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Differential 
Regularizer

Interaction

Figure 2: The overall architecture of our DualGATs, encompassing three essential modules: DisGAT, SpkGAT, and
Interaction. DisGAT propagates discourse structural information by leveraging discourse dependencies between
utterances, while SpkGAT propagates speaker-aware contextual information considering speaker and temporal
dependencies. The interaction module initially employs a differential regularizer to ensure that the DisGAT and
SpkGAT modules capture distinct contextual information. Subsequently, it utilizes mutual cross-attention to integrate
the DisGAT and SpkGAT modules, facilitating the exchange of relevant information between them. In the diagram,
the discourse dependency types Question-Answer Pair (QAP) and Explanation (Exp) are denoted.

3.1 Feature Extraction

In line with previous methods (Ghosal et al., 2020;
Shen et al., 2021b), we employ the RoBERTa
Large model (Liu et al., 2019) to extract utter-
ance features. The RoBERTa Large model is first
fine-tuned for emotion prediction using the tran-
script of utterances and subsequently utilized as
a feature extractor with frozen parameters dur-
ing the training of DualGATs. Specifically, for
the i-th utterance ui, we prepend a special token
“[CLS]” to its tokens, resulting in an input format of
{[CLS], w1, ..., wni}, where ni denotes the num-
ber of tokens in ui. Subsequently, we extract the
output activations from the last layer corresponding
to the “[CLS]” token, which serves as the feature
representation hi ∈ Rdu of ui. Here, du represents
the dimension of the feature representation. Collec-
tively, the feature representations for all utterances
are represented as Hu ∈ RN×du .

3.2 DualGATs Layer

The DualGATs layer efficiently captures both dis-
course structure and speaker-aware context within
a conversation, employing three essential modules:
DisGAT, SpkGAT, and Interaction. In this section,

we first outline the computation process for each
module in the initial layer and then extend it to
multiple subsequent layers.

DisGAT The DisGAT module performs message
propagation over a discourse dependency graph to
integrate discourse structural information. We be-
gin by explaining the construction of the discourse
dependency graph, followed by an overview of the
inference process employed by the DisGAT module
on the constructed graph.

We define the discourse dependency graph of
a conversation as GDis = (V Dis,EDis), where
V Dis represents the set of nodes representing El-
ementary Discourse Units (EDUs), and EDis is
the adjacency matrix that describes the discourse
dependencies between EDUs. In our approach,
each utterance in the conversation is treated as an
EDU, and we leverage the 16 discourse dependency
types outlined in (Asher et al., 2016). These de-
pendency types encompass Comment, Clarification
Question, Elaboration, Acknowledgment, Continu-
ation, Explanation, Conditional, Question-Answer
Pair, Alternation, Question-Elaboration, Result,
Background, Narration, Correction, Parallel, and
Contrast (We refer to this set of types as RDis).
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Specifically, we first pre-train a discourse
parser (Shi and Huang, 2019) on a human-
annotated dialogue corpus (Asher et al., 2016),
with a 0.78 F1 on link predictions and 0.56 F1
on relation classifications, comparable to the state-
of-the-art results. Then, we use this pre-trained
parser to predict the discourse dependencies within
conversations present in ERC datasets. Conse-
quently, for each conversation, we represent its cor-
responding discourse dependency graph as GDis =
(V Dis,EDis). Here, V Dis[i] or vDis

i represents
the node corresponding to utterance ui, initialized
with the corresponding feature representation hi.
The edge EDis[i][j] or eDis

i,j is assigned the depen-
dency type rDis ∈ RDis if a link exists from ui to
uj with that specific type. This is illustrated in the
left part of Figure 2.

Once the discourse dependency graph for the
conversation is constructed, we apply the DisGAT
module to propagate and aggregate discourse struc-
tural information among the graph nodes. The
DisGAT module is built upon GAT (Veličković
et al., 2018) but includes type coding to account for
the dependency types between nodes (utterances).
Specifically, for a given node vDis

i , the DisGAT ag-
gregates the information of its neighboring nodes
as follows:

αij = smi(LRL(aT [Whi∥Whj∥eDis
ij ]))

hDis
i =

∑

j∈NDis
i

αijWhj
(1)

where αij denotes the edge weight from node vDis
i

to its neighbor vDis
j , sm denotes softmax function,

LRL denotes LeakyReLU activation function, W
and a denote trainable parameters, eDis

ij ∈ R|RDis|

denotes the one-hot coding (fixed during model
training) corresponding to the discourse depen-
dency type between nodes vDis

i and vDis
j , |RDis|

denotes the number of discourse dependency types,
∥ denotes a concatenation operation, NDis

i denotes
the neighbours of node vDis

i in GDis, hDis
i ∈ Rdh

denotes the hidden representation associated with
node vDis

i after DisGAT update, and dh denotes the
dimension of the hidden representation. The up-
dated hidden representation of all nodes is denoted
as HDis ∈ RN×dh .

We summarize the calculation process of the
DisGAT in the initial layer as follows:

HDis = DisGAT(Hu,EDis) (2)

SpkGAT The SpkGAT module performs mes-
sage propagation on a speaker dependency graph to
incorporate speaker-aware contextual information.
We will first explain the construction of the speaker
dependency graph and then introduce the inference
process of the SpkGAT on this constructed graph.

We define the speaker dependency graph of a
conversation as GSpk = (V Spk,ESpk), where
V Spk[i] or vSpki represents ui (the i-th utterance),
and its representation is initialized with the corre-
sponding feature representation hi. ESpk is the
adjacency matrix that describes the speaker along
with temporal dependencies between nodes (ut-
terances). Following the conventions of previous
graph-based ERC methods (Ghosal et al., 2019;
Ishiwatari et al., 2020), we define five speaker de-
pendency types: Self-Past, Self-Future, Inter-Past,
Inter-Future, and SelfLoop (referred to as set RSpk).
Specifically, Self represents the influence of the cur-
rent utterance on other utterances expressed by the
same speaker. Inter indicates the influence of the
current utterance on those expressed by other speak-
ers (excluding the speaker of the current utterance).
Past and Future refer to the relative position of the
current utterance and other utterances in the conver-
sation, determining how past utterances influence
future utterances and vice versa.2 SelfLoop signi-
fies the self-influence of the current utterance. For
any ui and uj , ESpk[i][j] or eSpki,j = rSpk if they
satisfy the speaker dependency type rSpk ∈ RSpk

(as depicted in the right part of Figure 2).
After constructing the speaker dependency graph

for the conversation, we implement the SpkGAT to
propagate and aggregate speaker-aware contextual
information across the graph nodes. Similarly, the
calculation process of the SpkGAT in the initial
layer is summarized as follows:

HSpk = SpkGAT(Hu,ESpk) (3)

Interaction Module To capture distinct informa-
tion from the discourse structure and speaker-aware
context, we introduce a differential regularizer that
encourages divergence between the updated repre-
sentations of the DisGAT and SpkGAT modules.
The regularizer is formulated as follows:

ℓreg =
1

||HDis −HSpk||F
(4)

2Since ERC is viewed as an offline task and future depen-
dencies may help the model fill in some missing information,
like the speaker’s background, we consider future influence.
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where the subscript F denotes the Frobenius norm.
Then, to integrate the DisGAT and SpkGAT mod-

ules and effectively exchange relevant information
between the two modules, we adopt a mutual cross-
attention as a bridge. The computation process is
formulated as follows:

A1 = softmax(HDisW1(H
Spk)T )

A2 = softmax(HSpkW2(H
Dis)T )

HDis′ ,HSpk′ = A1H
Spk,A2H

Dis

(5)

where W1,W2 ∈ Rdh×dh are learnable parameters
and A1, A2 ∈ RN×N are temporary matrices pro-
jecting from HSpk to HDis and HDis to HSpk,
respectively. Here, HDis′ ∈ RN×dh can be re-
garded as a projection from HSpk to HDis , and
HSpk′ ∈ RN×dh follows identical principle.

The Whole Process To iteratively refine and
exchange discourse structural information and
speaker-aware contextual information across mul-
tiple consecutive layers, we generalize the calcu-
lation process of the initial layer. The detailed
procedures are as follows:

HDis,[l] = DisGAT(D[l],EDis)

HSpk,[l] = SpkGAT(S[l],ESpk)

HDis′,[l],HSpk′,[l] = Inter(HDis,[l],HSpk,[l])

D[l+1],S[l+1] = HDis′,[l],HSpk′,[l]

(6)
where D[0] = S[0] = Hu and l ∈ [0, L− 1].

3.3 Emotion Prediction
We obtain the final representation for ui by con-
catenating the output (HDis′,[L],HSpk′,[L]) of the
L-layer DualGATs. The final representation is clas-
sified via a Fully-Connected Network (FCN):

li = ReLU(Wh[h
Dis′,[L]
i ∥hSpk′,[L]

i ] + bh)

pi = softmax(Wlli + bl)

ŷ = argmaxk∈Ypi[k]

(7)

where ŷi is the predicted emotion label for utter-
ance ui, h

Dis′,[L]
i , hSpk′,[L]

i ∈ Rdh denote the ith

representation in HDis′,[L] and HSpk′,[L], Wh ∈
Rdh×2dh ,Wl ∈ Rde×dh , bh ∈ Rdh and bl ∈ Rde

are learnable parameters of FCN, and de denotes
the number of emotion labels in the dataset.

3.4 Loss Function
Our training goal is to minimize the following total
objective function:

ℓtotal = ℓerc + λℓreg (8)

Table 1: The statistics of four ERC datasets.

Dataset
# Conversations # Uterrances

Train Val Test Train Val Test
IEMOCAP 120 31 5810 1623
MELD 1038 114 280 9989 1109 2610
EmoryNLP 659 89 79 7551 954 984
DailyDialog 11118 1000 1000 87170 8069 7740

where λ is a regularization coefficient. ℓerc is a
standard cross-entropy loss, formulated as:

ℓerc = −
B∑

β=1

N(β)∑

i=1

logpβ,i[yβ,i] (9)

where B is the number of conversations, N(β) is
the number of utterances in the β-th conversation,
and yβ,i is the ground truth label in one-hot form.

4 Experimental Settings

4.1 Datasets
We evaluate our DualGATs on the following four
ERC datasets. The statistics of these four datasets
are drawn in Table 1.

IEMOCAP (Busso et al., 2008): Each conver-
sation comes from the performance based on the
script by two actors. There are 6 emotion labels
including happiness, sadness, anger, frustration,
excited, and neutral. Since IEMOCAP has no vali-
dation set, we follow (Shen et al., 2021b) to use the
last 20 conversations in training set for validation.

MELD (Poria et al., 2019a): Scripts collected
from the Friends TV series. There are 7 emotion
labels including neutral, joy, surprise, sadness,
anger, disgust, and fear.

EmoryNLP (Zahiri and Choi, 2018): Scripts
collected from the Friends TV series as well. Un-
like MELD, its emotion labels include sad, mad,
scared, powerful, peaceful, joyful, and neutral.

DailyDialog (Li et al., 2017): Daily communica-
tions written by human. Its emotion labels are the
same as the ones used in MELD.

4.2 Significance Test and Evaluation Metrics
To test the significance of the performance improve-
ment, we conduct a paired t-test with a default level
of 0.05 (Koehn, 2004). Following previous meth-
ods (Ghosal et al., 2019; Shen et al., 2021a,b), we
adopt micro-averaged F1 score excluding the ma-
jority class (neutral) for DailyDialog and weighted-
average F1 score for the other datasets.
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Table 2: Detailed hyper-parameters on each dataset.

Dataset lr dropout batch size layers
IEMOCAP 1e-4 0.2 16 2
MELD 1e-4 0.3 32 2
EmoryNLP 1e-4 0.1 32 2
DailyDialog 5e-5 0.4 64 3

4.3 Compared Baselines

For a comprehensive performance evaluation, we
compare our DualGATs with the following state-
of-the-art baselines:

BC-LSTM (Poria et al., 2017), ICON (Haz-
arika et al., 2018a), DialogueRNN (Majumder
et al., 2019), DialogueCRN (Hu et al., 2021),
KET (Zhong et al., 2019), DialogueGCN (Ghosal
et al., 2019), RGAT (Ishiwatari et al., 2020), Di-
alogXL (Shen et al., 2021a), DAG-ERC (Shen
et al., 2021b), CoG-BART (Li et al., 2022),
CoMPM (Lee and Lee, 2021), COSMIC (Ghosal
et al., 2020), TODKAT3 (Zhu et al., 2021), Dia-
logueRole (Ong et al., 2022), CauAIN (Zhao et al.,
2022), and DisGCN (Sun et al., 2021).

For a fair comparison, baseline+RoBERTa
means to use RoBERTa Large (Liu et al., 2019)
as an utterance feature extractor as we do. Note
that most other baselines natively use pre-trained
models as utterance feature extractors, such as
DAG-ERC, CoMPM, COSMIC, DialogueRole,
and CauAIN use RoBERTa Large, DialogXL
uses XLNet (Yang et al., 2019), CoG-BART uses
BART (Lewis et al., 2020), and DisGCN uses
BERT (Kenton and Toutanova, 2019).

4.4 Implementation Details

Our DualGATs are trained with the Adam opti-
mizer (Kingma and Ba, 2015). We conduct a
hyper-parameter search for DualGATs on each
dataset according to the F1 score of the val-
idation set. The hyper-parameters to search
include learning rate (lr), dropout rate, batch
size, and the DualGATs Layer Number (layers)
within the ranges of {1e-5,5e-5,1e-4,5e-4,1e-3,5e-
3}, {0.0,0.1,0.2,0.3,0.4,0.5}, {8,16,32,64,128},
and {1,2,3,4,5,6}. The details of hyper-parameters
for DualGATs on each dataset are shown in Ta-
ble 2. For other hyper-parameters, the dimension

3The sklearn was misused, causing the unusual high per-
formance of MELD and EmoryNLP in TODKAT paper. Thus,
we adopt the updated performance from the official Github
repository: https://github.com/something678/TodKat.

Table 3: The overall performance of all the compared
baselines and our DualGATs on four ERC datasets.
Bold font denotes the best performance. The marker
∗ refers to significant test p-value < 0.05 comparing
with CoMPM, the marker † refers to significant test
p-value < 0.05 comparing with CoG-BART, and the
marker ‡ refers to significant test p-value < 0.05 com-
paring with DialogueRole. Moreover, we refer to the
results from (Ong et al., 2022) with the marker ♣, from
(Shen et al., 2021b) with the marker ♠, from (Bao et al.,
2022) with the marker ♢, and the results for the remain-
ing baselines are from original papers.

Models IEMOCAP MELD EmoryNLP DailyDialog
BC-LSTM♣ 54.95 56.87 - 50.24
ICON♣ 58.54 - - -
DialogueRNN♠ 62.75 57.03 - -
+RoBERTa♠ 64.76 63.61 37.44 57.32

DialogueCRN 66.20 58.39 - -
+RoBERTa♢ 66.46 63.42 38.91 -

KET 59.56 58.18 34.39 53.37
DialogueGCN 64.18 58.10 - -
+RoBERTa♠ 64.91 63.02 38.10 57.52

RGAT 65.22 60.91 34.42 54.31
+RoBERTa♠ 66.36 62.80 37.89 59.02

DialogXL 65.94 62.41 34.73 54.93
DAG-ERC 68.03 63.65 39.02 59.33
CoG-BART 66.18 64.81 39.04 56.29
CoMPM 66.33 66.52 37.37 60.34
COSMIC 65.28 65.21 38.11 58.48
TODKAT3 61.33 65.47 38.69 58.47
DialogueRole 68.23 65.34 - 60.95
CauAIN 67.61 65.46 - 58.21
DisGCN 64.10 64.22 36.38 -
DualGATs (Ours) 67.68 66.90∗ 40.69† 61.84‡

of the feature representation du from the RoBERTa
is 1024, the dimension of the hidden representa-
tion dh is 300, and the regularization coefficient
λ is 0.3. Each training and testing process is run
on an NVIDIA A100 GPU with 40GB of memory.
Each training process contains 60 epochs, costing
at most 50 seconds per epoch. The model with the
highest F1 score on the validation set is used to
evaluate the test set. The reported results for all
our runs are based on the average performance of
5 random runs on the test set.

5 Results and Discussions

5.1 Main Results

The overall performance of all the compared base-
lines and our DualGATs on the four datasets is
reported in Table 3.

Table 3 shows that when equipped with
RoBERTa as a feature extractor, baselines such
as DialogueRNN, DialogueCRN, DialogueGCN,
and RGAT see considerable improvements. When
feature extractors are all based on pre-trained mod-
els, graph-based methods such as DialogueGCN
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Table 4: Experimental results of ablation study.

Models IEMOCAP MELD EmoryNLP DailyDialog
DisGAT 64.56 64.23 37.65 58.96
SpkGAT 66.32 64.66 38.34 59.91
DualGATs w/o regularizer 66.70 65.73 39.53 60.93
DualGATs w/o cross attention 66.43 65.46 39.68 60.26
DualGATs (Ours) 67.68 66.90 40.69 61.84

or RGAT+RoBERTa, DialogXL, DAG-ERC, CoG-
BART, and CoMPM, overall outperform sequence-
based methods such as DialogueRNN or Dialogue-
CRN+RoBERTa across the four datasets. It indi-
cates that sequence-based methods can not encode
the context as effectively as graph-based methods,
especially for long-distance contexts. Moreover,
when incorporating additional information into the
sequence-based or graph-based methods, such as
commonsense knowledge in COMSIC, topic infor-
mation in TODKAT, utterance role in Dialogue-
Role, and emotion cause in CauAIN, we see fur-
ther improvements in overall performance. It indi-
cates that the additional information improves the
model’s understanding of implicit emotions.

However, these methods neglect the importance
of explicitly modeling discourse structure. Com-
pared to focusing on speaker-aware context mod-
eling only, our DualGATs explicitly incorporate
discourse structural information by the DisGAT
module, so it can capture salient contextual cues
that straightforwardly influence emotion. More-
over, GNNs directly only over the parsed discourse
dependency graph result in poor performance, such
as DisGCN. In contrast, our DualGATs model dis-
course structure and speaker-aware context simul-
taneously, achieving competitive performance on
the IEMOCAP dataset and reaching a new state of
the art on the MELD, EmoryNLP, and DailyDialog
datasets compared to all baselines. These results
show that our DualGATs effectively integrate dis-
course structural and speaker-aware contextual in-
formation and consider their complementarity for
more precise ERC.

5.2 Ablation Study
In this section, we perform ablation studies to an-
alyze the effects of critical modules in our Dual-
GATs, shown in Table 4.

DisGAT only models discourse structure for
ERC, which does not work well on datasets that are
not sensitive to discourse dependencies due to the
complexity of human-human interaction. SpkGAT
only models speaker-aware context for ERC and
achieves better performance than DisGAT, indicat-

1, SA

2, SB

Unfortunately , he wasn't  able to  
evacuate in time . He ended up  
dying in the tower .

I'm sorry . That must have really 
 been a nightmarish day for you  
and your family .

sad

1, SA

2, SB

I  like winter.

Me too.

happy

neutral

3, SA
It’s snowing heavily. What about taking a 
 walk? happy

4, SB That’s a good idea. Let’s go! happy

5, SA

happy
What a heavy snow! Look! The water is  
frozen.

a)

b)

1, SA

2, SB

Uh-, So I got some good news!

I'm all right.

1, SA

2, SB

I  like winter.

Me too.

happy

3, SA
It’s snowing heavily. What about taking a 
 walk? happy

4, SB That’s a good idea. Let’s go!

happiness

5, SA

happy
What a heavy snow! Look! The water is  
frozen.

a)

a)
sad

Gold Pred:Gold: excited

1, SA

2, SB

No, it doesn’t pay the bills, but it would  
pay something. And it would help you  
get somewhere else. 

I still can’t live on in six seven and five.  
It isn’t possible in Los Angeles. Housing  
is too expensive.

neutral

 anger

b)

Gold Pred:Gold:

Gold Pred:Gold: neutral

frustration

neutralGold Pred:Gold: neutral

Figure 3: Two real cases of misclassification between
happiness versus excited and anger versus frustration
in the IEMOCAP dataset (Busso et al., 2008).

ing that for ERC, modeling speaker-aware context
is more important than discourse structure. Our Du-
alGATs model both discourse structure and speaker-
aware context for ERC and outperform DisGAT
and SpkGAT, showing that our DualGATs can si-
multaneously consider the complementarity of both
for more accurate ERC. DualGATs w/o regularizer
means we remove the differential regularizer in the
interaction module. The results show that the dif-
ferential regularizer induces the DualGATs to learn
more accurate complementary information. Dual-
GATs w/o cross attention denote that we remove
the mutual cross-attention transformation in the in-
teraction module so that the DisGAT and SpkGAT
modules can not interact. At this point, we con-
catenate the output representations of the two mod-
ules in the last layer to perform emotion prediction.
Therefore, the performance drops significantly on
four benchmark datasets. Overall, our DualGATs
with all modules achieve the best performance.

5.3 Error Analysis

After going through the predicted labels on the four
datasets, we find that the following two aspects
primarily cause the errors.

Firstly, our DualGATs tend to misclassify ut-
terances of other emotions to neutral. This is be-
cause most utterances contain neutral emotion in
the ERC datasets, especially MELD, EmoryNLP,
and DailyDialog datasets where the proportion of
neutral utterance is 46.95%, 29.95%, and 83.10%,
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Figure 4: Impact of the number of DualGATs layers.

respectively. These datasets’ highly imbalanced
class distributions lead to confusion between a few
non-neutral utterances and much more neutral ones,
restraining the emotion recognition performance.

Secondly, our DualGATs fail to distinguish be-
tween emotion pairs that are closely related, such as
happiness versus excited, anger versus frustration,
and peaceful versus joyful. As shown in Figure 3,
we present two cases of misclassification between
happiness versus excited and anger versus frustra-
tion in the IEMOCAP dataset. Taking Figure 3 (a)
as an example, it isn’t easy to distinguish whether
Speaker A was happiness or excited when she or
he said she or he got good news. This misclassifi-
cation phenomenon between similar emotions has
also been reported by (Ghosal et al., 2019; Shen
et al., 2021b; Ong et al., 2022).

5.4 Impact of the DualGATs Layer Number

To study the impact of the DualGATs layer num-
ber, we evaluate our DualGATs with one to six
layers on the IEMOCAP and MELD datasets. As
demonstrated in Figure 4, our model with two Du-
alGATs layers performs best. On the one hand,
discourse structural information and speaker-aware
contextual information might not be refined and
exchanged well when the number of layers is small.
On the other hand, if there are too many layers, the
performance will drop significantly, due to the gen-
eration of redundant or compatible representations,
canceling important information.

6 Conclusion

In this paper, we propose DualGATs with Dis-
GAT, SpkGAT, and Interaction modules to simul-
taneously consider the discourse structure’s and
speaker-aware context’s complementarity for more

accurate ERC. The DisGAT and SpkGAT incorpo-
rate discourse structural and speaker-aware contex-
tual information in parallel. The subsequent inter-
action module integrates the DisGAT and SpkGAT
and effectively exchanges relevant information be-
tween the two modules via mutual cross-attention.
Experimental results show that our DualGATs out-
perform previous state-of-the-art baselines on most
tested datasets, and further analysis validates the
effectiveness of critical modules in DualGATs.

In the future, we will explore the following as-
pects: (1) Apply our method to similar tasks that
need to incorporate the discourse structural and
speaker-aware contextual information; (2) Enhance
the ability of our method to handle class imbal-
ance or similar emotion problems, such as the
introduction of data augmentation or contrastive
learning techniques; (3) Deal with domain gap
problem when directly using pre-trained deep se-
quential models to parse conversations in ERC
datasets (Dong et al., 2020, 2021).

Limitations

Although our DualGATs simultaneously consider
the complementarity of discourse structure and
speaker-aware context for more accurate ERC, it
requires more computation and a longer training
time. The performance of discourse parsing could
be more satisfying in the current stage. Moreover,
we directly utilize pre-trained deep sequential mod-
els to parse dialogues in ERC datasets, which does
not address the domain gap problem well.

Ethics Statement

To consider ethical concerns, we describe the fol-
lowing: (1) We conduct all experiments on existing
datasets derived from public scientific research. (2)
Our work does not involve any sensitive tasks or
data. (3) We describe the datasets’ statistics and our
method’s hyper-parameter settings. Our analysis
is consistent with the experimental results. (4) We
will release our code on GitHub for reproducibility.
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