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Abstract
Despite much success in natural language pro-
cessing (NLP), pre-trained language models
typically lead to a high computational cost dur-
ing inference. Multi-exit is a mainstream ap-
proach to address this issue by making a trade-
off between efficiency and accuracy, where the
saving of computation comes from an early
exit. However, whether such saving from early-
exiting is robust remains unknown. Motivated
by this, we first show that directly adapting ex-
isting adversarial attack approaches targeting
model accuracy cannot significantly reduce in-
ference efficiency. To this end, we propose
a simple yet effective attacking framework,
SAME, a novel slowdown attack framework
on multi-exit models, which is specially tai-
lored to reduce the efficiency of the multi-exit
models. By leveraging the multi-exit models’
design characteristics, we utilize all internal
predictions to guide the adversarial sample gen-
eration instead of merely considering the final
prediction. Experiments on the GLUE bench-
mark show that SAME can effectively diminish
the efficiency gain of various multi-exit models
by 80% on average, convincingly validating its
effectiveness and generalization ability. 1

1 Introduction

Pre-trained language models (Devlin et al., 2019;
Radford et al., 2019; Liu et al., 2019; Lewis et al.,
2020; Raffel et al., 2020; Chen et al., 2022b) have
shown great potential in a wide range of NLP tasks.
While large language models offer unparalleled per-
formance, their high computation during inference
limits the scope of applications. More studies re-
cently concentrate on efficient NLP, which aims to
speed up the inference of deep language models
without significant performance degradation (Sanh
et al., 2019; Zafrir et al., 2019; Zhou et al., 2020).
Among these, the multi-exit models (Zhou et al.,
2020; Xin et al., 2020) attract widespread attention.

∗ Corresponding author.
1Code is available at github.com/MatthewCYM/SAME

The idea of the multi-exit models stems from
the observation that inputs with varying seman-
tics demand distinct computational resources. By
automatically adjusting different computational re-
sources according to input semantics, one can ef-
fectively speed up the inference of a multi-exit
model with minimum performance loss. Further-
more, such multi-exit model can be easily com-
bined with other static speedup approaches, e.g.,
distillation (Sanh et al., 2019; Jiao et al., 2020), by
replacing the backbone model. In addition to higher
efficiency, previous studies also show that the multi-
exit models are more robust to correctness-based
adversarial samples (Zhou et al., 2020; Hu et al.,
2020).

The study of NLP attacks has mostly focused on
harming models’ accuracy, and taken static trans-
formers as victim models (Ebrahimi et al., 2018b;
Li et al., 2020). There exists another type of attack
on the model efficiency, i.e., to make the models
computationally slow. Considering this type of
attack, the intrinsic dynamic nature of the multi-
exit models might be vulnerable to such attacks.
It remains unexplored, however, how significantly
the efficiency or speedup from early exiting will
be affected by the attacks. Motivated by this, we
first analyze the efficiency robustness of dynamic
NLP transformers. We find that previous accuracy-
oriented approaches cannot significantly slow down
the dynamic transformers and sometimes even lead
to shorter inference time.

To this end, we propose a novel slowdown attack
framework on multi-exit language models: SAME.
Unlike accuracy-oriented adversarial attacks, there
are several unique challenges for effective effi-
ciency attacks. First, existing accuracy-oriented
attacks aim to mislead neural networks to gener-
ate wrong predictions, which is not suitable for
efficiency-oriented attacks. Therefore, we develop
a new objective function to guide the generation
of efficiency-oriented adversarial samples. In ad-

7164

github.com/MatthewCYM/SAME


dition, our objective function must be general to
handle various exit mechanisms in multi-exit trans-
formers. Second, multi-exit transformers are not
static during inference, so the "static" search strate-
gies used in adversarial attacks are not suitable. To
overcome the challenges, we propose a dynamic
importance adjustment strategy that assigns dif-
ferent importance to each exit layer, allowing the
adversarial example search process to focus on the
layers that contribute to model efficiency.

We evaluate our SAME using two widely-used
multi-exit strategies (entropy-based (Xin et al.,
2020) and patience-based (Zhou et al., 2020)) with
various pre-trained language models (Devlin et al.,
2019; Liu et al., 2019; Lan et al., 2020) as the back-
bone on eight tasks from the GLUE benchmark.
Experimental results show that our SAME can ef-
fectively reduce the computational saving by 80%
on average, which significantly outperforms previ-
ous accuracy-oriented approaches by a large mar-
gin. Further experiments on the multi-goal attack,
attacking transferability, and adversarial training
convincingly validate the effectiveness and gener-
alization ability of our proposed SAME.

The contributions of this work are summarised
as follows: (1) New Problem: we identify a
new vulnerability of the multi-exit NLP models,
namely, the network efficiency. (2) Novel Ap-
proach: We propose the first efficiency-oriented
attacking framework to measure the efficiency ro-
bustness of the multi-exit NLP models. (3) Com-
prehensive Evaluation: We conduct a systematic
evaluation of various dynamic transformers, which
shows that future studies on improving and protect-
ing the efficient robustness of the multi-exit NLP
models are necessary.

2 Background

2.1 Multi-Exit Networks

Multi-exit neural networks include multiple out-
puts or "exits" placed at different network layers.
This architectural design allows for early decision-
making if the input is confidently classified or pre-
dicted, leading to faster and more efficient pro-
cessing. Based on the semantic complexity of the
inputs, multi-exit neural networks can effectively
reduce inference time by making predictions from
early layers for a simpler input and later layers for
a more complex input. As shown in Figure 1, a
multi-exit transformer consists of N transformer
layers, each containing an internal classifier. Dur-

ing the inference phase, predictions are made after
each layer, and computation is terminated once the
exit criterion is met.

A funny, highly enjoyable movie. A funny, highly enjoyable movie.

Patience 
Counter

Entropy-based early exiting Patience-based early exiting

Figure 1: Illustration of entropy-based (left) and
patience-based (right) early-exiting strategies, l1...n re-
fer to transformer layers, and Hi is the entropy of prob-
ability distribution from the ith internal classifier.

The choice of exit criterion is crucial in multi-
exit models. In this work, we explore two com-
monly used strategies: entropy-based (Xin et al.,
2020; Liu et al., 2020) and patience-based (Zhou
et al., 2020; Zhu, 2021). As depicted in Figure 1
(left), the entropy-based strategy employs the en-
tropy of a probability distribution as an indicator
of model confidence. The model checks if the en-
tropy is lower than a predefined threshold after each
layer’s computation and outputs a prediction when
the criterion is met. The patience-based strategy, as
shown in Figure 1 (right), involves maintaining a
patience counter that is incremented by 1 when pre-
dictions from two consecutive internal classifiers
are consistent and is reset to zero when they are
inconsistent. The model exits early if the patience
counter reaches a pre-defined patience threshold.

2.2 Adversarial Attack
Adversarial attacks are methods of creating ad-
versarial examples to cause neural networks to
make incorrect predictions (Papernot et al., 2016;
Ebrahimi et al., 2018b; Li et al., 2019; Wallace
et al., 2019; Le et al., 2022; Hong et al., 2021;
Cheng et al., 2020; Li et al., 2023; Chen et al.,
2022a; Li et al., 2023). Adversarial attacks in natu-
ral language processing (NLP) mainly contain two
categories: character-level and word-level. For the
character-level attacks, existing methods involve
modifying the words in an input sentence by us-
ing insertion, swap, or deletion operators to create
adversarial examples (Belinkov and Bisk, 2018;
Ebrahimi et al., 2018a). The word-level attacks,
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on the other hand, involve replacing words in the
input sentence with other words, e.g., synonym
replacement (Ren et al., 2019), round-trip trans-
lation (Zhang et al., 2021). There has also been
an emergence of attacks targeting generative mod-
els. For example, Seq2Sick (Cheng et al., 2020)
generates adversarial examples that decrease the
BLUE score of neural machine translation mod-
els. In addition to accuracy, inference efficiency
is also highly critical for various real-time applica-
tions, e.g., speech recognition (Wang et al., 2022),
machine translation (Fan et al., 2021; Zhu et al.,
2020), lyric transcriptions (Gao et al., 2022b, 2023,
2022a). Recently, NICGSlowDown and NMT-
Sloth (Chen et al., 2022d,c) propose delaying the
appearance of the end token to reduce the effi-
ciency of language generative models. There have
been studies evaluating the accuracy robustness
of dynamic transformer through directly adapting
TextFooler (Jin et al., 2020). Unlike the previous
works, the proposed SAME is specially designed
for evaluating the efficiency robustness of dynamic
transformers.

3 Methodology

3.1 Problem Formulation

Unlike previous accuracy-oriented approaches, our
goal here is to create adversarial examples that de-
crease the efficiency of a victim multi-exit model
F by adding human-unnoticeable perturbations
to a benign input. Specifically, we focus on two
factors: (i) significantly increasing the computa-
tional costs for the victim model and (ii) keeping
the generated perturbation minimal. We formulate
the problem as a constrained optimization problem:

∆ = argmax
δ

ExitF (x+ δ) s.t.||δ|| ≤ ϵ, (1)

where x is the given benign input, ϵ is the maximum
adversarial perturbation allowed, and ExitF (·) mea-
sures the number of layers where the victim multi-
exit language model F exits. Our proposed ap-
proach attempts to find the optimal perturbation
∆ that maximizes the number of layers where the
model exits (decrease the efficiency), and at the
same time adheres to the constraint that the pertur-
bation must be smaller than the allowed threshold
(unnoticeable). In this work, we set the allowable
modifiable words ϵ as 10% of the total input words.

Machine learning is interesting.

Benign Input

Dynamic LM

Mess Loss Patience Loss

Importance 
Adjustment

Machine studying is interesting. Machine leanring is interesting.

Word Level Character Level

Figure 2: Design overview of SAME

3.2 Approach Overview

Figure 2 illustrates the design overview of our ap-
proach. Our approach iteratively mutates the given
inputs to craft adversarial examples. During each
iteration, we first design a differentiable objective
to approximate our adversarial goals (Section 3.3).
Then, we dynamically adjust our objective based
on the importance of each layer (Section 3.4). Fi-
nally, we apply our approximated objective func-
tion to mutate the inputs with two types of pertur-
bations and generate a set of adversarial candidates
that satisfy the given unnoticeable constraints (Sec-
tion 3.5).

3.3 Adversarial Objective Approximation

Notice that our optimization objective in Equation 1
is non-differentiable, which makes it challenging
to be directly used as the objective for search-
ing optimal adversarial perturbations. Thus, we
need to approximate the adversarial objective (i.e.,
argmax ExitF (·)) with a differentiable function.
Various objectives are used in accuracy-based ad-
versarial attacks, which aim to decrease the model’s
accuracy by increasing the confidence scores of the
wrong labels. However, these existing approaches
do not address the model’s efficiency. Therefore,
a totally new design for efficiency-oriented adver-
sarial objectives is required. Since exiting criteria
determine the model’s efficiency (as outlined in
Section 2.1), we motivate our efficiency-oriented
adversarial objective approximation from termina-
tion criteria of F , which includes the following:

Making Mess Prediction: Recall that one way
to determine early exiting is by whether the entropy
undercuts a predefined threshold. To make the
model less efficient, our goal is to keep the entropy
above this threshold consistently. It is worth noting
that a uniform distribution has the highest entropy
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among all distributions. Hence, our first objective
function is to push the model prediction close to a
uniform distribution:

Lmess =

N∑

i=1

SCE(Fi(x),U), (2)

where Fi(x) is the prediction logits at the ith layer,
U is a uniform distribution, N is the total layer of
the victim F , and SCE(·) is the soft cross entropy
loss. Eq. 2 is interpreted as we seek to minimize
the error between output logits (i.e., Fi(x)) and
uniform distribution to push the model to produce
larger entropy.

Decrease Prediction Patience: The second ter-
mination criterion is based on prediction patience.
To this end, our second objective function needs
to push the victim model to produce “impatient”
predictions. In other words, we seek to push the
model to make inconsistent predictions among its
intermediate classifiers as follows:

Lpatience =
N∑

i=1

CE(Fi(x), hi), (3)

where hi is the constructed target label at the ith

layer and CE(·) is the cross entropy function. As
previously mentioned, our second objective seeks
to cause the model to produce inconsistent predic-
tions. Thus, we construct our target hi based as:

hi =

{
argmax(Fi(x)), hi−1 ̸= argmax(Fi(x))

argsecond(Fi(x)), hi−1 = argmax(Fi(x))
,

(4)

and h0 is set as the prediction given by the model’s
first internal classifier on the seed input. Our intu-
ition is to force the model to produce inconsistent
predictions between consecutive classifiers by in-
troducing heuristics (Equation 4), thus decreasing
prediction patience.

3.4 Dynamic Importance Adjustment

It is important to note that the inference path of
F is not “static”, implying that treating all layer
outputs equally at each stage of the search may not
yield optimal results. For instance, if F exits at
the third layer, optimizing the input to influence
the output before the third layer would be less im-
portant. To overcome this challenge, we propose
a strategy to dynamically adjust the importance as-
signed to early layer outputs. Given an input x, our

layer-wise importance scores are computed as:

wi =

{
α, i < ExitF (x)
βi− ExitF (x) i ≥ ExitF (x)

, (5)

where wi is the importance score for the ith layer,
ExitF (x) is the index of layer that exit the compu-
tation, α and β are hyper-parameters. As shown in
Eq. 5, the layers, which have been computed, are
assigned constant importance scores, while the lay-
ers, which are not used, are assigned exponentially
increasing importance scores.

Finally, our objective can be expressed as:

Ltotal =
N∑

i=1

wi(λLi
mess+(1−λ)Li

patience), (6)

where λ is the hyper-parameters that balance the
importance of each objective goals.

3.5 Perturbing Inputs
Our adversarial perturbation generation includes
three main steps: (i) finding critical words, (ii) gen-
erating adversarial candidates, and (iii) choosing
candidates.

Finding Critical Words: As mentioned earlier,
we apply our approximated objective function as
guidance to search for optimal adversarial pertur-
bations. Thus, we first find the critical words using
the gradient of our objective function (i.e., Equa-
tion 6). Specifically, we order the word based on∑
j

∂Ltotal

∂tkji
, where tkji is the jth dimension of the

ith tokens embedding. In this step, we consider the
word that is exactly tokenized into one token.

Generating Perturbation Candidates: After
identifying the critical words, the next step is to
perturb the critical words to craft adversarial per-
turbation candidates. In this work, we follow ex-
isting work and use two types of perturbations to
generate adversarial examples: character level and
word level, which leads to two variants of SAME:
SAME-Char and SAME-Word correspondingly.

For character-level perturbation, we employ four
widely used mutations: neighbor character swap,
character insertion, character deletion, and ho-
moglyph character replacement (Ebrahimi et al.,
2018a; Liu et al., 2022). For neighbor character
swap and deletion mutations, we randomly swap
or delete one character in the targeted word. To
perform character insertion mutation, we randomly
select a character from the ASCII character set
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and then insert it at a random location in the tar-
geted word. For homoglyph character replacement
mutation, we use the default homoglyph character
mapping from TextBugger (Li et al., 2019). All
these four character-level perturbations are com-
mon in the real world when typing quickly and
can be unnoticeable without careful examination.
For each mutation, we randomly generate 25 candi-
dates, resulting in a total of 25×4=100 candidates.

For word-level perturbation, we consider replac-
ing the critical word with another word δ. To com-
pute the target word, we define word replace incre-
ment Is,t to measure the efficiency degradation of
replacing word s to t:

Is,t =
∑

j

(E(t)− E(s))j ×
∂Ltotal(x)

∂sji
;

δ = argmax
t

Is,t
(7)

where E(·) represents the embedding vector of a
given token, and Is,t denotes the increase in the
direction of the gradient of our objective function,
resulting from replacing token s with token t. For
word level perturbations, we also generate 100 ad-
versarial candidates.

Candidates Selection: Once the adversarial can-
didates are generated, we select the valid candi-
dates for the next iteration. To do this, we eliminate
candidates that do not meet the constraints in Equa-
tion 1 and then select the top 5 candidates with the
highest ExitF for the next iteration of search.

4 Experiment

4.1 Experimental Setup

Datasets: We conduct our experiments on
GLUE (Wang et al., 2018) benchmark. For more
details about GLUE, please refer to Appendix A.

Victim models: We evaluate two popular
early-exit strategies, namely entropy-based
DeeBERT (Xin et al., 2020) with back-
bone model BERT (Devlin et al., 2019) and
RoBERTa (Liu et al., 2019), as well as patience-
based PABEE (Zhou et al., 2020) with backbone
model BERT (Devlin et al., 2019) and AL-
BERT (Lan et al., 2020). Following the original
paper, we consider two different settings with
various entropy or patience threshold. Specifically,
we select the threshold to keep the relative
performance drop within 2% and 4%, denoted as
PD<2% and PD<4%.

Baselines: We compare SAME to 5 recent
NLP attack approaches through adapting their at-
tacking strategy to our attacking scenario, which
includes white-box attacking approaches: Hot-
Flip (Ebrahimi et al., 2018b), TextBugger (Li
et al., 2019), A2T (Yoo and Qi, 2021); as well
as black-box ones: PWWS (Ren et al., 2019),
TextFooler (Jin et al., 2020).

Metrics: We evaluate the efficacy of attacking
methods with two metrics. As in (Zhou et al.,
2020), the first metric is the estimated speedup,
which is computed as the total number of trans-
former layers divided by number of actually com-
puted layers. Besides, we propose a second metric,
high computation ratio, which refers to the ratio of
samples with extremely high computational cost.
Specifically, we consider samples with at least 11
computed layers as high computational samples for
base-size dynamic transformers with total 12 layers,
and at lease 22 computed layers as high computa-
tional samples for large-size dynamic transformers
with total 24 layers. In all tables, we report the
speedup (left) and high computation ratio (right)
unless specified otherwise.

4.2 Main Results

The comparison of different attacking methods on
entropy-based dynamic models are shown in Ta-
ble 1, and the results on patience-based models
are listed in Table 2. Overall, we find that pre-
vious accuracy-oriented approaches cannot harm
the model efficiency much for either exiting strat-
egy, and even lead to higher speedup for some
cases, e.g., QQP, RTE. In sharp contrast, both vari-
ants of SAME can effectively reduce the speedup
from early exiting, which outperforms all previ-
ous approaches by a large margin. Specifically,
under PD<2% setting, SAME eliminates the effi-
ciency gain by 74.88% on average across GLUE
benchmark for DeeBERT series models, and 85%
for PABEE series models. Under PD<4% setting,
model’s exiting criteria are more relaxed, which
makes the slowdown more difficult. However,
SAME consistently reduces the efficiency gain by
75% for DeeBERT models, and by 82% for PABEE
models, which again convincingly demonstrates the
efficacy of SAME.

Besides, while previous works show that
patience-based approaches are more robust against
accuracy-oriented attack, we observe that both
strategies are equally vulnerable under proposed
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Method SST-2 CoLA MRPC QNLI

PD<2% PD<4% PD<2% PD<4% PD<2% PD<4% PD<2% PD<4%

DeeBERT-base 2.40x (2.87%) 3.06x (0.80%) 1.36x (8.72%) 1.40x (5.85%) 1.51x (20.34%) 1.98x (6.86%) 1.66x (27.80%) 1.83x (20.60%)

+HotFlip 1.78x (17.09%) 2.21x (7.11%) 1.25x (25.98%) 1.27x (22.72%) 1.43x (31.62%) 1.84x (12.75%) 1.54x (32.30%) 1.68x (25.20%)
+PWWS 1.94x (10.32%) 2.44x (4.01%) 1.29x (15.63%) 1.31x (12.18%) 1.31x (43.38%) 1.63x (21.32%) 1.46x (39.40%) 1.64x (29.60%)
+TextBugger 1.83x (14.11%) 2.25x (5.85%) 1.29x (18.22%) 1.31x (15.72%) 1.27x (51.96%) 1.58x (26.72%) 1.41x (44.10%) 1.52x (36.70%)
+TextFooler 1.83x (15.48%) 2.30x (5.62%) 1.29x (15.34%) 1.31x (12.94%) 1.30x (47.55%) 1.65x (18.87%) 1.41x (42.90%) 1.57x (34.40%)
+A2T 2.35x (6.77%) 3.06x (3.10%) 1.29x (22.44%) 1.32x (18.50%) 1.39x (34.31%) 1.80x (12.50%) 1.63x (27.00%) 1.80x (20.70%)

+SAME-Word 1.10x (76.72%) 1.19x (62.96%) 1.02x (94.15%) 1.02x (92.91%) 1.02x (94.61%) 1.09x (77.94%) 1.12x (81.90%) 1.18x (74.40%)
+SAME-Char 1.13x (70.87%) 1.21x (59.17%) 1.01x (96.84%) 1.01x (95.69%) 1.02x (93.14%) 1.08x (81.37%) 1.08x (88.40%) 1.11x (82.00%)

DeeRoBERTa-base 2.31x ( 0.34%) 2.74x ( 0.00%) 1.29x ( 4.60%) 1.30x ( 3.26%) 1.63x ( 0.74%) 1.86x ( 0.49%) 1.48x ( 1.30%) 1.61x ( 0.40%)

+HotFlip 2.28x (1.49%) 2.77x (0.69%) 1.19x (22.15%) 1.20x (18.31%) 1.58x (2.21%) 1.69x (1.23%) 1.45x (7.90%) 1.61x (2.30%)
+PWWS 2.13x (0.92%) 2.37x (0.34%) 1.21x (14.29%) 1.22x (10.93%) 1.52x (6.62%) 1.71x (5.39%) 1.40x (7.50%) 1.56x (2.90%)
+TextBugger 2.07x (1.95%) 2.29x (0.57%) 1.19x (19.27%) 1.20x (15.92%) 1.50x (8.33%) 1.61x (8.09%) 1.35x (13.30%) 1.50x (4.00%)
+TextFooler 2.09x (1.26%) 2.35x (0.92%) 1.21x (12.08%) 1.22x (11.22%) 1.52x (6.37%) 1.63x (8.09%) 1.36x (11.40%) 1.51x (3.70%)
+A2T 2.34x (0.80%) 2.70x (0.34%) 1.24x (13.23%) 1.25x (10.16%) 1.59x (3.43%) 1.89x (2.21%) 1.46x (5.70%) 1.63x (1.80%)

+SAME-Word 1.63x (16.74%) 1.79x (10.09%) 1.01x (95.11%) 1.01x (94.53%) 1.39x (21.57%) 1.52x (14.95%) 1.23x (31.50%) 1.30x (22.30%)
+SAME-Char 1.53x (18.12%) 1.61x (12.50%) 1.00x (98.75%) 1.00x (98.18%) 1.21x (49.02%) 1.26x (43.87%) 1.20x (39.20%) 1.24x (35.00%)

QQP RTE MNLI MNLI-mm

PD<2% PD<4% PD<2% PD<4% PD<2% PD<4% PD<2% PD<4%

DeeBERT-base 2.68x (3.60%) 3.19x (1.40%) 1.19x (61.01%) 1.71x (14.08%) 1.40x (27.80%) 1.53x (17.90%) 1.42x (25.60%) 1.54x (18.00%)

+HotFlip 2.58x (7.00%) 3.13x (2.60%) 1.21x (59.93%) 1.71x (16.61%) 1.23x (51.40%) 1.34x (37.10%) 1.25x (48.50%) 1.37x (34.20%)
+PWWS 2.77x (3.70%) 3.35x (1.50%) 1.18x (67.15%) 1.54x (31.05%) 1.22x (54.50%) 1.33x (39.10%) 1.24x (53.90%) 1.36x (37.50%)
+TextBugger 2.66x (5.40%) 3.24x (2.40%) 1.18x (66.79%) 1.56x (28.52%) 1.18x (62.70%) 1.30x (43.80%) 1.19x (59.50%) 1.32x (41.80%)
+TextFooler 2.57x (6.30%) 3.19x (2.10%) 1.18x (67.15%) 1.61x (22.74%) 1.20x (56.50%) 1.32x (38.90%) 1.20x (57.00%) 1.34x (38.50%)
+A2T 2.70x (5.20%) 3.35x (1.80%) 1.18x (65.34%) 1.66x (21.66%) 1.30x (39.90%) 1.44x (26.60%) 1.30x (39.30%) 1.43x (25.80%)

+SAME-Word 1.25x (63.10%) 1.36x (50.60%) 1.02x (97.11%) 1.08x (84.48%) 1.01x (96.50%) 1.01x (96.00%) 1.01x (97.70%) 1.02x (95.40%)
+SAME-Char 1.37x (55.70%) 1.53x (45.50%) 1.02x (96.03%) 1.07x (87.00%) 1.01x (96.90%) 1.02x (94.40%) 1.01x (95.70%) 1.02x (94.80%)

DeeRoBERTa-base 2.09x ( 2.30%) 2.35x ( 1.40%) 1.32x ( 3.97%) 1.42x ( 0.00%) 1.34x ( 0.70%) 1.37x ( 0.40%) 1.35x ( 0.40%) 1.38x ( 0.30%)

HotFlip 6.48x (1.30%) 7.78x (0.70%) 1.29x (9.39%) 1.40x (0.00%) 1.31x (5.20%) 1.35x (1.60%) 1.32x (2.80%) 1.37x (1.40%)
+PWWS 2.15x (2.80%) 2.51x (1.30%) 1.28x (12.27%) 1.38x (1.08%) 1.32x (3.90%) 1.36x (1.50%) 1.33x (3.20%) 1.37x (1.30%)
+TextBugger 2.32x (3.80%) 2.78x (1.60%) 1.26x (17.69%) 1.39x (0.00%) 1.31x (6.30%) 1.36x (2.60%) 1.32x (5.20%) 1.37x (2.30%)
+TextFooler 2.08x (5.00%) 2.44x (3.30%) 1.26x (17.69%) 1.38x (0.72%) 1.30x (4.70%) 1.35x (1.90%) 1.31x (4.20%) 1.36x (2.00%)
+A2T 2.15x (6.50%) 2.52x (3.40%) 1.29x (10.47%) 1.41x (0.00%) 1.33x (3.40%) 1.37x (1.70%) 1.33x (2.90%) 1.38x (1.00%)

+SAME-Word 1.33x (52.90%) 1.43x (47.50%) 1.14x (49.82%) 1.28x (15.88%) 1.17x (39.80%) 1.19x (34.20%) 1.17x (40.00%) 1.21x (28.80%)
+SAME-Char 1.34x (55.50%) 1.47x (47.30%) 1.07x (73.29%) 1.22x (26.35%) 1.12x (56.10%) 1.15x (46.10%) 1.13x (52.30%) 1.17x (42.10%)

Table 1: Comparison of various attacking methods on entropy-based dynamic models. Attacking methods with
lowest speedup are bold.

efficiency attack. In addition, these two strategies
have different level of vulnerability to different
permutation. Entropy-based models are more vul-
nerable to character-level permutation. On the con-
trary, word-level permutation performs better on
patience-based models. We hypothesize that the
discrepancy between two exiting strategies lead to
this phenomena. To slowdown patience-based mod-
els, ones need to break the consistency between
predictions from internal classifiers, which might
be difficult to achieve with character-level permu-
tation. The results suggest that further combining
multiple level of permutetation methods would lead
to a more universal attacking framework that are
applicable to wide range of dynamic models.

Finally, we find that the quality of backbone lan-
guage model has large impact on the efficiency ro-
bustness of dynamic transformers. For instance,
compared to BERT, RoBERTa is trained with
larger corpus with longer time, which makes DeeR-
oBERTa much more robust than DeeBERT models.

4.3 Accuracy & Efficiency

Since another important adversarial goal is mis-
classification, we further investigate the trade-off
between accuracy and efficiency drop during attack-
ing. Table 3 summarizes the results on SST-2 and
MNLI-mm. In addition to efficiency drop, SAME
can also considerably lead to misclassification. As
the goal function of SAME doesn’t consider the ac-
curacy metric, we further propose SAME+, which
adopts a multi-objective goal function:

ExitF (x+ δ) + σ × 1(F(x+ δ) ̸= ytrue), (8)

where ytrue is the ground truth label, 1(·) is the in-
dicator function, and σ is the weight that balances
the importance of accuracy and efficiency. As we
focus on efficiency robustness in this work, we set
σ to 0.5. Therefore, SAME+ is expected to pro-
duce adversarial samples with a similar efficiency
drop level as SAME but leads to an additional ac-
curacy drop. As shown in Table 3, the average
accuracy score can be further reduced by 42.26%
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Method SST-2 CoLA MRPC QNLI

PD<2% PD<4% PD<2% PD<4% PD<2% PD<4% PD<2% PD<4%

PABEE-ALBERT-base 2.67x (0.00%) 3.56x (0.00%) 1.63x (9.11%) 1.91x (3.45%) 2.03x (1.47%) 3.45x (0.00%) 1.97x (3.00%) 2.41x (1.20%)

+HotFlip 2.46x (1.38%) 3.30x (0.11%) 1.40x (17.26%) 1.62x (7.86%) 1.78x (7.60%) 3.07x (0.25%) 1.83x (9.20%) 2.27x (3.10%)
+PWWS 2.23x (2.41%) 3.01x (0.23%) 1.40x (11.60%) 1.60x (4.12%) 1.53x (13.48%) 2.57x (0.49%) 1.63x (15.00%) 2.04x (4.50%)
+TextBugger 2.20x (2.06%) 2.97x (0.11%) 1.41x (11.12%) 1.60x (3.74%) 1.46x (16.42%) 2.35x (0.49%) 1.48x (22.30%) 1.83x (9.20%)
+TextFooler 2.12x (2.64%) 2.96x (0.34%) 1.41x (11.12%) 1.60x (3.93%) 1.47x (19.12%) 2.53x (0.98%) 1.47x (25.80%) 1.85x (10.30%)
+A2T 2.56x (1.03%) 3.51x (0.00%) 1.43x (15.72%) 1.67x (5.18%) 1.80x (9.31%) 3.13x (0.00%) 1.88x (7.70%) 2.33x (2.90%)

+SAME-Word 1.26x (53.10%) 1.68x (17.20%) 1.05x (84.47%) 1.06x (84.95%) 1.10x (73.28%) 1.32x (41.67%) 1.28x (50.60%) 1.41x (40.90%)
+SAME-Char 1.37x (42.66%) 1.77x (14.22%) 1.01x (97.99%) 1.01x (95.49%) 1.11x (75.25%) 1.38x (40.93%) 1.30x (49.80%) 1.42x (41.80%)

PABEE-BERT-base 1.66x (9.52%) 1.98x (2.41%) 1.19x (35.57%) 1.19x (35.57%) 1.66x (9.56%) 2.01x (2.45%) 1.58x (11.00%) 1.84x (4.70%)

+HotFlip 1.49x (22.13%) 1.80x (5.50%) 1.05x (80.44%) 1.05x (80.44%) 1.47x (17.40%) 1.79x (1.96%) 1.44x (20.90%) 1.68x (11.40%)
+PWWS 1.41x (28.44%) 1.66x (10.44%) 1.04x (83.70%) 1.04x (83.70%) 1.28x (24.02%) 1.50x (4.41%) 1.33x (32.10%) 1.53x (17.80%)
+TextBugger 1.37x (32.11%) 1.62x (13.53%) 1.04x (86.39%) 1.04x (86.39%) 1.25x (30.64%) 1.46x (10.29%) 1.25x (44.00%) 1.45x (25.00%)
+TextFooler 1.37x (32.11%) 1.63x (11.12%) 1.05x (82.07%) 1.05x (82.07%) 1.26x (28.19%) 1.48x (6.62%) 1.26x (41.70%) 1.45x (21.10%)
+A2T 1.62x (12.39%) 2.00x (2.98%) 1.07x (72.20%) 1.07x (72.20%) 1.37x (21.32%) 1.66x (3.43%) 1.53x (15.00%) 1.78x (7.60%)

+SAME-Word 1.05x (88.19%) 1.08x (82.11%) 1.00x (100.00%) 1.00x (100.00%) 1.04x (86.76%) 1.10x (69.85%) 1.10x (76.00%) 1.16x (62.70%)
+SAME-Char 1.14x (69.95%) 1.21x (61.24%) 1.00x (99.90%) 1.00x (99.90%) 1.05x (85.78%) 1.13x (67.16%) 1.15x (63.80%) 1.23x (54.20%)

QQP RTE MNLI MNLI-mm

PD<2% PD<4% PD<2% PD<4% PD<2% PD<4% PD<2% PD<4%

PABEE-ALBERT-base 2.58x (0.50%) 3.40x (0.00%) 1.57x (11.55%) 1.85x (5.05%) 1.86x (4.70%) 2.28x (1.40%) 2.29x (1.60%) 2.29x (1.60%)

+HotFlip 2.25x (0.30%) 3.02x (0.00%) 1.46x (20.94%) 1.74x (9.75%) 1.62x (13.30%) 1.99x (4.50%) 2.02x (5.10%) 2.02x (5.10%)
+PWWS 2.34x (1.50%) 3.15x (0.00%) 1.41x (20.58%) 1.61x (11.91%) 1.50x (15.40%) 1.83x (6.20%) 1.81x (5.80%) 1.81x (5.80%)
+TextBugger 2.18x (2.30%) 2.88x (0.10%) 1.37x (26.35%) 1.60x (12.27%) 1.45x (20.20%) 1.75x (8.90%) 1.74x (8.20%) 1.74x (8.20%)
+TextFooler 2.19x (2.20%) 2.93x (0.50%) 1.37x (28.88%) 1.62x (11.19%) 1.41x (26.00%) 1.72x (11.00%) 1.75x (11.00%) 1.75x (11.00%)
+A2T 2.44x (1.10%) 3.29x (0.20%) 1.45x (22.74%) 1.71x (11.91%) 1.67x (14.90%) 2.06x (5.90%) 2.10x (5.50%) 2.10x (5.50%)

+SAME-Word 1.39x (48.70%) 1.65x (27.10%) 1.13x (67.15%) 1.20x (59.93%) 1.06x (85.10%) 1.11x (77.30%) 1.08x (82.20%) 1.08x (82.20%)
+SAME-Char 1.44x (47.90%) 1.71x (27.20%) 1.09x (76.90%) 1.13x (69.68%) 1.06x (86.10%) 1.10x (79.70%) 1.11x (80.40%) 1.11x (80.40%)

PABEE-BERT-base 2.60x (0.40%) 3.45x (0.10%) 1.21x (55.23%) 1.34x (33.21%) 1.50x (16.10%) 1.76x (7.50%) 1.35x (23.30%) 1.75x (6.10%)

+HotFlip 2.45x (1.10%) 3.29x (0.10%) 1.28x (37.91%) 1.42x (28.16%) 1.36x (31.30%) 1.60x (13.90%) 1.24x (42.00%) 1.61x (15.30%)
+PWWS 2.31x (2.30%) 3.07x (0.00%) 1.26x (44.77%) 1.36x (40.43%) 1.28x (40.40%) 1.49x (18.30%) 1.17x (53.20%) 1.50x (16.00%)
+TextBugger 2.21x (2.80%) 2.78x (1.00%) 1.21x (53.79%) 1.34x (39.35%) 1.27x (42.60%) 1.45x (22.00%) 1.15x (57.00%) 1.44x (23.50%)
+TextFooler 2.16x (3.70%) 2.91x (0.30%) 1.27x (44.40%) 1.43x (31.05%) 1.22x (52.50%) 1.44x (23.10%) 1.13x (63.50%) 1.42x (26.20%)
+A2T 2.54x (0.90%) 3.47x (0.10%) 1.29x (40.43%) 1.45x (27.80%) 1.41x (29.00%) 1.66x (13.20%) 1.25x (41.60%) 1.63x (15.00%)

+SAME-Word 1.35x (49.60%) 1.62x (24.90%) 1.09x (75.45%) 1.14x (71.12%) 1.01x (96.20%) 1.03x (93.00%) 1.01x (97.80%) 1.03x (92.70%)
+SAME-Char 1.58x (32.90%) 1.95x (11.20%) 1.08x (74.01%) 1.11x (71.84%) 1.03x (91.80%) 1.06x (85.90%) 1.02x (93.50%) 1.06x (86.70%)

Table 2: Comparison of various attacking methods on patience-based dynamic models. Since patience threshold is a
discrete number, some entries share the same value, e.g., PD<2% and PD<4% for PABEE-BERT on CoLA.

for SAME-word and 37.47% for SAME-char with-
out any increase in efficiency. In addition, previous
work shows that patience-based methods are more
robust against accuracy-oriented adversarial attack,
compared to entropy/confidence-based ones (Zhou
et al., 2020). However, we observe that SAME
leads to similar accuracy drop for patience-based
and entropy-based dynamic models. The robust-
ness of patience-based methods come from internal
classifier ensemble. Yet, proposed heuristic loss
in SAME makes these internal classifiers hard to
reach an agreement. Then, the victim model will
directly obtain prediction from the last classifier
for large proportion of inputs, which actually fails
the mechanism of internal classifier ensemble. The
empirical results suggest that it’s possible to craft
adversarial samples with low accuracy and effi-
ciency.

4.4 Attacking Transferability

In this section, we examine whether adversarial
samples from SAME are transferable between vari-
ous architectures. We study two settings: (i) Cross

Method SST-2 MNLI-mm

DeeBERT PABEE-BERT DeeBERT PABEE-BERT

DeeBERT-base 89.91 (2.40x) 90.83 (1.66x) 85.40 (1.42x) 82.40 (1.35x)

+SAME-Word 63.53 (1.10x) 64.22 (1.05x) 53.00 (1.01x) 58.40 (1.01x)
+SAME-Char 71.22 (1.13x) 73.85 (1.14x) 59.50 (1.01x) 61.20 (1.02x)

+SAME-Word+ 24.08 (1.10x) 20.07 (1.05x) 7.60 (1.01x) 4.60 (1.00x)
+SAME-Char+ 40.37 (1.14x) 45.41 (1.14x) 13.90 (1.02x) 16.20 (1.02x)

Table 3: Comparison of SAME with(out) accuracy
multi-goal function: each entry gives accuracy (left)
and speedup (right).

backbone: we assume the source model and tar-
get model share the same early exiting strategy but
with different backbone models. (ii) Cross mecha-
nism: we assume that the source and target model
have different early exiting strategies.

Table 4 summarizes the results on SST-2 and
MNLI datasets. Overall, the adversarial samples
are transferable between different models, and sev-
eral critical factors determine the transferability.
The first one is the exiting strategy. We find that
samples are more transferable between models shar-
ing the same exiting strategy, e.g., from PABEE-
ALBERT-base to PABEE-BERT-base. The second
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factor is the backbone model. If the source and tar-
get model have the same backbone language model
or share the same tokenizer, e.g., DeeBERT-base
and DeeBERT-large, the transferred samples will
cause more slowdown. In addition, we find that
entropy-based models are more vulnerable to trans-
ferred attacks compared to patience-based models.
Interestingly, we again observe that character-level
attack is more transferable to the entropy-based
model. while the word-level attack is more trans-
ferable to the patience-based model, which is con-
sistent with our findings from Section 4.2.

Source model SST-2 MNLI

Char Word Char Word

DeeBERT-base

DeeBERT-large 49.51% 33.98% 52.83% 41.51%
DeeRoBERTa-base 35.92% 17.96% 37.74% 29.59%
PABEE-ALBERT-base 37.86% 10.19% 45.28% 37.74%
PABEE-BERT-base 50.49% 27.67% 54.72% 45.28%

PABEE-BERT-base

PABEE-ALBERT-base 17.35% 23.47% 28.95% 30.26%
PABEE-BERT-large 28.57% 35.71% 32.89% 32.89%
DeeBERT-base 31.63% 38.78% 27.63% 34.21%
DeeRoBERTa-base 12.24% 19.39% 15.78% 17.11%

Table 4: Transferability results: the first block shows
the results with DeeBERT as the target model, and the
second block uses PABEE-BERT as the target model.
Each row refers to a different source model. Char and
Word refer to varients of SAME. Each entry denotes the
efficiency gain decrease ratio.

4.5 Adversarial Training
We further explore whether this new efficiency
threat can be successfully defended through ad-
versarial training. Specifically, given a victim
model. we first generate an adversarial sample us-
ing SAME or other adversarial approaches for each
sample from the training set. Then, we equally
mix the clean and adversarial samples to retrain
a new model. Finally, we attack the adversar-
ial trained models again with SAME. We adjust
the entropy/patience of adversarial trained models
to have the same speedup as the original victim
model. Table 5 shows the results. Overall, the ef-
ficiency robustness of dynamic transformers can
be improved through adversarial training (1.18x
to 1.58x on average using TextFooler), Yet, there
still exists a drastic speedup loss (2.25x to 1.58x).
Compared to accuracy-oriented adversarial data,
data from SAME provide more robustness benefi-
cial against attack, which validates the potential of
using SAME to enhance the robustness of current

dynamic transformers.

Method MRPC RTE

DeeBERT PABEE-ALBERT DeeBERT PABEE-ALBERT

Clean 1.98x ( 6.86%) 3.45x ( 0.00%) 1.71x ( 14.08%) 1.85x ( 5.05%)

w/o AdvTrain 1.09x (77.94%) 1.32x (41.67%) 1.08x (84.48%) 1.20x (59.93%)
TextFooler 1.39x (45.83%) 2.30x (5.88%) 1.26x (37.55%) 1.37x (34.66%)
PWWS 1.32x (38.73%) 1.87x (8.09%) 1.09x (77.98%) 1.41x (23.10%)
SAME 1.36x (34.80%) 3.20x (0.74%) 1.22x (57.40%) 1.34x (39.71%)

Table 5: Efficiency of models trained with various ad-
versarial augmented data. Each row refers to a model
trained with different adversarial data.

4.6 Discussion
Impact of Model Scale: Since attacking ap-
proaches is required to slowdown the victim models
by more layers to achieve the same slowdown ratio,
we further investigate the impact of victim model
scale on the attacking performance. Experimental
results using 24-layer BERT-large model on SST-2
and MNLI are shown in Table 6. Due to space lim-
itation, more results can be found in Appendix B.
Accuracy-oriented methods can still hardly reduce
the inference efficiency. Yet, our proposed SAME
effectively reduce the speedup ratio by 89%, which
is comparable to 93% on base-size models.

Method SST-2 MNLI

DeeBERT PABEE-BERT DeeBERT PABEE-BERT

w/o AdvTrain 2.06x (2.06%) 2.91x (0.57%) 1.57x (1.50%) 1.56x (15.20%)

+HotFlip 1.74x (12.73%) 2.53x (1.72%) 1.45x (7.10%) 1.40x (29.70%)
+PWWS 1.91x (7.11%) 2.38x (2.41%) 1.45x (4.00%) 1.26x (44.80%)
+TextBugger 1.87x (6.88%) 2.35x (1.95%) 1.43x (6.90%) 1.23x (50.00%)
+TextFooler 1.92x (8.37%) 2.32x (1.95%) 1.43x (8.40%) 1.23x (49.40%)
+A2T 2.18x (4.93%) 2.79x (1.03%) 1.51x (6.20%) 1.42x (29.50%)

+SAME 1.11x (65.71%) 1.22x (58.49%) 1.05x (81.90%) 1.04x (89.50%)

Table 6: Attacking results on large dynamic transform-
ers with 24 transformer layers.

Impact of modification rate: In our main re-
sults, we set the allowable modification rate ϵ as
10% of the input words. We further investigate
whether SAME can reduce the inference efficiency
under lower modification rate (imperceptible at-
tack). The experiment results across GLUE bench-
mark on DeeBERT-base and PABEE-BERT-base
under are summarized in Table 7. Even constrained
with a very low modification rate, e.g., 3%, both
variants of SAME can still significantly reduce the
model’s efficiency. In addition, with increasing
modification rate, SAME leads to higher reduction
in efficiency.

Ablation Study: To understand the inner mech-
anism of SAME, we conduct ablation studies on
each component. As shown in Table 8, solely using
heuristic loss can already lead to significant effi-
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ϵ DeeBERT PABEE-BERT

Word Char Word Char

PD<2% PD<4% PD<2% PD<4% PD<2% PD<4% PD<2% PD<4%

3% 70.46 67.84 70.64 68.33 69.68 66.26 60.63 58.61
5% 83.81 80.70 82.56 81.67 81.05 76.78 71.79 70.22
7% 85.41 83.50 84.52 83.37 82.53 79.78 73.68 71.04
10% 90.21 88.47 88.43 87.26 86.32 84.15 77.89 76.09

Table 7: Average efficiency reduction ratio on GLUE
benchmark under various modification rate ϵ.

ciency drop. In addition, using loss combination,
and adding layer-wise importance weights can both
further increase the high computation ratio. Finally,
SAME utilizes all the sub-components, which leads
to the lowest inference efficiency.

QNLI SST-2

PABEE-BERT-base 1.58x (11.00%) 1.98x (2.41%)

+Heuristic loss 1.11x (72.20%) 1.15x (71.90%)
+Combined loss 1.11x (73.70%) 1.14x (72.94%)
+Layer weight 1.10x (74.70%) 1.11x (77.87%)
+SAME 1.10x (76.00%) 1.08x (82.11%)

Table 8: Ablation studies on layer-wise importance
weighting and loss combintation.

Semantic Similarity: While we constrain the
modification rate in our experiments to keep the
semantic meaning consistent, the semantic simi-
larity between benign and adversarial examples
is not explicitly constrained. Therefore, we fur-
ther investigate the sentence semantic similarity
between original and adversarial examples on SST-
2 dataset. Specifically, We first obtain the sen-
tence representations of adversarial and original
sample with a state-of-the-art ST5-large embed-
ding model (Ni et al., 2022), and then compute
their pairwise cosine similarity. With DeeBERT-
base and PABEE-BERT-base as the victim model,
the SAME-word has an average cosine similarity
of 0.89, and SAME-char has an average cosine sim-
ilarity 0.96. The results suggest that both variants
of SAME can well preserve the inputs’ semantic
meaning, at the same time, reduce the efficiency of
dynamic transformers.

Visualization: To illustrate the impact of
efficiency-based v.s. correctness-based adversarial
perturbations, We present a case study of adversar-
ial samples produced from SST-2 dataset in Table 9.
For better explainability, we show examples with
one-word only modification. Due to space limi-
tations, more adversarial samples generated using
SAME can be found in Appendix C.

As shown in Table 9, our efficiency-based
method will perturb the word but to bujt, thereby

altering the explicit turning relationship between
two sentences. While humans can make the correct
prediction even without the word but, it can be chal-
lenging for dynamic transformers to infer the turn-
ing relationship in the early stage. Therefore, they
fail to satisfy the exiting conditions, resulting in re-
duced inference efficiency. In contrast, correctness-
based approaches will keep the transition word and
adversarially modify the word deeper, e.g., to de-
per with TextBugger. With the transition word
but, the model will emphasize more on the latter
sentence, and easily get a high model confidence.

[Clean input] the film may appear naked in its narrative
form ... but it goes deeper than that , to fundamental
choices that include the complexity of the catholic doctrine.

[TextBugger] the film may appear naked in its narrative
form ... but it goes deper than that , to fundamental choices
that include the complexity of the catholic doctrine.
[TextFooler] the film may appear naked in its narrative
form ... but it goes more than that , to fundamental choices
that include the complexity of the catholic doctrine.

[SAME] the film may appear naked in its narrative form ...
bujt it goes deeper than that , to fundamental choices that
include the complexity of the catholic doctrine.

Table 9: Comparison of adversarial samples pro-
duced by accuracy-oriented approaches and our
energy-oriented approaches from SST-2.

5 Conclusion and Future Works

In this paper, we systematically evaluate the effi-
ciency robustness of dynamic transformers. We
also propose SAME, a novel white-box slowdown
attack framework that effectively degrade the effi-
cient performance of dynamic multi-exit language
models. Specifically, SAME generates adversar-
ial examples that could delay the exit of dynamic
multi-exit language models with the guidance of
heuristic and mess loss. Extensive experimental
demonstrate the superior effectiveness of SAME
across various dynamic multi-exit language models.
Future works include the development of efficient
robust dynamic transformers and the extension to
other NLP models with dynamic inference time.

Limitations

Firstly, our proposed SAME is for the white-box
attacking scenario only, which is less practical in
real-world scenarios. However, experimental re-
sults on black-box transferability show that a black-
box efficiency-oriented attack is highly feasible.
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Therefore, we leave the black box SAME as a fu-
ture study.

Secondly, we mainly study multi-exit transform-
ers for sentence classification tasks in this work.
We notice that several recent works extend the idea
of multi-exiting to other NLP tasks, e.g., sequence
labelling (Li et al., 2021), text generation (Schuster
et al., 2022). For classification tasks, SAME slow-
downs the models by avoiding early exiting. While
for text generation tasks, in addition to avoiding
early exiting, ones can also slow down the model
by forcing the model to produce a longer sequence.
We leave the exploration of other dynamic models
to future work.

Thirdly, as the first work that evaluates the ef-
ficiency robustness of dynamic transformers. we
use a relatively simple permutation strategy. Al-
though these permutations can lead to severe per-
formance degradation, they might not be impercep-
tible enough. Yet, they could be easily replaced
by other sophisticated permutations under SAME
framework.

Ethics Statement

We propose a slowdown attack against dynamic
transformers on GLUE benchmark datasets in this
work. We aim to study the efficiency robustness of
dynamic transformers and provide insight to inspire
future works on robust dynamic transformers.

Our proposed framework may be used to attack
online NLP services deployed with dynamic mod-
els. However, we believe that exploring this new
type of vulnerability and robustness of efficiency is
more important than the above risks. Research
studying effective adversarial attacks will moti-
vate improvements to the system security to defend
against the attacks.
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A Experiment Setup

We conduct our experiments on 8 tasks from
GLUE, including CoLA (Warstadt et al., 2019),
SST-2 (Socher et al., 2013), MNLI(-mm) (Williams
et al., 2018), QNLI (Rajpurkar et al., 2016), QQP2,
RTE (Wang et al., 2018), MRPC (Dolan and Brock-
ett, 2005). For large datasets, i.e., QNLI, QQP,
MNLI(-mm), we randomly sample 1000 samples
from validation set for attacking experiments. For
the rest, we use the whole validation set. For all
dynamic victim models, We train the model with
publicly available code from huggingface trans-
formers3 with the default hyper-parameter (search).
We use the implementation from TextAttack (Mor-
ris et al., 2020) for baselines. For SAME, we gener-
ate 100 mutant candidates for each iteration. All of
our experiments are conducted on a Ubuntu 20.04
server with 8 RTX A5000 GPUs. One attacking
experiment on BERT-base takes around 1.5 GPU
hours.

B Results on Large Dynamic Language
Models

We further conduct the experiments on large
dynamic transformers with backbone model
RoBERTa-large, ALBERT-large, and BERT-large.
Table 10 gives the results. Overall. our proposed
SAME outperforms previous approaches by a large
margin across various models and tasks.

2quoradata.quora.com/
First-Quora-Dataset-Release-Question-Pairs

3github.com/huggingface/transformers/tree/
main/examples/research_projects/
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Method SST-2 CoLA MRPC QNLI

PD<2% PD<4% PD<2% PD<4% PD<2% PD<4% PD<2% PD<4%

PABEE-ALBERT-large 3.48x (0.11%) 5.14x (0.00%) 2.68x (0.10%) 2.68x (0.10%) 3.26x (0.00%) 3.88x (0.00%) 2.80x (0.20%) 3.80x (0.00%)

+HotFlip 3.15x (0.23%) 4.81x (0.00%) 2.11x (1.53%) 2.11x (1.53%) 3.08x (0.00%) 3.76x (0.00%) 2.49x (1.50%) 3.48x (0.00%)
+PWWS 2.76x (0.23%) 4.23x (0.11%) 2.18x (0.58%) 2.18x (0.58%) 2.53x (0.49%) 3.14x (0.25%) 2.22x (1.90%) 3.14x (0.00%)
+TextBugger 2.52x (0.69%) 3.98x (0.00%) 2.13x (0.67%) 2.13x (0.67%) 2.28x (0.74%) 2.74x (0.00%) 1.99x (3.50%) 2.79x (0.30%)
+TextFooler 2.57x (1.03%) 4.05x (0.00%) 2.19x (0.48%) 2.19x (0.48%) 2.42x (0.49%) 2.90x (0.25%) 1.95x (5.20%) 2.86x (0.20%)
+A2T 3.26x (0.46%) 5.10x (0.00%) 2.23x (0.96%) 2.23x (0.96%) 3.10x (0.25%) 3.76x (0.00%) 2.63x (1.30%) 3.72x (0.00%)

+SAME-Word 1.53x (28.33%) 2.42x (1.15%) 1.25x (45.45%) 1.25x (45.45%) 1.71x (19.12%) 1.98x (8.82%) 1.52x (34.80%) 2.05x (12.70%)
+SAME-Char 1.52x (30.05%) 2.50x (0.92%) 1.07x (77.76%) 1.07x (77.76%) 1.50x (31.86%) 1.76x (11.52%) 1.54x (33.20%) 1.90x (17.70%)

PABEE-BERT-large 2.29x (2.06%) 2.91x (0.57%) 1.24x (33.37%) 1.24x (33.37%) 1.35x (30.39%) 1.64x (13.24%) 2.31x (1.40%) 1.73x (6.90%)

+HotFlip 2.00x (6.65%) 2.53x (1.72%) 1.07x (77.56%) 1.07x (77.56%) 1.29x (37.75%) 1.58x (16.67%) 2.14x (4.10%) 1.60x (15.40%)
+PWWS 1.93x (8.03%) 2.38x (2.41%) 1.05x (84.56%) 1.05x (84.56%) 1.11x (73.28%) 1.37x (33.09%) 1.83x (8.30%) 1.44x (21.00%)
+TextBugger 1.90x (9.40%) 2.35x (1.95%) 1.04x (87.25%) 1.04x (87.25%) 1.09x (76.72%) 1.27x (39.22%) 1.75x (11.10%) 1.37x (27.90%)
+TextFooler 1.84x (9.98%) 2.32x (1.95%) 1.05x (82.74%) 1.05x (82.74%) 1.09x (75.98%) 1.32x (31.86%) 1.76x (9.90%) 1.35x (29.10%)
+A2T 2.19x (3.78%) 2.79x (1.03%) 1.10x (69.70%) 1.10x (69.70%) 1.27x (41.91%) 1.53x (17.40%) 2.28x (3.50%) 1.69x (11.90%)

+SAME-Word 1.13x (77.87%) 1.22x (58.49%) 1.00x (100.00%) 1.00x (100.00%) 1.04x (88.48%) 1.07x (85.29%) 1.19x (61.50%) 1.09x (77.90%)
+SAME-Char 1.25x (60.55%) 1.40x (42.78%) 1.00x (99.90%) 1.00x (99.90%) 1.02x (93.38%) 1.02x (93.63%) 1.24x (56.30%) 1.12x (72.10%)

DeeBERT-large 1.78x ( 4.70%) 2.06x ( 2.06%) 1.47x ( 1.05%) 1.50x ( 0.77%) 1.68x ( 0.49%) 1.99x ( 0.49%) 1.62x ( 2.80%) 1.80x ( 1.50%)

+HotFlip 1.51x (20.76%) 1.74x (12.73%) 1.37x (5.85%) 1.40x (4.60%) 1.65x (4.41%) 1.93x (2.70%) 1.53x (10.50%) 1.76x (4.20%)
+PWWS 1.66x (12.27%) 1.91x (7.11%) 1.39x (2.59%) 1.41x (2.30%) 1.58x (6.86%) 1.77x (5.15%) 1.56x (7.80%) 1.73x (3.30%)
+TextBugger 1.62x (14.11%) 1.87x (6.88%) 1.38x (2.78%) 1.40x (2.40%) 1.50x (8.09%) 1.67x (4.66%) 1.51x (10.50%) 1.68x (4.30%)
+TextFooler 1.61x (15.37%) 1.92x (8.37%) 1.40x (2.11%) 1.41x (1.63%) 1.51x (12.25%) 1.74x (4.66%) 1.52x (9.60%) 1.67x (5.30%)
+A2T 1.82x (9.52%) 2.18x (4.93%) 1.43x (2.68%) 1.45x (1.63%) 1.65x (6.37%) 1.92x (1.47%) 1.61x (6.20%) 1.81x (2.40%)

+SAME-Word 1.08x (73.17%) 1.11x (65.71%) 1.03x (86.48%) 1.04x (82.93%) 1.12x (70.59%) 1.19x (57.84%) 1.20x (39.60%) 1.26x (30.90%)
+SAME-Char 1.10x (65.71%) 1.14x (60.09%) 1.01x (94.44%) 1.02x (90.80%) 1.07x (79.17%) 1.09x (75.49%) 1.16x (45.80%) 1.20x (40.20%)

DeeRoBERTa-large 1.75x ( 0.92%) 1.93x ( 0.23%) 1.46x ( 1.82%) 1.57x ( 0.38%) 1.73x ( 0.49%) 2.03x ( 0.25%) 1.89x ( 0.50%) 2.05x ( 0.00%)

+HotFlip 1.69x (5.62%) 2.08x (2.64%) 1.38x (10.35%) 1.45x (3.36%) 1.66x (1.47%) 1.98x (0.49%) 1.78x (3.20%) 1.99x (1.00%)
+PWWS 1.64x (5.96%) 1.81x (2.87%) 1.44x (4.31%) 1.47x (1.73%) 1.59x (3.43%) 1.93x (0.25%) 1.82x (1.60%) 2.00x (0.20%)
+TextBugger 1.62x (6.08%) 1.76x (3.44%) 1.42x (6.04%) 1.47x (2.21%) 1.56x (2.94%) 1.91x (0.49%) 1.77x (2.70%) 1.94x (0.40%)
+TextFooler 1.60x (7.22%) 1.73x (3.78%) 1.44x (4.51%) 1.47x (1.53%) 1.57x (4.17%) 1.82x (1.23%) 1.72x (5.20%) 1.94x (0.90%)
+A2T 1.74x (2.98%) 1.94x (1.26%) 1.42x (6.42%) 1.50x (2.30%) 1.71x (1.47%) 2.04x (0.74%) 1.86x (2.60%) 2.05x (0.40%)

+SAME-Word 1.37x (20.41%) 1.44x (16.06%) 1.01x (95.97%) 1.02x (91.18%) 1.53x (11.03%) 1.70x (6.13%) 1.45x (23.80%) 1.60x (11.70%)
+SAME-Char 1.27x (31.88%) 1.35x (23.51%) 1.00x (98.95%) 1.00x (98.47%) 1.30x (36.27%) 1.45x (22.55%) 1.35x (35.90%) 1.53x (17.50%)

QQP RTE MNLI MNLI-mm

PD<2% PD<4% PD<2% PD<4% PD<2% PD<4% PD<2% PD<4%

PABEE-ALBERT-large 5.06x (0.00%) 6.79x (0.00%) 1.56x (7.22%) 1.29x (20.94%) 2.48x (0.50%) 3.36x (0.20%) 2.52x (0.80%) 2.91x (0.30%)

+HotFlip 4.59x (0.00%) 6.02x (0.00%) 1.55x (13.36%) 1.28x (31.41%) 2.17x (2.60%) 3.05x (0.50%) 2.18x (1.90%) 2.60x (0.70%)
+PWWS 4.50x (0.00%) 6.07x (0.00%) 1.43x (20.94%) 1.23x (40.79%) 1.94x (2.70%) 2.65x (0.40%) 1.95x (2.50%) 2.26x (1.60%)
+TextBugger 4.21x (0.00%) 5.81x (0.00%) 1.42x (20.94%) 1.22x (43.32%) 1.80x (5.60%) 2.57x (0.60%) 1.82x (6.10%) 2.15x (1.60%)
+TextFooler 4.36x (0.00%) 6.00x (0.00%) 1.39x (25.27%) 1.21x (46.21%) 1.80x (7.30%) 2.60x (0.70%) 1.82x (6.60%) 2.11x (3.10%)
+A2T 4.82x (0.00%) 6.70x (0.00%) 1.54x (13.72%) 1.26x (35.02%) 2.25x (3.10%) 3.19x (0.50%) 2.24x (3.40%) 2.57x (1.60%)

+SAME-Word 2.42x (1.00%) 3.25x (0.10%) 1.20x (53.43%) 1.11x (65.34%) 1.14x (72.20%) 1.33x (46.00%) 1.13x (74.70%) 1.21x (61.90%)
+SAME-Char 2.43x (1.60%) 3.28x (0.00%) 1.12x (70.04%) 1.07x (74.73%) 1.12x (75.80%) 1.24x (53.10%) 1.12x (76.60%) 1.14x (71.00%)

PABEE-BERT-large 2.55x (0.90%) 3.43x (0.10%) 1.63x (4.33%) 1.85x (1.44%) 1.81x (9.10%) 1.56x (15.20%) 1.80x (9.40%) 1.54x (17.10%)

+HotFlip 2.27x (1.90%) 2.97x (0.50%) 1.57x (7.58%) 1.84x (2.53%) 1.61x (17.20%) 1.40x (29.70%) 1.65x (16.90%) 1.42x (28.50%)
+PWWS 2.17x (2.80%) 2.89x (0.20%) 1.50x (6.14%) 1.67x (3.25%) 1.42x (29.20%) 1.26x (44.80%) 1.44x (27.20%) 1.27x (43.90%)
+TextBugger 2.04x (5.40%) 2.79x (0.30%) 1.49x (6.50%) 1.72x (3.97%) 1.40x (32.70%) 1.23x (50.00%) 1.38x (35.50%) 1.23x (51.50%)
+TextFooler 2.03x (6.50%) 2.80x (0.60%) 1.48x (7.22%) 1.65x (4.69%) 1.40x (32.20%) 1.23x (49.40%) 1.40x (33.30%) 1.23x (50.70%)
+A2T 2.38x (2.50%) 3.19x (0.40%) 1.62x (7.58%) 1.84x (3.97%) 1.68x (17.80%) 1.42x (29.50%) 1.66x (17.40%) 1.43x (28.80%)

+SAME-Word 1.42x (48.30%) 1.66x (30.70%) 1.14x (56.68%) 1.22x (42.96%) 1.06x (87.30%) 1.04x (89.50%) 1.05x (90.00%) 1.04x (90.50%)
+SAME-Char 1.43x (50.20%) 1.73x (22.00%) 1.08x (70.04%) 1.16x (58.84%) 1.05x (90.00%) 1.03x (92.20%) 1.04x (90.50%) 1.02x (94.30%)

DeeBERT-large 2.08x ( 3.30%) 2.35x ( 1.60%) 1.71x ( 1.81%) 1.78x ( 1.08%) 1.47x ( 4.20%) 1.57x ( 1.50%) 1.50x ( 3.50%) 1.59x ( 1.10%)

+HotFlip 1.98x (7.80%) 2.27x (3.70%) 1.73x (2.89%) 1.78x (1.81%) 1.35x (14.20%) 1.45x (7.10%) 1.37x (12.60%) 1.47x (5.30%)
+PWWS 2.16x (3.40%) 2.45x (1.40%) 1.76x (1.08%) 1.79x (0.36%) 1.35x (9.50%) 1.45x (4.00%) 1.36x (8.60%) 1.47x (2.30%)
+TextBugger 2.26x (3.70%) 2.64x (1.80%) 1.73x (5.42%) 1.81x (1.81%) 1.31x (14.80%) 1.43x (6.90%) 1.32x (14.60%) 1.44x (5.60%)
+TextFooler 2.17x (6.00%) 2.50x (2.10%) 1.71x (3.97%) 1.78x (2.53%) 1.31x (17.70%) 1.43x (8.40%) 1.33x (16.50%) 1.44x (6.10%)
+A2T 2.18x (5.70%) 2.49x (1.60%) 1.73x (4.69%) 1.80x (2.53%) 1.39x (13.50%) 1.51x (6.20%) 1.41x (12.00%) 1.51x (5.20%)

+SAME-Word 1.29x (52.10%) 1.37x (45.10%) 1.17x (55.96%) 1.22x (49.10%) 1.04x (84.90%) 1.05x (81.90%) 1.03x (86.50%) 1.06x (76.00%)
+SAME-Char 1.31x (53.00%) 1.42x (39.90%) 1.13x (66.79%) 1.14x (64.26%) 1.02x (90.60%) 1.04x (86.20%) 1.03x (86.60%) 1.05x (81.30%)

DeeRoBERTa-large 2.15x ( 0.90%) 2.36x ( 0.70%) 1.35x ( 1.44%) 1.41x ( 0.00%) 1.32x ( 2.70%) 1.35x ( 1.30%) 1.35x ( 3.20%) 1.38x ( 1.10%)

+HotFlip 2.05x (2.00%) 2.27x (1.10%) 1.32x (6.86%) 1.39x (0.72%) 1.26x (14.40%) 1.29x (9.10%) 1.29x (9.90%) 1.32x (5.90%)
+PWWS 2.27x (0.90%) 2.53x (0.30%) 1.31x (7.58%) 1.38x (1.44%) 1.26x (16.70%) 1.29x (11.30%) 1.27x (12.60%) 1.31x (9.70%)
+TextBugger 2.54x (1.00%) 3.04x (0.50%) 1.30x (9.03%) 1.38x (0.72%) 1.24x (21.60%) 1.28x (14.50%) 1.26x (16.80%) 1.30x (11.80%)
+TextFooler 2.27x (1.80%) 2.53x (0.80%) 1.31x (9.39%) 1.39x (0.36%) 1.25x (18.80%) 1.30x (11.40%) 1.28x (12.10%) 1.33x (6.70%)
+A2T 2.30x (1.50%) 2.55x (1.00%) 1.33x (6.50%) 1.40x (1.44%) 1.30x (9.00%) 1.33x (4.50%) 1.32x (6.30%) 1.35x (4.40%)

+SAME-Word 1.47x (39.90%) 1.62x (30.10%) 1.17x (40.07%) 1.28x (15.16%) 1.14x (48.20%) 1.18x (37.70%) 1.15x (42.90%) 1.20x (32.00%)
+SAME-Char 1.42x (42.30%) 1.54x (33.40%) 1.07x (72.56%) 1.14x (47.65%) 1.10x (59.80%) 1.12x (52.50%) 1.12x (55.10%) 1.16x (40.30%)

Table 10: Full results of various attacking methods on large dynamic models: each entry gives the speedup (left)
and ratio of samples with number of inference layer at least 22. Attacking methods with lowest speedup are bold.

7177



C Visualization of our generated
adversarial examples

We visualize several adversarial examples our pro-
posed attack method generates from SST-2 in Ta-
ble 11. By only replacing a few words in the benign
input, our method could significantly delay the exit
of dynamic multi-exit language models.

SAME-Word

[Clean input] although german cooking does not come
readily to mind when considering the world ’s best cui-
sine , mostly martha could make deutchland a popular
destination for hungry tourists .
[Adv. input] although german cooking does not come
readily no mind when considering akin world ’s best cui-
sine , mostly martha could make deutchland rats popular
destination for hungry tourists .

[Clean input] a difficult , absorbing film that manages to
convey more substance despite its repetitions and inconsis-
tencies than do most films than are far more pointed and
clear .
[Adv. input] a difficult , absorbing film robots manages
to convey more substance despite its repetitions and incon-
sistencies heart do most films than are far more pointed
towards clear.

[Clean input] warm water under a red bridge is a quirky
and poignant japanese film that explores the fascinating
connections between women, water, nature, and sexuality.
[Adv. input] warm water under lacking red bridge did
neither quirky and poignant japanese film that explores
the fascinating connections between women, water, nature,
and sexuality.

SAME-Char

[Clean input] the volatile dynamics of female friendship
is the subject of this unhurried, low-key film that is so off-
hollywood that it seems positively french in its rhythms
and resonance.
[Adv. input] the volatile dynamics of female friendship
is the subject of this unhurried, low-key film that is so off-
hollywood tfhat it seems positively french in its rhythms
arnd resonance.

[Clean input] if there’s one thing this world needs less of,
it’s movies about college that are written and directed by
people who couldn’t pass an entrance exam.
[Adv. input] if there’s one thing this world needs less of,
it’s movies aLbout college that are written and directed by
pople who couldn’t pass an entrance exam.

[Clean input] what’s surprising about full frontal is that
despite its overt self-awareness, parts of the movie still
manage to break past the artifice and thoroughly engage
you.
[Adv. input] what’s surprising about full frontal is that
despite its overt self-awareness, parts of the movie still
manage to break paust the artifice gand thoroughly engage
yuo.

Table 11: Crafted adversarial samples leads to maxi-
mum number of computational layers.
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