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Abstract

While paraphrasing is a promising approach
for data augmentation in classification tasks, its
effect on named entity recognition (NER) is not
investigated systematically due to the difficulty
of span-level label preservation. In this paper,
we utilize simple strategies to annotate entity
spans in generations and compare established
and novel methods of paraphrasing in NLP
such as back translation, specialized encoder-
decoder models such as Pegasus, and GPT-3
variants for their effectiveness in improving
downstream performance for NER across dif-
ferent levels of gold annotations and paraphras-
ing strength on 5 datasets. We thoroughly ex-
plore the influence of paraphrasers, dynamics
between paraphrasing strength and gold dataset
size on the NER performance with visualiza-
tions and statistical testing. We find that the
choice of the paraphraser greatly impacts NER
performance, with one of the larger GPT-3 vari-
ants exceedingly capable of generating high
quality paraphrases, yielding statistically signif-
icant improvements in NER performance with
increasing paraphrasing strength, while other
paraphrasers show more mixed results. Addi-
tionally, inline auto annotations generated by
larger GPT-3 are strictly better than heuristic
based annotations. We also find diminishing
benefits of paraphrasing as gold annotations in-
crease for most datasets. Furthermore, while
most paraphrasers promote entity memoriza-
tion in NER, the proposed GPT-3 configuration
performs most favorably among the compared
paraphrasers when tested on unseen entities,
with memorization reducing further with para-
phrasing strength. Finally, we explore men-
tion replacement using GPT-3, which provides
additional benefits over base paraphrasing for
specific datasets.

1Equal contribution.
2Currently at Apple. Work done while at JPMorgan Chase

& Co.

1 Introduction

Named entity recognition (NER) seeks to extract
entity mentions (e.g., Shakespeare, Warwickshire)
from a text (Shakespeare was born and raised in
Warwickshire) for predefined categories of inter-
est (such as people and locations). It is a critical
component underpinning many industrial pipelines
for a variety of downstream natural language pro-
cessing applications such as search, recommenda-
tion, and virtual assistant systems. However, in
real-world applications, there is often a scarcity of
labeled data for training advanced deep neural mod-
els because span-level NER annotations are costly,
and domain expertise may be needed to annotate
data from domains such as finance, biomedical sci-
ences, etc.

Data augmentation is often used as an alterna-
tive to address the data scarcity issue in many NLP
tasks (see an NLP data augmentation survey by
Feng et al. (2021)). However, data augmentation
for NER imposes additional challenges because
NER requires token/span level label preservation.
Therefore, most existing works on NER data aug-
mentation primarily focus on local replacement for
entity mentions (Dai and Adel, 2020; Zhou et al.,
2022; Liu et al., 2022; Wenjing et al., 2021) as well
as context words (Dai and Adel, 2020; Li et al.,
2020). The replacements can be other mentions
with the same labels (Dai and Adel, 2020), syn-
onyms from an external lexical resource such as
wordnet (Dai and Adel, 2020), or tokens gener-
ated by the pretrained language models such as
BERT via masked token task (Zhou et al., 2022;
Liu et al., 2022; Wenjing et al., 2021). However, to
enhance the reliability of masked token prediction,
the language model usually needs to be fine-tuned
on the NER training data and label information is
often inserted close to the [MASK]s (Zhou et al.,
2022; Wenjing et al., 2021), which requires a de-
cent amount of labeled training data. A recent study
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by Ding et al. (2020) trained a sequence generator
to synthesize sentences with inline NER annota-
tions that can create novel NER training examples
beyond local modifications but requires sufficient
NER labeled examples for training the generator.

This work primarily focuses on the less-studied
data augmentation method for NER – paraphras-
ing – which has the potential to introduce struc-
tural and lexical replacement and does not assume
many labeled examples. Specifically, we compare
established, and novel paraphrasing methods and
propose simple ways to preserve span-level labels.
Unlike most existing studies that focus on the influ-
ence of the amount of gold data only, we system-
atically investigate the effect of different levels of
paraphrasing on downstream performance, at dif-
ferent levels of gold annotations across 5 datasets.
We investigate the quality of paraphrases from 6
different systems as augmentation data, as well as
stand alone training data for NER. We further ex-
amine the entity memorization via the performance
change on unseen mentions for each entity and
address the issue with mention replacement.

We find paraphrasing to be generally effective
in low data regimes for most paraphrasers. How-
ever, the choice of paraphraser affects the magni-
tude, and direction of the change in performance
across all levels of gold data. We find the use of
LLMs to generate inline annotations1 while para-
phrasing to be superior to simpler heuristics, and
GPT-3 Davinci variant with inline annotations to
be a generally superior choice across datasets for
paraphrasing. In addition, our entity level analysis
shows that entity classes with low support (num-
ber of mentions) or low number proportion bene-
fit more from paraphrasing. We then investigate
whether there is an indications of entity memo-
rization with increasing paraphrasing strength, and
find that GPT-3 Davinci variant with inline anno-
tations is more robust against entity memorization
compared to other paraphrasers. We further reduce
memorization in some datasets by introducing men-
tion replacement based on GPT-3 DaVinci in the
paraphrasing pipeline.

2 Datasets and Paraphrasers

2.1 Datasets
NER datasets are chosen to have coverage across
a variety of domains including news, Wikipedia,

1Inline annotation: [Shakespeare](PERSON) was born and
raised in [Warwickshire](LOC)

MIT-R Onto
-notes

BC5
-CDR

Twee
-bank

Wnut
-17

BT 1 0 2 0 5
Pegasus 1 0 13 3 8
Ada-A 10 0 0 11 0
Ada-B 4 0 0 16 2
DaV-A 3 0 4 5 3
DaV-B 26 35 26 10 27

Table 1: Counts the configurations of G & P where a
paraphraser shows highest relative improvement over
no paraphrasing baseline for a given G (Division by
zero is avoided by using absolute improvement). GPT-
3 DaV-B outperforms other paraphrasers across most
datasets. Detailed results of downstream performance
for all datasets, paraphrasers, configurations can be
found in Appendix A.6.

Twitter, biomedical research and search; while also
having a diverse set of entity types (word phrases,
alphanumeric, datetime, alphabetical etc.).

We choose 5 datasets based on the above prin-
ciples: Ontonotes5 (Hovy et al., 2006), Twee-
bank (Jiang et al., 2022), WNUT 2017 (Derczyn-
ski et al., 2017), MIT Restaurant NER dataset
(MIT-R) (Liu et al., 2013), BioCreative V CDR
(BC5CDR) (Wei et al., 2016). Pre-formatted ver-
sions of all datasets are sourced from the TNER
project (Ushio and Camacho-Collados, 2021) on
Huggingface datasets (Lhoest et al., 2021) (See
Appendix A.16). Datasets such as WNUT also
have rare entities by design, allowing us to probe
robustness against entity memorization.

2.2 Paraphrasers and postprocessing

In our experiments, we compare six paraphrasing
systems: (1) Back Translation, (2) Pegasus, (3) Ada
(Prompt A) / Ada-A, (4) Ada (Prompt B) / Ada-B,
(5) Davinci (Prompt A) / DaV-A and (6) Davinci
(Prompt B) / DaV-B. We generate a maximum of
4 unique paraphrases per gold sentence for each
paraphraser and postprocess the paraphrases with
simple re-annotation and filtering.

2.2.1 Back-translation; BT
Back translation has been widely used as a data
augmentation method (Sugiyama and Yoshinaga,
2019; Corbeil and Ghadivel, 2020; Xie et al., 2020)
including in phrase based systems like (Bojar and
Tamchyna, 2011). For our experiments we use
pre-trained English-German and German-English
models (∼738M parameters) available from Hug-
gingface model hub 2 via Tiedemann and Thot-

2https://huggingface.co/models
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Dataset Recall (%)
WNUT-17 93.2
Tweebank 92.9
Ontonotes 83.8
MIT-R 71.4
BC5CDR 90.3

Table 2: Entity recall across datasets for DaV-B without
any post processing. Recall is calculated via a case
insensitive search, so acts as a lower bound.

tingal (2020) and the model architecture used is
BART (Lewis et al., 2019). We use a temperature
parameter of 0.8 with greedy decoding.

2.2.2 PEGASUS Paraphraser
PEGASUS (∼568M parameters), introduced in
(Zhang et al., 2020) for the purpose of summariza-
tion, is a large pre-trained transformer (Vaswani
et al., 2017) based encoder-decoder model, pre-
trained using a custom self-supervised objective.
To use it as a paraphraser the model was fine-tuned
on a paraphrasing task. We use an off-the-shelf
version of PEGASUS fine-tuned for paraphrasing
released on Huggingface model hub. 3

2.2.3 GPT-3 variants
GPT-3 (Brown et al., 2020) is an auto-regressive
decoder only transformer pre-trained for language
modeling, showing impressive in-context learning,
and instruction following ability (Radford et al.,
2019; Sanh et al., 2021; Wei et al., 2021; Ouyang
et al., 2022; Campos and Shern, 2022). We use the
OpenAI API 4 to query the text-ada-001 (∼350M
parameters), and text-davinci-002 (∼175B param-
eters) variants of GPT-3. We prompt both GPT-3
variants with two versions of one shot prompts with
a temperature of 0.8, max length of 100, and default
values for other parameters:

Prompt A GPT-3 variant is instructed to generate
paraphrases without specific instruction to retain
inline annotation for entities:

" Create a paraphrase for inputs like the following
example:

Input: Japanese band The Altruists is releasing
their hit single this fall.
Paraphrases:
1. The Altruists, a Japanese band is releasing their
hit single this fall

3https://huggingface.co/tuner007/pegasus_paraphrase
4https://beta.openai.com/

MIT-R Onto
-notes

BC5
-CDR

Twee
-bank

Wnut
-17

BT 0.66 0.74 0.76 0.41 0.30
Pegasus 0.68 0.75 0.78 0.33 0.23
Ada-A 0.71 0.73 0.74 0.36 0.23
Ada-B 0.70 0.72 0.74 0.34 0.23
DaV-A 0.67 0.75 0.76 0.39 0.27
DaV-B 0.73 0.80 0.82 0.41 0.32

Table 3: Test micro-F1 when training using only para-
phrases with P=1 for full dataset. Number in bold is
the maximum for a given dataset. GPT-3 DaV-B outper-
forms all paraphrasers across datasets.

Input: BLANK
Paraphrases:
1."

Prompt B GPT-3 variant is instructed to generate
paraphrases, while also retaining inline annotation
for entities (highlighted in red):

" Create a paraphrase for inputs like the following
example. Preserve the annotations in the [] and ():

Input: Japanese band [The Altruists](ORG) is re-
leasing their hit single this fall.
Paraphrases:
1. [The Altruists](ORG), a Japanese band is releas-
ing their hit single this fall

Input: BLANK
Paraphrases:
1."

During paraphrasing, "BLANK" is replaced by
an actual gold sentence being paraphrased.

We conduct light prompt tuning based on entity
recall to select Prompt B, (Prompt A is then created
by dropping the annotation retention instructions).
The prompt that retains annotations for most gold
entity mentions (based on case insensitive string
match) in generated paraphrases, is chosen as the
final prompt. Table 2 shows the raw entity recall
for GPT-3 DaV with Prompt B across datasets.

2.2.4 Post-processing & filtering of
paraphrases

We re-annotate outputs of all paraphrasers based
on a case insensitive exact match search for the
entity values present in gold sentence. In the case
of LLMs generating inline annotations, this logic
is used to supplement annotations generated by the
model, relying on the model generated annotations
in cases of conflicts. Further filtering is applied to
the paraphrases from all models to remove para-
phrases for gold sentences shorter than 15 char-
acters, remove paraphrases that are a duplicate of
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the gold sentence or of another paraphrase, and
when generation contains an entity not present in
entity space of the dataset. We also retain only the
first generation of multiline generations for para-
phrasers generating a numbered list of paraphrases
(common with prompt driven GPT-3 variants Ap-
pendix A.2).

For each paraphrasing configuration (model +
post-processing), we evaluated the entity recall rate
of the synthetic data as well as the language qual-
ity of 100 examples sampled from each dataset.
We find that DaV-B consistently outperforms other
paraphrasers in both entity recall and paraphrasing
quality metrics (See Appendix A.4).

3 Experiments

3.1 Using gold & paraphrasing data for
training NER

3.1.1 Experimental setup
In practical settings, gold training data is gener-
ated incrementally. Paraphrases then are created
using none/some/all of the gold data which simu-
lates a change in paraphrasing strength. We present
results based on different configurations of gold
ratio (G-ratio), i.e. what percentage of gold data is
used in a particular configuration, and paraphrase
ratio (P-ratio), i.e. what is the ratio of number of
paraphrases compared to number of gold samples.

Gold Sampling When generating gold sample
for G=0.01, we sample 1% of the total dataset,
stratified by entities (and an equivalent percentage
of gold samples with no entities). Subsequently,
moving to G=0.03, we retain the sample from the
first step, and sample an additional 2% from the
remaining dataset5. Experiments are conducted for
these G-ratios: 0.01, 0.03, 0.05, 0.07, 0.09, 0.11,
0.25, 0.5, 1.06.

Paraphrase Sampling For all G/P ratio config-
urations, after sampling gold samples using the
process above, a random set of paraphrases are
then sampled for the gold samples in the set based
on the P-ratio. For example, for P=0.25, the num-
ber of paraphrasing samples is a fourth of the gold
samples used in the configuration.

The following P-ratios are explored for every
G-ratio: 0.0 (no paraphrasing), 0.25, 0.5, 1.0, 2.0,

5This incremental nature of sampling gold data simulates
real projects

6We only go up to G=0.25 for large Ontonotes dataset for
speed

4.0.
For each G/P ratio, the corresponding dataset

is used to fine-tune a distilbert-base-cased base
(66M parameters) model (Sanh et al., 2019) 7 for
named entity recognition using the 1-step training
described by (Okimura et al., 2022) using standard
classification loss over hidden states of individual
tokens. The models are trained with early stopping
(patience=5, metric=eval_F1).

We generate overall, and entity specific micro
F1 for each G/P combination along with standard
deviation across three runs.

3.1.2 Analysis method
We first present visualizations and tables to sum-
marize the general trends of the overall NER F1
performance improvement with respect to different
paraphrasers and the dynamics of paraphrase ratio
and gold ratio.

To support the observations made from the fig-
ures (1, 2) and tables (1, 3) we perform analysis at
the entity level, by conducting statistical tests on
the downstream performance improvement ∆F1,
where

∆F1(g, p, ent) = F1(g, p, ent)− F1(g, 0, ent)

Specifically, we investigate whether the change
in downstream NER F1 depends on certain charac-
teristics of an entity including entity support (how
many examples one entity class contains) and sur-
face form features (proportion of capitalizations
and numbers in entity types). We build a linear
regression model using the entity characteristics
aforementioned along with the paraphraser, G & P
ratios as the predictors and ∆F1 as the dependent
variable, formalized as follows:

∆F1 ∼ Paraphrase ∗ (Gold + model +
support+ capitalize+ number)

3.1.3 Results
Effect of Paraphrasers Table 1 shows the counts
across G&P configurations where a paraphraser
has the highest relative improvement and Figure
1 demonstrates the F1 change after adding the
synthetic data. Both suggest, the choice of para-
phraser strongly dictates the augmentation perfor-
mance. GPT-3 DaV-B consistently outperforms,
or matches other paraphrasers and is a safe default
choice for paraphrasing across domains. Across the
Davinci variants, inline annotations with Prompt B

7https://huggingface.co/distilbert-base-cased
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Figure 1: Matrix of scores of how F1 changed relative to the no paraphrasing (P=0) baseline after the addition of
synthetic data across datasets for different G & P ratios. Improvement/worsening (shown in color) in any dataset
at a given G/P ratio gets a score of +1/-1 respectively, and aggregation is then done across datasets. The model
position legend shows the position for each paraphraser (e.g., the upper left cell always corresponds to Ada-A).
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Figure 2: Micro F1 for Davinci (Prompt B) on datasets across gold and paraphrase ratios.
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factor β̂ t p
P 0.0148 9.004 1e-15
G -0.0048 -1.393 0.164
DaV-B 0.0106 3.986 1e-15
support -0.0031 -5.815 1e-15
cap -0.0011 -0.473 0.636
number -0.0154 -5.031 1e-15
P:G -0.0032 -1.937 0.053
P:DaV-B 0.0078 6.121 1e-15
P:support -0.0028 -10.925 1e-15
P:cap 0.0008 0.715 0.475
P:number -0.0165 -11.095 1e-15

Table 4: Coefficients of the model with entity level
analysis (See the Appendix A.8 for the coefficients of
the full model) ∆F1 ∼ Paraphrase∗(Gold+model+
support+ capitalize+ number).

strictly outperform those introduced using heuris-
tics. DaV-B also achieves or matches best perfor-
mance at G=1 (0.25 for Ontonotes) and P=4 across
all datasets (See Appendix A.7). Ada variants show
the most inconsistent results, with Backtranslation
and Pegasus outperforming them as well as DaV-A
in many cases. Full results are available in Ap-
pendix A.6.

Similarly, the statistical model (Table 4) shows
that both main factor of DaV-B (β̂ = 0.0106 , p <
1e-15 ) and its interaction with paraphrase ratio (β̂
= 0.0078, p < 1e-15) are positive and significant,
indicating that as P increases DaV-B has signifi-
cantly more improvement than the reference model
(Ada-A) but other paraphrases do not show such a
pattern as the main factors are all insignificant and
interactions are inconsistent.

Effect of P and G While we run similar experi-
ments on all paraphraser-dataset pairs, we share the
aggregate F1 performance across all G&P configu-
rations of DaV-B on all datasets in Figure 2 (Full
results Appendix A.6): We see consistent benefits
of paraphrasing at lower gold ratios, and dimin-
ishing returns in relative performance bump as we
go to higher values. Other paraphrasers show sim-
ilar trends at low G ratios with some exceptions
(Ada variants in BC5CDR, and Backtranslation on
MIT-R) (See Figure 1, Appendix A.6), although
we see a lot more mixed results at medium to high
G ratios.

Our statistical model (see Table 4) reveals simi-
lar conclusions: we see the main factor of P (β̂ =
0.0148, p < 1e-15) is significant and its interaction

with G (β̂ = -0.0032, p < 0.053 ) are marginally
significant. This indicates that P is generally posi-
tive correlated with performance gain and there is a
weak tendency that the coefficients of P reduces as
G increases. In other words, paraphrasing improves
the downstream performance but becomes less ef-
fective when adding more gold data (a similar trend
is also seen in Figure 1).

Effect of Entity Characteristics In terms of en-
tity support, the model shows a significant negative
main factor (β̂ = -0.0031, p < 1e-15) and an inter-
action with a paraphrase ratio (β̂ = -0.0028, p <
1e-15), which reveals that the effect of entity sup-
port on performance improvement varies based on
P with the relationship: improvement ∼ constant
+ ( -0.0031 + (-0.0028) ∗ paraphrase)) ∗ support.
The negative coefficient of support indicates entity
classes with less support are more likely to benefit
from an increase of paraphrasing than those with
more support.

As for the surface form characteristics, the model
reveals a negative interaction (β̂ = -0.0165, p < 1e-
15) and negative main factor (β̂ = -0.0154, p <
1e-15 ) for the number form, suggesting the pro-
portion of mentions being a number is negatively
correlated with performance improvement and the
negative correlation is enhanced as the paraphras-
ing ratio grows. By contrast, neither the main factor
for capitalization nor the interaction is significant,
indicating the effect of surface form of capitaliza-
tion does not play an important role .

3.2 Using only paraphrases for training NER

3.2.1 Experimental setup
We further evaluate quality of paraphrases directly
by using only synthetic data to train NER models.
These experiments are done at P=1 for paraphrases
generated from the entire training set (G=1).

3.2.2 Results
Aggregate F1 scores of all paraphrasers are shown
in Table 3. We find GPT-3 DaV-B paraphrases per-
forming best across all datasets. The trends among
paraphrasers track augmentation performance ob-
served in Figure 1 and Appendix A.6.

3.3 Entity Memorization

Our proposed augmentation and re-annotation
strategies in Section 2.2 promote duplication of en-
tity mentions for paraphrases from all paraphrasers.
This can lead to shortcut learning (Geirhos et al.,
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2020) where the model may just memorize men-
tions, as opposed to learning features that general-
ize to unseen mentions (Augenstein et al., 2017).
This effect may be observed as a drop in perfor-
mance in the subsets of our test sets that contain
mentions not seen during model training (i.e. an un-
seen entity test set). We therefore, extend our entity
level analysis to also study memorization per entity
type, with entity-level harder unseen entity (UE)
test sets. While a change in performance on UE
test sets may come from a combination of factors,
we treat a drop to be indicative of memorization.
Similarly an increase in performance in UE test
set performance with increasing paraphrasing, may
indicate a paraphraser that does not promote mem-
orization, but instead improves generalization in
the NER model.

3.3.1 Creation of UE test sets
For every entity type in each dataset, we generate
UE test sets for all G / P ratio combinations. For
any given configuration of G, P, and entity type, an
UE test set would include test set samples that con-
tain mentions of that entity not seen within training
data for that configuration.

3.3.2 Experimental setup
Models trained for each dataset, G / P ratio, and
paraphraser combination in Section 3.1 are evalu-
ated on their respective entity level UE test sets to
generate F1 scores per entity type.

To measure the proclivity of paraphrasers to gen-
erate synthetic data that promotes memorization
we conduct a regression analysis similar to section
3.1.2.

We define memorization as the drop in F1 per-
formance on the UE test sets when paraphrases are
added during training at a given G ratio. More for-
mally, the memorization value for given entity at a
particular G, P combination is

Memorization(g, p, ent) = −∆UEF1(g, p, ent)

= UEF1(g, 0, ent)− UEF1(g, p, ent)

3.3.3 Results
Effect of Paraphrasers Based on the statistical
model Table 5, DaV-B shows a consistent reduction
in memorization on average across all entities (β̂ =
-0.0138) and as P is increased memorization further
reduces (β̂ = -0.0113) suggesting that DaV-B is
less susceptible to inducing memorization charac-
teristics in the downstream NER model than the

factor β̂ t p
P -0.01 -5.769 1e-15
G 0.0012 0.323 0.746
DaV-B -0.0138 -4.937 1e-15
support 0.0041 7.257 1e-15
cap -0.0018 -0.759 0.448
number 0.0162 5.028 1e-15
P:G 0.0045 2.543 0.011
P:DaV-B -0.0113 -8.354 1e-15
P:support 0.0031 11.456 1e-15
P:cap -0.0044 -3.874 1e-15
P:number 0.0142 9.062 1e-15

Table 5: Coefficients of the Linear model for Memoriza-
tion: memorization ∼ Paraphrase ∗ ( Gold + model +
support + capitalize + number). Full results Appendix
A.9.

Ada-A model as reference. On the contrary, we
see worsening of memorization with most other
paraphrasers (Ada-B, BT) on average with Ada-A
as reference, while Pegasus at high P does seem to
reduce memorization although not to the same ex-
tent as Dav-B Appendix A.9. All other interactions
with memorization do not pass the 5% significance
threshold.

Effects of P and G Table 5 suggests that para-
phrasing reduces memorization (β̂ = -0.01) on av-
erage across all entities, however, at higher Gs,
paraphrasing worsens memorization (β̂ = 0.0045).
Level of G by itself does not significantly interact
with memorization (p=0.746>0.05).

Effect of Entity Characteristics Numerical and
high support entities seem to have a significant pos-
itive interaction with memorization (β̂ = 0.01162
and 0.0041 respectively) which increases in effect
as P is increased (β̂ = 0.0142 and 0.0031). This
implies paraphrasing for entities with a high sup-
port generally worsens the performance on unseen
entities, indicating memorization. Also, numerical
entities seem to be easier for the NER model to
memorize. Finally, Capitalized entities at high P
has a negative correlation with memorization (β̂ =
-0.0044).

3.3.4 Addressing memorization with mention
replacement

We extend our experiments for GPT-3 DaV-B
by also incorporating entity mention replacement
(MR) into the paraphrasing pipeline. In our ap-
proach, we utilize the ability of language models to
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be a knowledge base (Petroni et al., 2019), and fol-
low instructions, to source replacement mentions
for various entity mentions and types in our train-
ing set. In particular, for every entity mention in
the gold set, we prompt GPT-3 DaVinci model to
generate entity mentions that are similar to the gold
entity mention, while also providing a phrase level
definition of the entity type being replaced.

Prompt used for mention replacement:

"

Please list 10 examples of ENTITY_TYPE such as
’ENTITY_VALUE’:

1.

"

ENTITY_VALUE is replaced with the actual
gold mention, and ENTITY_TYPE is replaced by
a nominal phrase description of the entity class (See
Appendix A.1.1 Figure 4). This label conditioned
prompt allows us to generate mention replacements
closer to the gold entity value, that are more likely
to remain consistent with entity label. We use a
temperature of 0.8, and a maximum length of 250,
with other parameters set to default in the gener-
ation. Since our base paraphrases are biased to-
wards entity value retention, we are able to retain
span annotation when replacing the entity value
in any given paraphrase with an equivalent entity
sampled from GPT-3 DaVinci generations. These
paraphrases are used as augmentation data to run
experiments similar to Section 3.1.

Results Table 6 compares DaV-B to DaV-B MR
across all datasets based on relative improvement in
overall F1 over no paraphrasing baseline for differ-
ent G values. Here we see mention replacement es-
pecially useful for MIT-R, Tweebank, and WNUT-
17 datasets, while being harmful in Ontonotes.
Mention replacement makes no significant differ-
ence in BC5CDR Appendix A.15.

We also compare the performance of DaV-B vs
Dav-B MR for indications of entity memorization.
To do so, we introduce a "swapped" feature and
conduct statistical analysis similar to Section 3.3.2.
Table 7 shows that mention replacement is a good
solution to reduce memorization (β̂ = -0.0065)
in general. The interaction between mention re-
placement as paraphrasing increases is insignificant
(p=0.533>0.05) which implies that the coefficient
of MR does not vary much as P increases.

MIT-R Onto
-notes

BC5
-CDR

Twee
-bank

Wnut
-17

DaV-B 15 35 28 14 15
DaV-B
+MR 30 0 17 31 30

Table 6: Counts the configurations of G & P where a
paraphraser shows highest relative improvement over no
paraphrasing baseline for a given G (Division by zero
is avoided by using absolute improvement). MR refers
to mention replacement. We also conducted Wilcoxon
signed-rank tests to evaluate whether the relative perfor-
mance improvement before or after MR is significantly
different. The tests show a significant improvement
for MIT-R, Tweebank and Wnut17 and no significant
difference for BC5CDR and a significant reduction for
Ontonotes.

factor β̂ t p
P -0.0054 -5.187 0.000
MR -0.0065 -2.115 0.035
P:MR 0.0009 0.623 0.533

Table 7: Coefficients of the Linear model for Memo-
rization with Mention Replacement: memorization ∼
Paraphrase ∗ MR.

4 Future work

While our work proposes a paraphrasing pipeline
that performs consistently better than established
paraphrasing pipelines in NER, we expect further
benefits to come from more exhaustive tuning of
prompts used to generate paraphrases. Another
potential direction to improve downstream perfor-
mance is to explore better (than random) sampling
strategy for paraphrases (based on entity density,
entity recall, or other metrics).

5 Conclusion

We study the effect of six paraphrasing systems on
downstream NER performance across 5 datasets.
We find that the choice of paraphraser system
(model + prompt) strongly affects NER perfor-
mance. GPT-3 DaV-B performs the best at gen-
erating paraphrases capable of improving NER per-
formance while other paraphrasers show mixed
results. We further find that generating inline an-
notations using GPT-3 Davinci works superior to
strictly heuristic based annotations. While we find
paraphrasing to be more effective at lower amount
of training data, it helps at higher levels depending
on dataset, and paraphraser. Additionally, we find
GPT-3 DaV-B to be most immune against entity
mention memorization, with the memorization re-
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ducing further with GPT-3 based mention replace-
ment on certain datasets. Our findings speak to the
exceptional effectiveness of GPT-3 DaVinci based
systems in generating paraphrases promoting gen-
eralization in NER applications, thereby making it
the de facto choice for paraphrasing in NER.

6 Limitations and risks

This work utilizes generative models trained on
large volumes of data, to generate supplemental
training data for named entity recognition systems.
We do not address any biases, or filter generations
of the underlying paraphrasers when using their
generated data. This can bias the fine tuned models
towards underlying biases of the generative system.

While we do not test or correct the paraphrasing
systems for biases, we do not find any evidence for
the models deviating unfairly from the underlying
training data in any of our human evaluations of
the paraphrases.

We recommend human review, and automatic fil-
tering of the generations when applying techniques
based on generative models to critical applications,
to ensure the black box paraphrasing does not intro-
duce, or exacerbate the biases in existing training
datasets.
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The appendix includes prompt design and multiline generation, human annotation guideline, paraphrase
generation quality analysis, analysis of the interaction between gold and paraphrase ratio for each dataset,
downstream F1 score for each dataset, risks and limitations as well as software acknowledgements.

A.1 Prompt design
A.1.1 Entity mention replacement prompts
The following prompt is used in the entity mention replacement pipeline to generate entity values similar
to gold mentions: ENTITY_TYPE is replaced by a phrase that explains the entity in a few words using

Figure 3: GPT-3 DaVinci is instructed to generate mention replacements for ENTITY_VALUE of the type
ENTITY_TYPE.

the following table: Here is an example for the prompt used for entity mention replacement along with

Figure 4: ENTITY_TYPE is replaced by replacement phrases for each entity type.

generation from GPT-3 DaVinci:
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Figure 5: Mention replacement prompt and output from GPT-3 DaVinci.

A.2 Multiline generation

LLM paraphrasers can be triggered to generate multi-line outputs. This behavior is more common in Ada
variants over DaVinci, showing the DaVinci is better at following prompt instructions.

Figure 6: GPT-3 variants sometimes generate multiple numbered paraphrases. We choose to retain only the first
paraphrase in these cases.

A.3 Human evaluation guidelines

See Figure 7 for annotation guideline.

A.4 Paraphrase generation quality Analysis

Besides assessing usefulness for NER with actual training, we investigate paraphrase generation quality
directly from two perspectives – entity preservation and paraphrase quality to see to what extent these
metrics correlate with NER performance.

As entities are central to NER, we hypothesize entity preservation to be important for performance. We
count the number of gold entities that appear in paraphrases with correct annotations via a case insensitive
string match (entity recall). This calculation sets a lower bound of the entity preservation accuracy.

Good paraphrases are also expected to introduce form variety while preserving the meaning faithfully,
potentially helping downstream performance. We asked three human annotators to annotate paraphrases
generated by the six systems for 50 training examples sampled for each dataset. Specifically, human
annotators were instructed to ignore the entity accuracy and to score paraphrases from 1-5 based on the
paraphrasing quality. Our guidelines are similar to (Niu et al., 2020) (Appendix A.3). The annotator are
from the internal data annotator team hired by the company and the annotation task is assigned as the
annotation work.

According to Figure 8(a), among all the paraphrase systems Davinci (Prompt B) has the highest entity
recall rate, followed by Davinci (Prompt A) and backtranslation. While, Ada and Pegasus are more likely
to lose gold entities. This suggests a large-sized GPT-3 model with an appropriate prompt can generate
examples with high-quality inline entity annotations but a small-sized GPT-3 consistently underperforms
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Figure 7: Annotation guideline.

wnut2017 tweebank bc5cdr mit_restaurant ontonotes
Dataset

0.0

0.2

0.4

0.6

0.8

1.0

1.2

En
tit

y-
Re

ca
ll

Back-Translation
Pegasus

Ada-promptA
Ada-promptB

DaVinci-promptA
DaVinci-promptB

(a) Entity recall evaluation.

on bc5cdr mit twee wnut
Dataset

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

En
tit

y-
Re

ca
ll

DaVinci_promptB
DaVinci_promptA

ADA_promptB
ADA_promptA

BackTranslation
Pegasus

(b) Human evaluation of paraphrasing quality.

Figure 8: Paraphrase Evaluation.

even a simple Back-translation system. Figure 8(b) shows Davinci systems always have the best human
evaluation scores across datasets followed by Pegasus and Back-translation, while Ada systems are
consistently the worst (missing value of Pegasus for mit restaurant is due to technical issue).

In summary, we find that paraphrases generated by the Davinci (Prompt B) system often preserve entities
and are of a good paraphrasing quality whereas Ada systems consistently underperform other systems in
both metrics across datasets. These results are partially consistent with the downstream evaluations in that
the augmentation data generated by Davinci (Prompt B) have reliably better downstream performance
compared to other systems. However, broader trends in paraphrasing quality do not track with downstream
NER performance.
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A.5 Overview of Models Parameters and Downstream Performance

MIT-R Ontonotes BC5CDR Tweebank Wnut 17
BT (∼738M) 1 0 2 0 5
Pegasus (∼568M) 1 0 13 3 8
Ada-A (∼350M) 10 0 0 11 0
Ada-B (∼350M) 4 0 0 16 2
DaV-A (∼175B) 3 0 4 5 3
DaV-B (∼175B) 26 35 26 10 27

Table 8: Counts the configurations of G & P where a paraphraser shows highest relative improvement over no
paraphrasing baseline for a given G (Division by zero is avoided by using absolute improvement). GPT-3 DaV-B
outperforms other paraphrasers across most datasets. Detailed results of downstream performance for all datasets,
paraphrasers, configurations can be found in Appendix A.6

MIT-R
Onto
-notes

BC5
-CDR

Twee
-bank

Wnut
-17

BT (∼738M) 0.66 0.74 0.76 0.41 0.30
Pegasus (∼ 568M) 0.68 0.75 0.78 0.33 0.23
Ada-A (∼350M) 0.71 0.73 0.74 0.36 0.23
Ada-B (∼350M) 0.70 0.72 0.74 0.34 0.23
DaV-A (∼175B) 0.67 0.75 0.76 0.39 0.27
DaV-B (∼175B) 0.73 0.80 0.82 0.41 0.32

Table 9: Test micro-F1 when training using only paraphrases with P=1 for full dataset. Number in bold is the
maximum for a given dataset. GPT-3 DaV-B outperforms all paraphrasers across datasets.

The two tables show the downstream performance aligned with the model size of paraphrasers. We
found it that large models (davinci) models only with a reasonable prompt show the advantages over the
other smaller models that have much less parameters.
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A.6 Detailed results across different gold data sizes for all datasets
A.6.1 BC5CDR
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A.6.2 Ontonotes
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A.6.3 MIT-R
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A.6.4 Tweebank
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A.6.5 WNUT-17
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A.7 Heatmap of micro-F1 scores across all datasets & paraphrasers
A.7.1 BC5CDR
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A.7.2 Ontonotes
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A.7.3 MIT-R

7074



A.7.4 Tweebank
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A.7.5 WNUT-17
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A.8 Entity Level Analysis

Figure 9: Linear regression model for Entity Level Analysis.

7077



A.9 Memorization Analysis
A.9.1 Entity Level Memorization

Figure 10: Linear regression model for Memorization Analysis.

A.9.2 Memorization Mention Replacement

Figure 11: Statistical analysis of Memorization with Mention Replacement.
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A.10 Wnut17 Unseen Entity Set F1

Figure 12: NER performance for all paraphrases on the Unseen Entity Set of Wnut17.
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A.11 Ontonotes Unseen Entity Set F1

Figure 13: NER performance for all paraphrases on the Unseen Entity Set of Ontonotes.
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A.12 MIT Restaurants Unseen Entity Set F1

Figure 14: NER performance for all paraphrases on the Unseen Entity Set of MIT Restaurants.
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A.13 Bc5cdr Unseen Entity Set F1

Figure 15: NER performance for all paraphrases on the Unseen Entity Set of Bc5cdr.
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A.14 Tweebank Unseen Entity Set F1

Figure 16: NER performance for all paraphrases on the Unseen Entity Set of Tweebank.
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A.15 DaV-B with Mention Replacement Unseen Entity Set F1

Figure 17: NER performance for DaV-B on the Unseen Entity Set of all Datasets.
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A.16 Dataset Statistics

Train Dev Test
BC5CDR 5,228 5330 5,865
Ontonotes 59,924 8,528 8262
MIT-R 6,900 760 1,521
Tweebank 1,639 710 1,201
WNUT-17 2,394 1,009 1,287

Table 10: Dataset statistics.

A.17 Computational budget
Most of our experiments were run on the following GPU machines on AWS: p3.16xlarge, g5.48xlarge,
g5.12xlarge and g5.24xlarge. The main fine tunning experiments across G/P ratios took 1-4 days per
dataset, depending on the size of the dataset, and the machine used for fine tuning.

Paraphrase generation using GPT-3 DaVinci model took less than a day for most datasets. Ontonotes
took roughly a day. Similar time was spent when generating mention replacements.

A.18 Software Acknowledgements
This work would be much harder without the use of several software packages including, but not limited
to Pytorch (Paszke et al., 2019), Huggingface transformers (Wolf et al., 2020) and associated software
ecosystem (Huggingface datasets), Scipy (Virtanen et al., 2020), Pandas (McKinney et al., 2011), Numpy
(Harris et al., 2020), Scikit-learn (Pedregosa et al., 2011), and OpenAI models and Python library.
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