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Abstract

A robust summarization system should be able
to capture the gist of the document, regard-
less of the specific word choices or noise
in the input. In this work, we first explore
the summarization models’ robustness against
perturbations including word-level synonym
substitution and noise. To create semantic-
consistent substitutes, we propose a SummAt-
tacker, which is an efficient approach to gen-
erating adversarial samples based on language
models. Experimental results show that state-
of-the-art summarization models have a signif-
icant decrease in performance on adversarial
and noisy test sets. Next, we analyze the vul-
nerability of the summarization systems and
explore improving the robustness by data aug-
mentation. Specifically, the first brittleness fac-
tor we found is the poor understanding of in-
frequent words in the input. Correspondingly,
we feed the encoder with more diverse cases
created by SummAttacker in the input space.
The other factor is in the latent space, where
the attacked inputs bring more variations to the
hidden states. Hence, we construct adversarial
decoder input and devise manifold softmixing
operation in hidden space to introduce more
diversity. Experimental results on Gigaword
and CNN/DM datasets demonstrate that our ap-
proach achieves significant improvements over
strong baselines and exhibits higher robustness
on noisy, attacked, and clean datasets!.

1 Introduction

Humans have robust summarization processing sys-
tems that can easily understand diverse expres-
sions and various wording, and overcome typos,
misspellings, and the complete omission of letters
when reading (Rawlinson, 2007). However, stud-
ies reveal that small changes in the input can lead
to significant performance drops and fool state-of-
the-art neural networks (Goodfellow et al., 2015;
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Perturbation class: Typo

Input ministers from the european union
and its mediterranean neighbors gathered
here under heavy security on monday
for an unprecedented
conference (—confecence)
on economic and political cooperation .
Original | eu mediterranean nations meet for first-ever
Summary | conference on cooperation. v'
Perturbed | eu mediterranean ministers meet in
Summary | greece under heavy security. X
Perturbation class: Synonym substitution
Input judge leonie brinkema ordered september
## conspirator zacarias moussaoui removed
from the court here on monday
after he repeatedly rejected his court-
appointed defense attorney (—barrister) .
Original | moussaoui removed from court
Summary | after rejecting defense attorneys. v’
Perturbed | moussaoui removed from court
Summary | after rejecting defense barris. x
Input president barack obama is imploring
voters to support his government (—party) ’s
economic policies even though he
acknowledged that those policies haven’t
brought about a recovery less than two
months before the midterm elections .
Original | obama says voters should back his
Summary | economic policies.v’
Perturbed | obama urges voters to back gop
Summary | economic policies. X

Table 1: Examples of vulnerability to BART-based sum-
marization model. All examples show an initially cor-
rect summary turning into a wrong summary due to
small changes in the input, e.g., mis-spelling and syn-
onym substitution.

Belinkov and Bisk, 2018; Cheng et al., 2018). In
text generation fields such as machine translation,
Belinkov and Bisk (2018) showed that state-of-
the-art models fail to translate even moderately
noisy texts, Cheng et al. (2018) found that the gen-
erated translation is completely distorted by only
replacing a source word with its synonym. How-
ever, the robustness on summarization models is
less explored. Here, we show three summarization
examples from the Gigaword dataset in Table 1.
A fine-tuned BART model will generate a worse

6846

Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics
Volume 1: Long Papers, pages 6846-6857
July 9-14, 2023 ©2023 Association for Computational Linguistics


https://github.com/iriscxy/robustness

summary for a minor change in the input including
misspelling errors and synonym substitution, which
often happen in practice due to the carelessness and
habit of word usage in writing. Take the second
case for example, an English user and an Ameri-
can user who use barrister or attorney will obtain
summaries of different qualities. In the third case,
a synonym word replacement even changes the
subject of canvassing. Such weakness of summa-
rization systems can lead to serious consequences
in practice.

Despite its importance, robustness in summariza-
tion has been less explored. Jung et al. (2019) and
KryScinski et al. (2019) examined positional bias
and layout bias in summarization. Liu et al. (2021)
introduced multiple noise signals in self-knowledge
distillation to improve the performance of student
models on benchmark datasets, but they did not
explicitly evaluate the robustness of summarization
models against noise.

Hence, in this work, we first evaluate the robust-
ness of the existing state-of-the-art summarization
systems against word-level perturbations includ-
ing noise and adversarial attacks. The noise con-
sists of natural human errors such as typos and
misspellings. To create the adversarial attack test
set, we come up with a model named SummAt-
tacker. The core algorithm of SummAttacker is
to find vulnerable words in a given document for
the target model and then apply language models
to find substituted words adjacent in the opposite
direction of the gradient to maximize perturbations.
We validate the effectiveness of SummAttacker on
benchmark datasets with different attributes, i.e.,
Gigaword and CNN/DailyMail. Experiment results
show that by only attacking one word (1% token)
in Gigaword and 5% tokens in CNN/DailyMail,
the existing summarization models have drastically
lower performance.

We next conduct a vulnerability analysis and
propose two corresponding solutions to improve
robustness. Our first conjecture is that worse sum-
maries can be caused by replacing common words
with uncommon and infrequently-used words,
which the model might not understand well. Hence,
we employ the outputs from SummAttacker as in-
puts for the encoder, so as to improve the diversity
in the discrete input space. The second influencing
factor is that the attacked inputs introduce more
variations in the latent space. Correspondingly,
we aim to expose the model to more diverse hid-

den states in the training process. Specifically, we
build soft pseudo tokens by multiplying the decoder
output probability with target token embeddings.
These soft pseudo tokens and original tokens are
then manifold softmixed on a randomly selected
decoder layer to enlarge the training distribution.

The interpolations leveraged in deeper hidden lay-
ers help capture higher-level information, improve
semantic diversity, and provide additional training
signal (Zeiler and Fergus, 2014). Experiments
show that our dual augmentation for both encoder
and decoder improves the robustness of summa-
rization models on noisy and attacked test datasets.

Our main contributions are as follows:

e We empirically evaluate the robustness of re-
cent summarization models against perturbations
including noise and synonym substitutions.

e To improve the robustness of summarization
models, we propose a dual data augmentation
method that introduces diversity in the input and
latent semantic spaces.

e Experimental results demonstrate that our
augmentation method brings substantial improve-
ments over state-of-the-art baselines on benchmark
datasets and attacked test datasets.

2 Related Work

We discuss related work on robust abstractive sum-
marization, adversarial examples generation, and
data augmentation.

Robust Abstractive Summarization. Ideally, a
robust text generation system should consistently
have high performance even with small perturba-
tions in the input, such as token and character
swapping (Jin et al., 2020), paraphrasing (Gan and
Ng, 2019), and semantically equivalent adversarial
rules (Ribeiro et al., 2018). Considerable efforts
have been made in the text generation field. For
example, Cheng et al. (2019) defended a transla-
tion model with adversarial source examples and
target inputs. However, the robustness in the sum-
marization task has been less explored. Jung et al.
(2019) and Kryscinski et al. (2019) showed that
summarization models often overfit to positional
and layout bias, respectively. In contrast, in this
work, we focus on the robustness of summarization
models against word-level perturbations.

Adversarial Examples Generation. Classic at-
tacks for text usually adopt heuristic rules to mod-
ify the characters of a word (Belinkov and Bisk,
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2018) or substitute words with synonyms (Ren
et al., 2019). These heuristic replacement strate-
gies make it challenging to find optimal solutions in
the massive space of possible replacements while
preserving semantic consistency and language flu-
ency. Recently, Li et al. (2020) proposed to gener-
ate adversarial samples for the text classification
task using pre-trained masked language models
exemplified by BERT. In this paper, we focus on
attacking summarization models, which is a more
challenging task, since the model compresses the
input, and perturbations on unimportant parts of
the source might be ignored.

Data Augmentation. Data augmentation aims to
generate more training examples without incurring
additional efforts of manual labeling, which can
improve the robustness or performance of a target
model. Conventional approaches introduce discrete
noise by adding, deleting, and/or replacing char-
acters or words in the input sentences (Belinkov
and Bisk, 2018). More recently, continuous aug-
mentation methods have been proposed. Cheng
et al. (2020) generated adversarial sentences from
a smooth interpolated embedding space centered
around observed training sentence pairs, and shows
its effectiveness on benchmark and noisy transla-
tion datasets. Xie et al. (2022) proposed a target-
side augmentation method, which uses the decoder
output probability distributions as soft indicators.
Chen et al. (2023) selectively augmented training
dataset considering representativeness and genera-
tion quality. In this work, we propose a dual aug-
mentation method that utilizes discrete and virtual
augmented cases.

3 The Proposed SummA ttacker

Formally, given a trained summarization model
with parameters @, the purpose of an attacking
model is to slightly perturb the input x such that the
summarization output of the perturbed & deviates
away from the target summary y:

{#R (#,7) < ¢ argmax — log P (y|#:0)}, (1)

where R (Z, ) captures the degree of impercepti-
bility for a perturbation, e.g., the number of per-
turbed words. To make a maximal impact on the
summarization output with a perturbation budget e,
a classical way is to launch gradient-based attacks
(Cheng et al., 2019). In this section, we propose
a SummAttacker for crafting adversarial samples

Replaced word Replaced word

C]
]Rzmk by gradients

STP MTP
BART Encoder Lste |
| ooOoo g i I s I
Attacked ;] T 7 ;] BART Decoder Attacker
vod (0 O £J [0
selector | Attacked word Attacked word
Rank by gradients || Single Token Prediction (STP) Multi-Token Prediction (MTP)
:;]:] Full permutation
v
S./’;,i I Rank by LM
y A : ——)
s e, |

Figure 1: Overview of SummAttacker. It first selects
vulnerable words to attack, and then replaces them
with words based on language model (LM) prediction
and gradient-based ranking. The replacement word w)
changes the model state s to s’ in the opposite direction
of optimization, —gy,, .

that may differ only a few words from genuine in-
puts but have low-quality summarization results.
Due to its capacity and popularity, we take BART
(Lewis et al., 2020) as the backbone summarization
model, as shown in Fig.1.

Attacked Word Selector. Since it is intractable
to obtain an exact solution for Equation 1, we, there-
fore, resort to a greedy approach to circumvent it.
In BART kind of summarization model based on
Transformer architecture, the sequence representa-
tion vector s of input tokens in x 1is first projected
to keys K and values V using different linear map-
ping functions. At the ¢-th decoding step, the hid-
den state of the previous decoder layer is projected
to the query vector g;. Then g, is multiplied by
keys K to obtain an attention score a; and the ¢-th
decoding output:

Attn (g4, K, V) = a; * V, a; = softmax (qtj(;) )

where d is the hidden dimension. A token that
obtains the highest attention score over all decoding
steps is the most important and influential one to
the summarization model. We select the word w;
to attack if it contains or equals the most important
token. To avoid changing factual information, we
restrict w; not to be people names and locations.
Attacking with LM and Gradients. Next, we
aim to find a replacement word that is semantically
similar to w; but is adversarial to the summarization
model. Language models are empowered to gener-
ate sentences that are semantically accurate, fluent,
and grammatically correct. We take advantage of
this characteristic to find a replacement word w;, for
the target word w;. The general idea is to first iden-
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Figure 2: t-SNE visualization of the hidden states in
BART and our DASum, when taking original and at-
tacked inputs. E is the average Euclidean distance of
paired original and attacked states before using t-SNE.

tify the top likely candidates that are predicted by
the language model for w;, and then select the best
candidate with the guidance of prediction gradient.

Concretely, we first feed the tokenized sequence
into the BART model to get a prediction for the
attacked word w;. As shown in Fig.1, for w; with a
single token, we use STP (Single Token Prediction)
operation to simply obtain the top K predictions
that are semantically similar to w;. For w; with
multiple tokens, we have MTP (Multi-Token Pre-
diction), which lists ¢ X K possible combinations
from the prediction, where c is the token number
in the word. Then we rank the perplexity of all
combinations to get the top- K candidate combina-
tions, denoted as V. We filter out stop words and
antonyms using NLTK and synonym dictionaries.

Following the idea of a gradient-based attack
model, we then find the most adversarial word w,
that deviates from w; towards a change aligned
with the prediction gradient:

Bw; = ve(wi) 10gP(y|fE,0),

w; = argmax sim (e(w) — e (wi) , —Guw, ) , 2)
wEV

where sim(-, -) is cosine distance, and e is word
embedding function. As shown in Fig. 1, the re-
placement word w; changes the model state s to s’
in the opposite direction of optimization, —gy,.

4 Dual Augmentation

With the proposed attacking model, we first analyze
the influences of attacking, and then propose our
DASum to counter the negative effects.

Vulnerability Analysis. We first look into
the word perturbation in attacked inputs that re-
sult in worse summaries. Our conjecture is that
worse summaries can be caused by replacing com-
mon words with uncommon and infrequently-used
words, which the model might not understand well.
Through the analysis of 50 worse summary cases,
our conjecture is verified by the observation that
the frequency of the replacement words is 4 times
lower than the original words on average. Espe-
cially for those worse summaries including unex-
pected words not existing in the input, we found
that the co-occurrence of the unexpected word in
the generated summary and the replacement word
in the input is usually high. Take the third case with
unexpected work gop in Table 1 for example, the
co-occurrence for the word pair {party, gop} is 6
times higher than that of {government, gop}. These
analysis results imply that the model’s vulnerability
is highly related to the word frequency distribution
and the diversity of the training documents.

Next, we investigate the influence of attack in
the latent space. It is well known that in the text
generation process, a change of a predicted pre-
ceding word will influence the prediction of words
after it, since the following prediction will attend to
the previously generated words (Lamb et al., 2016).
This error accumulation problem can be more se-
vere in attacked scenarios since the perturbations
can bring more variety in the decoder space. To
verify our assumption, we evaluate the change in
hidden states of the BART model for 20 cases in the
original and the corresponding attacked test sets.
The top part of Fig.2 visualizes the hidden states
in the first and last BART decoder layer. It can be
seen that as the information flows from the low to
high layers in the decoder, the hidden states in the
latent space show larger diversity, as the distances
between paired hidden states get larger. We also
calculate the Euclidean distance E of paired states,
which increases from 1.8 to 2.5. To improve the
summarization robustness against attacks, the de-
coder could be trained with augmentation in latent
space to comfort with diversity.

Augmentation Design. Based on the above
analysis, we first propose to incorporate the corpus
obtained by SummAttacker as augmentation input
for encoder, so as to improve the diversity of words
in training documents (illustrated as yellow squares
with solid lines in Fig.3(a)). To alleviate the im-
pact of perturbation on the decoding process, we
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Figure 3: (a) [llustration of training examples sampled from vicinity distributions that could cover variants of literal
expression under the same meaning. (b) The architecture of our dual data augmentation approach.

propose a continuous data augmentation method in
the latent space of decoder, where multiple virtual
representations are constructed for each training
instance to make the decoder be exposed to diverse
variants of the latent representation of the same
input document (illustrated as yellow squares with
dash lines in Fig.3(a)).

Input Space Augmentation. The input space
augmentation in the encoder side is straightfor-
ward, as the output from SummAttacker can be
directly employed as encoder inputs. Concretely,
we use SummAttacker to automatically generate
an augmented input document for the original doc-
ument, denoted as . We then train the summa-
rization model with the original and augmented
dataset, where the training objective is denoted as
L, = log P (y|z) and L. = log P (y|Z), respec-
tively. We also randomly add noisy words in both
inputs. We show this process in Fig.3(b), where we
draw the same encoder twice to denote the training
on original and augmented inputs.

Latent Semantic Space Augmentation. Based
on the vulnerability analysis in the decoding pro-
cess, we are motivated to mitigate the impact of
adversarial attacks by exposing the decoder to di-
verse variants of the latent representations. The
variants are established by an adversarial input and
a manifold softmix technique applied on randomly
selected layers in the decoder.

We first define a virtual adversarial decoder input
9 apart from the original input y; by integrating
the embedding of words that are all likely to be
generated. Let 1; be the decoder’s predicted logits
before softmax, where t € {1,2,...,m}, l;[v] be
the logit of v token, and m is the token length of .

We compute the pseudo decoder inputs as:

5 exp(T)
ST exp (1 [v]/T)

where V is the vocabulary size, W is the word em-
bedding matrix with size |V| x d, T is the softmax
temperature.

Next, we construct the virtual adversarial hidden

W, 3

states in the decoder by interpolating h* and ﬁk,
which are the hidden states of inputs y and ¢ at a
randomly selected k-th layer:

R" = Ah* 4 (1 - NA", 4)

where ) is the mixup ratio between O and 1. The
mixup layer k£ € [0, L], where L is the decoder
layer number.

In the decoding process, §j; servers as variants of
y; and integrates the embedding of words that are
likely to be generated in each step. The variants

of hidden states ka behave like the hidden states
of attacked input text. The latent space augmenta-
tion objective is L4 = log P (y|z,y). As shown in
Fig.3, the latent semantic space augmented predic-
tion is a kind of additional training task for decoder
with variant samples indicated by yellow squares
with dash lines. Note that our proposed manifold
softmix differs from the target-side augmentation
in Xie et al. (2022), which mixed the pseudo de-
coder input with the ground truth input in the word
embedding layer, and only introduces low-level
token variations.

Lastly, according to recent studies (Chen et al.,
2020), maximizing the consistency across various
augmented data that are produced from a single
piece of data might enhance model performance.
Herein, we minimize the bidirectional Kullback-
Leibler (KL) divergence between the augmented
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Figure 4: Performance of different models on the Gi-
gaword test set when attacked by SummAttacker with
different candidate number K.

data and real data, to stabilize the training:

Le =Dxr (P (ylo) [P (ylz,9))

+ Dicr (P (y]2) |P (4])) - ©)

Our final loss function is defined as £, + L. +
Lqg+ L.

5 Experimental Setup
5.1 Dataset

We experiment on two public datasets, Gigaword
(Napoles et al., 2012) and CNN/DM (Hermann
et al., 2015), which have been widely used in previ-
ous summarization works. The input document in
Gigaword contains 70 words, while CNN/DM con-
sists of 700 words on average. Hence, we can ex-
amine the effectiveness of our methods on datasets
of different distributions.

5.2 Comparison Methods

Our baselines include the following models:
BART (Lewis et al., 2020) is a state-of-the-art ab-
stractive summarization model pretrained with a
denoising autoencoding objective.

ProphetNet (Qi et al., 2020) is a pre-training
model that introduces a self-supervised n-gram pre-
diction task and n-stream self-attention mechanism.
R3F (Aghajanyan et al., 2021) is a robust text gen-
eration method, which replaces adversarial objec-
tives with parametric noise, thereby discouraging
representation change during fine-tuning when pos-
sible without hurting performance.

SSTIA (Xie et al., 2022) augments the dataset from
the target side by mixing the augmented decoder
inputs in the embedding layer.

5.3 Implementation Details

We implement our experiments in Huggingface on
NVIDIA A100 GPUs, and start finetuning based on
pretrained models facebook/bart-large. Concretely,
there are 12 encoding layers in the encoder and the

Dataset Semantic Grammar | Similarity
. Original 4.4 4.7 -
Gigaword jersarial 4.1 45 ‘ 0.96
Original 4.4 4.6 -
CNN/DM Adversarial 4.0 4.2 ‘ 0.94

Table 2: Human and automatic evaluation of the ad-
versarial samples from SummAttacker, as well as the
original samples for taking a reference.

decoder. The activation functions are set to GeLUs
and parameters are initialized from A/(0,0.02). We
use Adam optimizer with € as 1e-8 and 3 as (0.9,
0.98). We used label smoothing of value 0.1, which
is the same value as Vaswani et al. (2017). Then
attacking candidate number K is set to 10 based on
the parameter study. The learning rate is set to 3e-5.
The warm-up is set to 500 steps for CNN/DM and
5000 for Gigaword. The batch size is set to 128
with gradient accumulation steps of 2. Following
Xie et al. (2022), the temperature in Equation 3 is
set to 0.1 for CNN/DM and 1 for Gigaword, and
the mixup ratio A in Equation 4 is set to 0.7. We
set the attack budget to 1% tokens for Gigaword
and 5% tokens for CNN/DM, based on the con-
sideration of attacking performance and semantic
consistency. We use the original dataset plus the
augmented cases generated by SummAttacker as
our training dataset, where we also randomly add
30% natural human errors to improve the under-
standing of noises. The training process takes about
8 hours and 4 hours for CNN/DM and Gigaword.

5.4 Evaluation Metrics

We first evaluate models using standard ROUGE
F1 (Lin, 2004). ROUGE-1, ROUGE-2, and
ROUGE-L refer to the matches of unigrams, bi-
grams, and the longest common subsequence, re-
spectively. We use BERTScore (Zhang et al., 2020)
to calculate similarities between the summaries.
We further evaluate our approach with the fac-
tual consistency metric, QuestEval (Scialom et al.,
2021) following Chen et al. (2022). It measures to
which extent a summary provides sufficient infor-
mation to answer questions posed on its document.
QuestEval considers not only factual information
in the generated summary, but also the information
from its source text, and then gives a weighted F1
score.
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Traditional Metric

Advanced Metric

Dataset Model ROUGE-1 ROUGE-2 ROUGE-L | BERTScore QE(R) QE(P) QE(FI)
BART B3 563 2.5 8733 WA 223 20237

ProphetNet 35.56 15.87 32.79 88.45 2348 2376  23.62

Gigaword R3F 35.69 16.29 3291 88.60 2305 2379 2342
SSTIA 36.55 16.90 3325 88.72 2352 2401 2376

DASum 38.15 18.53 35.31 88.90 2739 2895 2817

DASum w/o Lo | 36.71 18.17 34.01 88.61 2489 2663 2576

DASumwlo £q | 37.36 1831 34.64 88.71 2464 2693 2579

DASum wio Lo | 3721 18.30 34.32 88.64 2556 2619 2587

BART 3645 12.29 3336 8723 205 1747 1976

ProphetNet 36.98 12.68 338 87.33 228 1743 1985

R3F 37.28 12.98 34.83 87.59 214 1788 2001

CNN/DM SSTIA 37.49 13.05 35.15 87.69 246 1796 2021
| DASum | 4217 18.06 3908 | 8890 2866 2562 27.14

Table 3: Performance of baselines and our model DASum on perturbed inputs by SummAttacker (the attack budget
is 1% and 5% tokens in Gigaword and CNN/DM datasets respectively. Numbers in bold mean that the improvement
to the best baseline is statistically significant (a two-tailed paired t-test with p-value <0.05).

6 Experimental Results

6.1 SummAttacker Evaluation

Before reporting the summarization performance
boosted by our proposed dual augmentation strat-
egy, we first set up human and automatic metrics
to evaluate the quality of the generated adversar-
ial augmentation cases. For human evaluation, we
ask annotators to score the semantic and grammar
correctness of the generated adversarial and origi-
nal sequences, scoring from 1-5 following Jin et al.
(2020) and Li et al. (2020). We randomly select
100 samples of both original and adversarial sam-
ples for human judges. Each task is completed by
three Ph.D. students. For automatic metric, fol-
lowing Li et al. (2020), we use Universal Sentence
Encoder (Cer et al., 2018) to measure the semantic
similarity between the adversarial and the original
documents.

As shown in Table 2, the adversarial samples’
semantic and grammatical scores are reasonably
close to those of the original samples. The scores
are generally higher on Gigaword dataset than
CNN/DM. This corresponds to the setting that the
number of attacked words is larger on CNN/DM
dataset. The kappa statistics are 0.54 and 0.48
for semantic and grammar respectively, indicating
moderate agreements between annotators. For the
automatic evaluation, the high semantic similarity
demonstrates the consistency between the original
and attacked documents.

We also study the influence of the candidate num-
ber K in SummAttacker. In Fig. 4, all models per-
form worse when the input document is perturbed
by SummAttacker with a larger K, since a bet-
ter replacement word w/ can be found in a larger

—— SSTIA
*1 —— BART
—— DASum

ROUGE-L score

% tokens changed

Figure 5: The impact of noise on the performance of
summarization models on Gigaword. While SSTIA and
BART show significant drops in all metrics, our DASum
has a robust performance. The noise here consists of
multiple human errors (typos, misspellings, etc.)

search space. From the viewpoint of generating
adversarial samples, it is not worth using a large K,
because the time and memory complexity increase
with K as well. Thus, we use K=10 in our setting.

6.2 Robustness Evaluation

We next report the evaluation results of summa-
rization models when the input documents are per-
turbed by natural human errors (noise) and syn-
onym substitutions (based on SummAttacker).

Robustness on Noisy Datasets. Humans make
mistakes when typing or spelling words, but they
have the capability of comprehensive reading to un-
derstand the document without being interrupted by
such noises. Thus, we first examine the robustness
of the recent summarization models against natural
human errors. Since we do not have access to a
summarization test set with natural noise, we use
the look-up table of possible lexical replacements
(Belinkov and Bisk, 2018), which collects natu-
rally occurring errors (typos, misspellings, etc.).
We replace different percentages of words in the
Gigaword test set with an error if one exists in the
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Attacked Document & Reference

SSTIA on clean input

SSTIA on attacked input

DASum on clean input

DASum on attacked input

Doc: overcrowding and lick of illumination at exit popints
at konkola stadiom in UNK province of zambia were
among tu major lapses that lead to a stampede resulting in

overcrowding
blamed for stampede
in zambia

## zambian soccer
fans injured in stam-
pede.

overcrowding
blamed for soccer
stampede in zambia

overcrowding
blamed for soccer
stampede in zambia

the dieth of ## sokker fun afrer ana africa coop...

Ref: overcrowding lack of illumination leads to stampede

in zambia: investigation

Doc: philippine president fidel ramos, who was hospi-  philippine president
talized for the second time in ## days over the weekend, may need heart
may need heart surgery, his spokesman (—spokesperson) surgery

said. Ref: philippine president hospitalized may need
heart surgery

Doc: gusty winds pushed a wildfire (—bonfire) closer to
sun valley resort ’s ski area, while hundreds more homes
were ordered evacuated in the valley below." Ref: gusty
winds whip idaho wildfire near sun valley ski area ; hun-
dreds more homes evacuated

hundreds more
homes evacuated as
wildfire threatens ski
resort

philippine president
may need heart
surgery spokesman
say

philippine president
ramos may need
heart surgery

ramos may need
heart surgery

hundreds more
homes evacuated as
winds push bonfire
closer to california
ski resort

winds push wildfire
closer to sun valley
ski area

winds push wildfire
closer to sun valley
ski area

Table 4: Comparisons of summaries generated by baseline models and our method on the noisy document (the
first row) and attacked document (last two rows). The missing information or inconsistent information caused by
perturbations on the baseline model and the consistent information given by our model is highlighted.

Gigaword test set CNN/DM test set
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Figure 6: Performance of baselines and our model on
attacked and clean Gigaword and CNN/DM test set.

look-up table. We show the performance of classic
baseline BART, augmentation-based model SSTIA,
and our model in Fig. 5. Both baseline models
suffer a significant drop in all metrics when eval-
uated on texts consisting of different percentages
of noise. Our DASum model is more robust and
drops the least in all four metrics compared with
baselines. We also give an example in the first
row in Table 4. Humans are quite good at under-
standing such scrambled texts, whereas existing
summarization models are still vulnerable to slight
perturbations and then fail to capture the gist of
the input document, due to the lack of robustness
enhancement training.

Robustness on Datasets Perturbed by Adver-
sarial Attacks. We next examine the robustness
of summarization models on the test datasets per-
turbed by adversarial attacks. For the Gigaword
dataset, we set attack budget € to be only 1 word
(1% tokens), and for CNN/DM we set € to be 5%
tokens of the input document.

The comparison of performance on attacked and
clean datasets is shown in Fig.6. It can be seen
that despite the perturbation being only on a few

words, all four baselines suffer a significant drop
in performance compared with their performance
on the clean test set. Specifically, the ROUGE-1
score of the latest SSTIA model drops by 4.01 on
Gigaword, and the average ROUGE score drops
by 7.33 for R3F model on CNN/DM dataset. This
highlights the vulnerability of the existing sum-
marization models and also demonstrates the ef-
fectiveness of our attacking model. Nevertheless,
the drop percentage of our model is the least com-
pared with other baselines in all metrics. Specif-
ically, our model drops the least with only 2.22
and 0.28 decreases in ROUGE-2 and BERTScore
metrics, respectively, on the Gigaword dataset. We
show the detailed performance on attacked set in
Table 3. Our model outperforms baselines on two
datasets in most metrics. Besides, we also ob-
serve that the summarization models of short docu-
ments are more vulnerable than those of long docu-
ments. One potential reason is that the summariza-
tion model is more dependent on each input word
when the input is shorter. When the input is longer,
the importance of each word decreases, since the
model can resort to other sources to generate sum-
maries.

Ablation Study. We first investigate the influ-
ence of input space augmentation. As shown in
Table 3, without the L, loss, the performance drops
the most. We also conduct diversity analysis on the
inputs after augmentation, corresponding to the vul-
nerability discussion in §4. The ratio of uncommon
words compared with the original common words
increases by 30%, which directly verifies our as-
sumption that introducing variations in the training
dataset improves the robustness of the summariza-
tion model. Next, we study the effect of latent
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space augmentation. Specifically, the ROUGE-1
score of extractive summarization drops by 0.79
after the £, is removed. This indicates that the
model benefits from hidden states with more di-
versity in the training process. In addition, we
compare the decoder hidden states of DASum with
that of BART in Fig.2. The deviation of paired
original and attacked hidden states in DASum is
effectively reduced (F drops from 2.5 to 1.9 in the
last layer). Thirdly, the performance of DASum
w/o L. shows that dual consistency can also help
improve robustness. We also note that DASum is
always more robust than the other two baselines, in
regard to different attacking settings in Fig.5.

7 Conclusion

In this paper, we investigate the robustness prob-
lem in the summarization task, which has not been
well-studied before. We first come up with a Sum-
mAttacker, which slightly perturb the input doc-
uments in benchmark test datasets, and causes a
significant performance drop for the recent sum-
marization models. Correspondingly, we propose
a dual data augmentation method for improving
the robustness, which generates discrete and virtual
training cases in the same meaning but with various
expression formats. Experimental results show that
our model outperforms strong baselines.

Limitations

We discuss the limitations of our framework as
follows:

(1) In this paper, we take an initial step on the
robustness of the summarization system by focus-
ing on word-level perturbations in the input docu-
ment. However, in practice, the robustness of the
summarization models is reflected in many other
aspects. For example, the summarization perfor-
mance towards sentence-level or document-level
perturbations is also a kind of robustness.

(2) Although DASum greatly improves the gen-
eration quality compared with other augmentation-
based models, it requires more computational re-
sources with respect to the augmented dataset con-
struction process. For large-scale datasets with
long text (e.g., BigPatent (Sharma et al., 2019)), it
is worth considering the time complexity of Trans-
former architecture.
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