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Abstract

Fact verification aims to automatically judge
the veracity of a claim according to several
pieces of evidence. Due to the manual con-
struction of datasets, spurious correlations be-
tween claim patterns and its veracity (i.e., bi-
ases) inevitably exist. Recent studies show
that models usually learn such biases instead
of understanding the semantic relationship be-
tween the claim and evidence. Existing debi-
asing works can be roughly divided into data-
augmentation-based and weight-regularization-
based pipeline, where the former is inflexible
and the latter relies on the uncertain output on
the training stage. Unlike previous works, we
propose a novel method from a counterfactual
view, namely CLEVER, which is augmentation-
free and mitigates biases on the inference stage.
Specifically, we train a claim-evidence fusion
model and a claim-only model independently.
Then, we obtain the final prediction via sub-
tracting output of the claim-only model from
output of the claim-evidence fusion model,
which counteracts biases in two outputs so
that the unbiased part is highlighted. Compre-
hensive experiments on several datasets have
demonstrated the effectiveness of CLEVER.

1 Introduction

Unverified claims have been prevalent online with
the dramatic increase of information, which poses
a threat to public security over various domains,
e.g., public health (Naeem and Bhatti, 2020), poli-
tics (Allcott and Gentzkow, 2017), and economics
(Kogan et al., 2019). Therefore, fact verification,
which aims to automatically predict the veracity
of claims based on several collected evidence, has
attracted lots of research interests (Liu et al., 2020;
Zhong et al., 2020; Vo and Lee, 2021; Jin et al.,
2022; Yang et al., 2022).

*Equal contribution.
†To whom correspondence should be addressed.

Existing fact-checking datasets inevitably in-
volve some biases since they are manually col-
lected. For example, Schuster et al. (2019) discover
that negation words in claims are highly-correlated
with the label ‘REFUTES’ in the FEVER dataset
(Thorne et al., 2018). Such biases may mislead
models to explore the spurious correlation between
claim patterns and its label without looking into the
evidence. In consequence, though models achieve
promising performance on biased datasets, they
suffer from obvious performance decline on out-
of-domain unbiased datasets and are vulnerable to
adversarial attacks (Thorne et al., 2019).

To alleviate the aforementioned problems, sev-
eral debiasing methods have been proposed, which
can be mainly grouped into two categories. The
first pipeline is based on data augmentation, which
utilizes manually-designed schemes, such as word
swapping (Wei and Zou, 2019) and span replace-
ment (Lee et al., 2021) to generate additional data
for training. However, these methods heavily rely
on the quality of augmented data and are difficult
to be employed under complicated circumstance,
e.g., multi-hop evidence reasoning, due to their
inflexible augmentation rules.

The second pipeline aims to downweigh the con-
tribution of biased samples to the training loss of
main model, whose inputs are both claim and ev-
idence. Then, the key issue is how to recognize
the biased instances. Specifically, Schuster et al.
(2019) downweigh the claim involving n-grams
that share spurious correlation with labels. Ma-
habadi et al. (2020) assume instances correctly clas-
sified by the bias-only model are biased, where the
input of bias-only model is the claim only. Nev-
ertheless, the former lacks the generalization to
different types of biases since they only focus on
n-grams; the latter relies on the assumption that the
outputs of main model and bias-only model regard-
ing the biased instances are similar, which does
not always hold (Amirkhani and Pilehvar, 2021).
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Moreover, the inaccurate and unstable outputs of
bias-only model during training may mistakenly
result in downweighing unbiased samples (Xiong
et al., 2021).

Unlike existing works based on augmentation or
adjusting the data contribution on the training stage,
we propose a novel method from a CounterfactuaL
view for dEbiasing fact VERification, namely
CLEVER, which is augmentation-free and alle-
viates biases on the inference stage. In general,
existing methods fuse the claim and the evidence
to make the final prediction, which is equivalent
to asking the model to answer a factual question:
What will the output be if the model receives a
claim and its corresponding evidence? Causally,
the Total Causal Effect is estimated in this condi-
tion, where the output is affected by both the biases
in the claim and the claim-evidence interaction in-
formation (See the causal graph in Figure 1). In
other words, claim biases are entangled with the
claim-evidence fused information, making them
difficult to be mitigated precisely and thus result-
ing in a biased output.

To overcome this, we aim to obtain the debiased
output by removing claim biases from the Total
Causal Effect. Inspired by the progress of counter-
factual inference (Sekhon, 2008; Niu et al., 2021),
we would expect to ask a counterfactual question:
What would the output be if the model only received
a claim? That is, from a causal perspective, requir-
ing the fact-checking model to learn the Direct
Claim Effect solely affected by claim biases. Prac-
tically, we first train a claim-evidence fusion model
and a claim-only model independently to capture
the Total Causal Effect and the Direct Claim Effect,
respectively. Then, we subtract the Direct Claim
Effect from the Total Causal Effect on the infer-
ence stage to obtain the Total Indirect Effect, which
is the final debiased prediction.

Taking Figure 1 as an example, the claim is spu-
riously correlated with the false label ‘REFUTES’
due to the phrase ‘did not’. Therefore, the Direct
Claim Effect inclines to the label ‘REFUTES’ since
it is affected by the claim only. However, though
the probability of wrong prediction ‘REFUTES’
in Total Causal Effect is still the largest, the pre-
diction is turned towards the ground-truth label
‘SUPPORTS’ via using the Total Indirect Effect as
the final output, where the high probability of ‘RE-
FUTES’ induced by claim biases is counteracted.
As biases have been mitigated, the Total Indirect Ef-

fect reflects the intrinsic claim-evidence interaction
information, leading to an unbiased prediction.

Overall, the main contributions can be summa-
rized as follows:

• We open up a new counterfactual pipeline for
debiasing fact verification by analyzing the
biased problem from a causal view.

• We propose a novel debiasing method
CLEVER, which is augmentation-free and
mitigates biases on the inference stage.

• Comprehensive experiments are conducted to
validate the effectiveness of CLEVER, where
the results demonstrate the superiority and the
in-depth analysis provides the rationality.

2 Related Work

In this section, we briefly review the related lit-
erature in both domains of fact verification and
debiasing strategy.

2.1 Fact Verification

Recent years have witnessed the rapid development
of research on fact verification. Since the unified
benchmark dataset FEVER along with the shared
task were proposed (Thorne et al., 2018), most
researchers utilize them to evaluate the model per-
formance. Generally, the fact-checking task mainly
consists of three separate parts, i.e., document re-
trieval, evidence selection, and claim verification.
Existing works mainly focus on the last subtask
and employ traditional and widely used methods
(Hanselowski et al., 2018; ?) to retrieve relevant
documents and evidence. Early works treat fact
verification as a natural language inference (NLI)
task and apply methods from NLI to perform ver-
ification (Chen et al., 2017; Ghaeini et al., 2018).
Then, to capture more fine-grained semantic con-
sistency between claims and the evidence, a series
of methods have been proposed to promote the
claim-evidence interaction by formulating them as
graph-structure data (Zhou et al., 2019; Liu et al.,
2020; Zhong et al., 2020). Besides, inspired by the
strong representation ability of pretrained language
models (PLM), some works attempt to fine-tune
PLM on fact-checking datasets and achieve promis-
ing results (Lee et al., 2020; Subramanian and Lee,
2020). Recently, researchers have paid more atten-
tion to explainable fact verification, which requires
a model to produce both veracity prediction and
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Figure 1: The causal view of proposed framework CLEVER. The nodes with ‘F’ and ‘O’ denote the claim-evidence
fused information and the model output, respectively. We take a typical sample in the biased FEVER dataset as
input, where the label is ‘SUPPORTS’ and the strong correlation between the phrase ‘did not’ and label ‘REFUTES’
exists. The output in original graph (Total Causal Effect) is affected by two sources, i.e., claim and claim-evidence
fused information. After the intervention via cutting off the fusion path, the output (Direct Claim Effect) is solely
influenced by the claim, which contains biases that mislead the model to produce spurious label prediction. To
mitigate such biases, a subtraction scheme is proposed to obtain the Total Indirect Effect, which inclines to the true
debiased distribution. Note that a path from evidence to output does not exist since there is no obvious bias in the
evidence that affects the outcome.

its corresponding explanation (Kotonya and Toni,
2020a,b).

2.2 Debiasing Strategy

Although the aforementioned fact-checking meth-
ods have achieved promising performance on the
FEVER test set, it is demonstrated that they lack
robustness since they learn biases (shortcuts) from
claims in datasets instead of performing reason-
ing over pieces of evidence. To this end, several
unbiased and adversarial datasets are proposed to
evlatuate the model robustness and reasoning abil-
ity (Thorne et al., 2019; Schuster et al., 2019). Ex-
isting debiasing strategies in fact verification can
be roughly divided into two groups:

1) Data-augmentation-based pipeline: In this
group, methods aim to generate unbiased samples
and incorporate them into training, with the ex-
pectation that the proportion of biased instances
will be downgraded, resulting in a more unbiased
model. In detail, Wei and Zou (2019) utilize ran-
dom word swapping and synonym replacement to
obtain new training data. Lee et al. (2021) design a
cross contrastive strategy to augment data, where
original claims are modified to be negative using
the generation model BART (Lewis et al., 2020)
and the evidence are changed via span replacement
to support such negative claims.

2) Weight-regularization-based pipeline: The
motivation of methods in this pipeline is to reduce

the contribution of biased samples to the final loss
computation, thus models may attach importance
to the unbiased data. Next, the problem is trans-
formed into how to filter the biased instances out of
the full dataset. Schuster et al. (2019) utilize Local
Mutual Information to obtain the n-grams that are
highly correlated with a specific label. Then, the
claims involving such n-grams are downweighed.
Mahabadi et al. (2020) employ a bias-only model to
capture biases in claims and assume the unevenness
of output label distribution is positively correlated
to the confidence of biased instances. However,
the confidence estimation is inaccurate observed
by some researchers and some calibration meth-
ods are further proposed to adjust the estimation
(Xiong et al., 2021; Amirkhani and Pilehvar, 2021).
Besides, works following this pipeline have also
been developed in the related task natural language
inference (He et al., 2019; Clark et al., 2019, 2020).

Apart from the mentioned debiasing research
pipeline in fact verification, much attention has
been paid to incorporating causal inference tech-
niques to obtain more unbiased model. Representa-
tive works include counterfactual inference for ex-
posure biases in recommender systems (Tan et al.,
2021), implicit knowledge biases and object ap-
prearance biases in computer vision (Niu et al.,
2021; Sun et al., 2021). However, such pipeline is
still under-explored in fact verification. Inspired by
these works, we open up a new debiasing pipeline
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Figure 2: The proposed framework CLEVER. We simulate the standard and counterfactual scenarios via training
a claim-evidence fusion model and a claim-only model independently. The final prediction Ou is obtained by
subtracting the output of counterfactual scenario Oc from that of standard scenario Oc,e.

for fact verification from a counterfactual view.
Compared to the existing two pipelines, our pro-
posed method is augmentation-free and mitigates
biases on the inference stage.

3 Method

In this section, we introduce the proposed debiasing
framework CLEVER in detail. Firstly, we provide
some background information of fact verification.
Then, we describe the method from a causal view.
Finally, we elaborate the detail of training and in-
ference. The overview of CLEVER is shown in
Figure 2.

3.1 Preliminary

3.1.1 Task Formulation
Given a claim c and its corresponding evidence set
{e1, e2, . . . , en}, a fact-checking model is required
to predict the veracity of claim, i.e., the evidence
support, refute, or lack enough information to jus-
tify the claim.

3.1.2 Causal View of Fact Verification
The causal graph is mathematically a directed
acyclic graph, where vertices denote variables and
the edge represents the effect from the start vertex
to the end vertex.

The causal view of fact verification is repre-
sented as a graph Go = {V, Eo}, where V con-
tains four variables with each represents the claim
(C), the evidence (E), the fusion of claim and evi-
dence (F), and the output (O), respectively (See the

standard scenario in Figure 2). In counterfactual
scenario, we expect to capture biases in the claim,
so we solely preserve the edge from claim to output.
Then, we obtain an intervened causal graph Gi, c.f.,
the counterfactual scenario in Figure 2.

3.2 The Proposed Framework: CLEVER

In this part, we specifically introduce how to ob-
tain debiased predictions using the counterfactual
inference technique.

The first step of counterfactual inference is es-
tablishing an imagined scenario different from stan-
dard settings. In our task, as shown at the top half
of Figure 2, the standard setting is that the out-
come is affected by the claim and its correspond-
ing evidence simultaneously in the causal graph
Go. In practice, we take both claim c and evidence
{e1, e2, . . . , en} as inputs to simulate such setting,
which can be formulated as:

Oc,e = fs(c, e1, e2, . . . , en) (1)

where fs denotes the claim-evidence fusion model,
n is the number of evidence, and Oc,e ∈ RL de-
notes the predicted class distribution (L is the num-
ber of class).

Then, a key problem in our framework is how
to design a counterfactual scenario for debiasing.
Causally, if we expect to estimate the effect of
a variable on the outcome, we can give the vari-
able a specific treatment while keep other variables
unchanged. Since the target of our work is to ob-
tain the unbiased outcomes affected by both claim
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and evidence, the treatment is to make the claim-
evidence fusion information unavailable for the
fact-checking model. In other words, as shown at
the bottom half of Figure 2, we create a counter-
factual scenario Gi via intervention on the original
causal graph Go, where the edge from the fused
information of claim-evidence pair to the outcome
is cut off. In practice, claims are solely fed into
a fact-checking model fb (i.e., claim-only model)
to simulate the absence of claim-evidence informa-
tion and require the model to produce prediction
Oc ∈ RL based on claims solely,

Oc = fb(c) (2)

The second step is comparing the outcomes un-
der standard and counterfactual settings. The out-
put of claim-only model Oc is biased that simply
relies on the spurious correlation between claim
patterns and labels. To reduce such biases, inspired
by the Potential Outcomes Model (Sekhon, 2008),
we subtract Oc from Oc,e with a hyperparameter α
(named bias coefficient that controls the extent of
bias) and obtain the counterfactual debiased output
Ou,

Ou = Oc,e −Oc (3)

In this way, the probability of false biased predic-
tion is decreased while the predicted probability of
ground truth is relatively higher.

Training and Inference At training stage, as
biases are mainly involved in claims, we expect that
the claim-only model captures such biases so that
they can be reduced via the subtraction scheme.
Motivated by this, we encourage the output of
claim-only model Oc to represent the biased la-
bel distribution by imposing a classification loss on
Oc. Similarly, Oc,e is also supervised to mine the
claim-evidence interaction. Formally, the objective
function can be written as:

L = Lclf (Oc) + Lclf (Oc,e) (4)

where Lclf denotes the cross entropy loss.
At inference stage, since the outcome in coun-

terfactual scenario Oc is biased after training, we
intuitively reduce it via subtraction from the out-
come in standard scenario Oc,e, c.f., Eq. (3).

Discussion Overall, the proposed framework
CLEVER consists of a claim-evidence model and a
claim-only model, which are utilized to capture
the interaction information and biased informa-
tion, respectively. As we introduce a new pipeline

for debiasing, here, we further emphasize the dif-
ference and merits of CLEVER compared with
the weight-regularization-based approach, which
is the most popular way for debiasing in this task.
Firstly, we do not rely on the assumption that such
two models produce similar outputs for biased in-
stances as weight-regularization-based approaches
do. Besides, we avoid utilizing the uncertain out-
put of claim-only model to adjust the training loss
of claim-evidence model. By contrast, we inde-
pendently train the claim-evidence and claim-only
model and propose a simple yet effective scheme
to obtain debiased results on the inference stage.

4 Experiments

In this section, we conduct both quantitative and
qualitative experiments on several public datasets
to demonstrate the effectiveness of our proposed
method CLEVER.

4.1 Experimental Setup

4.1.1 Dataset and Evaluation Metric
We utilize three categories of datasets to evaluate
our method from different views.

Single-hop datasets. We utilize a biased train-
ing set FEVER-Train (Thorne et al., 2018) to
train models and use an unbiased dataset FEVER-
Symmetric (Schuster et al., 2019) and an adver-
sarial dataset FEVER-Adversarial (Thorne et al.,
2019) to test models, closely following existing
works (Mahabadi et al., 2020; Lee et al., 2021;
Xiong et al., 2021). Furthermore, we introduce
a new unbiased subset of FEVER-Dev, namely
FEVER-Hard1, where all samples cannot be cor-
rectly classified using claims only. That is, the
samples in FEVER-Hard are unbiased since there
are no shortcuts in the claim misleading the model
to explore. Therefore, it can be used to evaluate the
model ability to perform evidence-to-claim reason-
ing indeed, i.e., the debiasing performance.

Multi-hop datasets. Besides, existing works
only focus on the simple one-hop reasoning sce-
nario, where each sample in the current train set
and test set only involves one piece of evidence.
However, in real-world applications, some compli-
cated conditions require multi-hop reasoning capa-
bility. Thus, to further validate the debiasing per-
formance under the multi-hop setting, we augment

1We omit the prefix ‘FEVER’ for conciseness in following
paragraphs since all unbiased and adversarial datasets are
derived from the original FEVER dataset.
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Dataset Symmetric Hard Adversarial

BERT-base 72.08± 0.51 78.05± 0.54 61.93± 1.31

EDA 72.93± 0.48 78.22± 0.61 62.12± 1.02
CrossAug 78.88± 0.46 82.19± 0.31 61.72± 0.45

ReW 73.39± 0.71 78.43± 0.52 64.52± 1.49
PoE 76.43± 0.64 80.51± 0.70 67.21± 1.69

PoE-TempS 76.89± 0.86 81.13± 0.33 67.05± 2.30
PoE-Dirichlet 78.55± 0.97 82.31± 0.82 66.98± 1.77

CLEVER (ours) 84.73± 0.69 90.17± 0.75 68.34± 0.94
∆ Improvement + 17.55% + 15.53% + 10.35%

Table 1: The performance comparison between our proposed method CLEVER and baselines. Three datasets are
introduced to verify the model performance under an unbiased circumstance. The best result on each dataset is
highlighted in boldface and the runner-up is underlined. The improvement in terms of percentage compared to the
BERT-base is shown in the last row.

the dataset Train and Dev with instances consist-
ing of several pieces of evidence and generate two
multi-hop datasets Train-MH and Dev-MH. Then,
we add the multi-hop instances that cannot be pre-
dicted correctly using claims only into Hard and
form a new test set Hard-MH.

Multi-domain datasets. Moreover, we utilize
a dataset namely MultiFC to evaluate the perfor-
mance of debiasing methods under a multi-domain
setting. MultiFC consists of claims collected from
various domains on the website, e.g., politics,
sports, and entertainment. The claim in FEVER-
derived datasets under single-hop and multi-hop
settings is manually-created based on Wikipedia,
which is usually limited to commonsense fact such
as a celebrity’s nationality. Thus, we introduce the
mentioned real-world dataset MultiFC to examine
whether the proposed method works facing claims
with varied forms. Note that we train all models
without using ’NOT ENOUGH INFO’ samples to
keep a similar data distribution with the test set,
since these test sets only involve ‘SUPPORTS’ and
‘REFUTES’ samples. Following previous works
(Lee et al., 2021), we use label classification accu-
racy as the metric.

4.1.2 Baselines
We compare our proposed method with several
baselines from both two existing pipelines:

Data-augmentation-based methods: 1) EDA
(Wei and Zou, 2019). They swap words and re-
place synonym to generate new training samples.
2) CrossAug (Lee et al., 2021). They design a
cross contrastive strategy to augment data, where

original claims are modified to be negative and
the evidence is changed to support such negative
claims and refute the original claims.

Weight-regularization-based methods: 1)
ReW (Schuster et al., 2019). They downweigh
the samples which involve n-grams highly corre-
lated to labels. 2) PoE (Mahabadi et al., 2020).
They downweigh samples with spurious class dis-
tribution outputed from the bias-only model. 3)
MoCaD (Xiong et al., 2021). They propose a cali-
bration method to adjust the inaccurate predicted
class distribution from bias-only models. Specifi-
cally, two calibrators (i.e., temperature scaling and
Dirichlet calibrator) are employed in this work. We
utilize such methods to further optimize the model
PoE, forming two variants namely PoE-TempS and
PoR-Dirichlet.

4.2 Performance Comparison
The overall performance of our proposed method
CLEVER and several strong baselines is shown in
Table 1. We can see that CLEVER outperforms all
existing methods from different pipelines by a sig-
nificant margin on all datasets. More specifically,
we have the following observations:

Firstly, the performance gain of CLEVER is
more consistent on all datasets than that of pre-
vious methods. We can observe that the runner-
up on each dataset is different while CLEVER
achieves the best performance on all datasets. More
specifically, compared to the vanilla BERT model
(i.e., BERT-base) without any debiasing method,
CLEVER advances by 17.55% and 15.53% on
two unbiased datasets Symmetric and Hard, re-
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Figure 3: Left: The performance comparison between
our proposed method CLEVER and several baselines on
the real-life dataset MultiFC. Right: The performance
comparison between our proposed method CLEVER
and baselines under the complicated multi-hop reason-
ing circumstance.

spectively. Furthermore, most baselines, espe-
cially CrossAug, perform relatively worse on the
dataset Adversarial, since debiasing methods are
always specially designed for avoiding learning
biases in claim while do not explicitly consider
adversarial attacks. By contrast, our proposed
method still achieves a promising result on it (about
10% performance improvement upon the BERT-
base), which demonstrates the generalization abil-
ity of our method to handle both adversarial and
biased data. This is probably because our proposed
method utilize a claim-only model to adaptively
capture the shortcuts the model may be prone to
fall into, instead of heuristically defining the biased
phrases or relying on the inaccurate output of the
bias-only model in existing methods.

Secondly, it is worth noting that the methods
EDA and ReW always perform much worse than
the other approaches. This is mainly due to the
different ways of capturing biases. EDA and ReW
are similar that they both consider biases at a spe-
cific word- or phrase-level. EDA replaces some
specific words with synonyms and ReW predefines
biased n-grams that co-occur frequently with a spe-
cific label, which may be inflexible since it is hard
to cover all biases in this way. By contrast, rest
of methods, including ours, all train models to au-
tomatically augment samples and capture biases,
which are of better generalization ability to learn
different patterns of biases.

4.3 Study of Multi-hop Circumstance

Existing methods only utilize samples with single
evidence to evaluate the debiasing performance,
however, we argue that more complicated reason-
ing circumstance should be considered since a

claim may be verified via several pieces of evi-
dence in the realistic scenario. Therefore, we fur-
ther validate debiasing methods under a multi-hop
reasoning setting, where instances with more than
one piece of evidence are involved in both biased
validation set Dev-MH and unbiased set Hard-MH.
Similar to the Hard dataset in the single-hop sce-
nario, Hard-MH also involves all samples model
makes wrong prediction based on the claim only.
Since data-augmentation methods are hard to be
adapted to such complicated scenario, we com-
pare our method CLEVER with baselines from the
weight regularization based pipeline.

As shown in the right part of Figure 3, CLEVER
consistently outperforms its competitors by a signif-
icant margin (about 7% absolute improvement com-
pared with the runner-up PoE-Dirichlet), which
demonstrates its effectiveness of handling compli-
cated data.

4.4 Performance on the Real-life
Multi-domain Dataset MultiFC

We further validate the debiasing performance of
our proposed method CLEVER on the dataset Mul-
tiFC, which contains plenty of claims collected
from the several websites. To fit the output of our
model, we merge the ‘true’, ‘mostly true’, and ‘half
true’ to one class, and similarly merge the ‘pants
on fire’, ‘false’, and ‘mostly false’ into one class.
We train the model on training set of MultiFC and
obtain the performance on the unbiased subset of
MultiFC (Hard-MultiFC), on which the model can-
not predict correctly using the claim solely. The
results are shown in the left part of Figure 3, which
demonstrates the effectiveness of our method on
the real-life dataset. Furthermore, it is worth not-
ing that the performance gap between BERT-base
and debiasing methods is much larger than that on
manually-created datasets in Table 1. The reason
is probably that the bias in real scenario is more
severe than that in handcrafted datasets, which only
involving textual biases. For example, claims in
real website involve entity biases in addition to tex-
tual biases. Entity may refer to a celebrity, such as
Donald Trump, which is usually spuriously corre-
lated with the fake claim, i.e., an entity bias. Thus,
it is significant and urgent to develop debiasing
methods to resist the negative impact of biases to
fact checking models.
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Figure 4: Two representative instances where our pro-
posed method CLEVER outputs correct veracity predic-
tion while baselines make mistakes. The bars denote
the outputed label distribution, i.e., Ou = Oc,e −Oc

(Eq. (3)).

4.5 Case Study

In this section, we design some case studies to
further analyze the advantages of our proposed
method CLEVER on a qualitative aspect. We aim
to compare the performance of different models
at an instance level. We choose the best debias-
ing method from each pipeline (i.e., CrossAug and
PoE) to carry out the analysis. Specifically, we se-
lect representative examples from the dataset Hard
that are correctly classified using our method while
mistakenly predicted by baselines.

From Figure 4, the top instance shows that the

output of claim-evidence fusion model correctly
inclines to the ground-truth ‘REFUTES’ while the
output of claim-only model is mistakenly biased
towards ‘SUPPORTS’. That is, the claim-evidence
fusion model deals with biased instances in a differ-
ent way from the claim-only model, which echoes
the discovery in the previous work (Amirkhani and
Pilehvar, 2021). Therefore, PoE downweighs such
instance in training objective according to the bi-
ased extent of claim-only model would result in
performance degradation. However, our method
CLEVER separates such outputs of two models in
training and the predicted probability of ground-
truth label is further enlarged via subtraction on
inference stage.

The bias in the bottom instance is mainly
induced by the word ‘is’, which is highly
correlated with the label ‘SUPPORTS’. Data-
augmentation based methods simply insert nega-
tions or antonyms, such as transforming ‘is’ to ‘is
not’, are hard to capture the intrinsic conflict be-
tween the claim and the evidence. In this instance,
the conflict lies between ‘Idaho’ and ‘Virginia’,
not the word ‘is’. Therefore, augmenting train-
ing instances via inserting negations or antonyms
contribute little to such complex reasoning cir-
cumstance. However, our approach CLEVER di-
rectly captures both claim-evidence interactions
and claim biases which is augmentation-free. Note
that the biased label distribution is alleviated in
the claim-evidence fusion model, i.e., the prob-
ability of wrong prediction ‘SUPPORTS’ is de-
creased to 0.89 from 0.98 (See Figure 4(b)), since
it partly pays attention to the evidential informa-
tion. Though the distribution is still biased towards
the falsity due to the strong bias between ‘is’ and
the label ‘SUPPORTS’, CLEVER can eliminates
such bias in both models via subtraction so as to
highlight the intrinsic evidential segment, thus pro-
viding the correct prediction.

5 Conclusion

In this paper, we have proposed a novel counter-
factual framework CLEVER for debiasing fact-
checking models. Existing works mainly follow
the data augmentation pipeline and the weight reg-
ularization pipeline. Unlike them, CLEVER is
augmentation-free and mitigates biases on infer-
ence stage. In CLEVER, the claim-evidence fusion
model and the claim-only model are independently
trained to capture the corresponding information.
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On the inference stage, based on the potential out-
come model in the domain of causal inference, a
simple subtraction scheme is proposed to mitigate
biases. Comprehensive quantified and qualified
experiments have demonstrated the superiority of
CLEVER.

Limitations

In this part, we show limitations of our work by
categorizing wrong predictions outputed by our
method CLEVER into two groups.

The first type of error is induced by the uncon-
spicuous biased features of claims. For example,
the claim Scandinavia includes the remote Norwe-
gian islands of Svalbard and Jan Mayen. does not
contain obvious biases so that the output of claim-
only model cannot represent the biased distribution.
Therefore, subtracting such output fails to mitigate
biases but reduces the beneficial claim information
instead. These errors may be avoided by employ-
ing different strategies for instances with distinct
bias extents, which we leave as future work.

The second type of error occurs when high-level
reasoning is required, e.g., mathematical compu-
tation and multi-hop reasoning, which drops into
the scope of model reasoning ability. This work
mainly focuses on debiasing fact-checking models
that make them concentrate on the intrinsic eviden-
tial information. After debiasing, how to enhance
the reasoning ability over such information is a
promising future direction.
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A Dataset Statistics

We show the dataset statistics in Table 2.

Circumstance Dataset # SUP # REF SUM

Single-hop

Train 100,570 41,850 142,420
Dev 7,983 8,681 16,664

Symmetric 379 338 717
Adversarial 364 402 766

Hard 679 2,638 3,317

Multi-hop
Train-MH 120,081 41,850 168,424
Dev-MH 9,214 9,796 19,010
Hard-MH 855 3,027 3,882

Multi-domain
Train-MultiFC 5,634 4,938 10,572
Dev-MultiFC 811 708 1,519
Hard-MultiFC 195 337 532

Table 2: The statistics of datasets that is divided into
three groups. These datasets are introduced to evaluate
the performance of debiasing methods under different
circumstances. ‘SUP’ and ‘REF’ is the abbreviation of
the label ‘SUPPORTS’ and ‘REFUTES’, respectively.
‘#’ stands for the number of.

B Implementation Detail

Following the aforementioned baselines, we em-
ploy BERT-base (Devlin et al., 2019) as the back-
bone model for a fair comparison, i.e., claim-
evidence fusion model and claim-only model are
two independent BERT models. We finetune BERT
with a fully-connected forward layer over the spe-
cial token [CLS] to obtain the final prediction. The
maximum input length is 128, batch size is 32, and
the optimizer is Adam with a learning rate of 2e-
5; we train the model for 3 epochs and repeat 5
times under different random seed settings, which
are all the same as previous works. We conduct
all experiments using PyTorch 1.8.0 on a single
GeForce RTX 662 3090 GPU with 24GB memory.
The training and inference process cost about 1
hour and less than 5 minutes, respectively.
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Figure 5: The performance of our proposed debias-
ing method CLEVER on the graph-based fact-checking
model KernelGAT on three unbiased test sets.

C Validating CLEVER on Graph-based
Fact-checking Model

Fact verification models can be categorized into
two groups, i.e., transformer-based approaches
(e.g., BERT-base we utilize in the main experiment)
and graph-based approaches. To demonstrate the
scalability of our proposed method CLEVER, we
further validate it with another fact-checking back-
bone model, namely KernelGAT, which is a rep-
resentative graph-based approach. All parameter
settings are the same as the original paper reports.
As shown in Figure 5, CLEVER obtains the consis-
tent performance gain on all of three test sets when
equipping with a graph-based fact-checking model,
indicating the scalability of our method, i.e., our
proposed method CLEVER can achieve satisfac-
tory debiasing performance on two main groups of
fact checking models.
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