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Abstract

Large language models (LLMs) can be used
to generate text data for training and evalu-
ating other models. However, creating high-
quality datasets with LLMs can be challenging.
In this work, we explore human-Al partner-
ships to facilitate high diversity and accuracy
in LLM-based text data generation. We first
examine two approaches to diversify text gen-
eration: 1) logit suppression, which minimizes
the generation of languages that have already
been frequently generated, and 2) temperature
sampling, which flattens the token sampling
probability. We found that diversification ap-
proaches can increase data diversity but often
at the cost of data accuracy (i.e., text and labels
being appropriate for the target domain). To ad-
dress this issue, we examined two human inter-
ventions, 1) label replacement (LR), correcting
misaligned labels, and 2) out-of-scope filtering
(OOSF), removing instances that are out of the
user’s domain of interest or to which no con-
sidered label applies. With oracle studies, we
found that LR increases the absolute accuracy
of models trained with diversified datasets by
14.4%. Moreover, we found that some models
trained with data generated with LR interven-
tions outperformed LLM-based few-shot classi-
fication. In contrast, OOSF was not effective in
increasing model accuracy, implying the need
for future work in human-in-the-loop text data
generation.

1 Introduction

Training custom natural language classification
models has become easier with many tools (e.g.,
Huggingface!). However, data collection remains
a costly part of model building. For example, exist-
ing open-source datasets may not be usable if they
do not match the distribution of a model builder’s
target domain or do not contain desired labels. In
such cases, the model builder may need to collect
and label new data which could be costly (e.g., in
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terms of the time and resources to scrape data or
pay people to generate or annotate new data).

Advances in generative large language mod-
els (LLMs), such as GPT-3 (Brown et al., 2020),
present a novel approach for creating training data
for classification models (Yoo et al., 2021; Sahu
et al., 2022; Kumar et al., 2020). Model builders
can prompt an LLM with the domain of texts and
labels of interest and the LLLM can quickly gener-
ate text data for the model builder’s needs. This
approach allows model builders to acquire a large
amount of data even when they initially have no
or few data instances. With the generated data, the
model builder can train a separate affordable model
(e.g., BERT (Devlin et al., 2019)) to perform the
specific task.

While LLLMs can directly support this classifica-
tion task with few-shot learning, it might not be the
best option for every model builder—some might
not have enough resources (e.g., GPUs) or budget
(e.g., credit for GPT-3) to run expensive models.
Others might be concerned about privacy or secu-
rity issues when they use LLMs from external APIs
(e.g., OpenAl API). In such cases, generating data
from LLMs and training custom models could be
a more viable approach. Moreover, if we share
generated datasets within the community, we can
also benefit those who do not have access to LLMs.
Lastly, we can also use generated datasets to test
models. With these benefits of generating new text
datasets with LLMs, the practical concern is how
to generate high-quality datasets.

In this work, we investigate human-Al partner-
ships to efficiently create high-quality datasets with
LLM-based text generation. High-quality datasets
should have high diversity and coverage, informing
the extent of data that the model may encounter. At
the same time, the generated text should have high
accuracy, being relevant to the model’s target task
while having accurate accompanying labels. To
these ends, we first study two technical approaches
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to diversify text generation (Section 3): 1) logit sup-
pression, which diversifies the generated texts by
decreasing the probability of sampling tokens that
have already appeared frequently in the previous
generation, and 2) temperature sampling, which
flattens the probability distribution of sampled to-
kens to pick less likely texts. From an experiment
on eight classification tasks with GPT-3 as a text
generator (Section 4), we found that diversifica-
tion approaches can have mixed results. While
increasing data diversity, these approaches can hurt
accuracy in generation and similarity to the original
datasets for the task.

We demonstrate that human interventions (Sec-
tion 5) are the key to resolving these issues in text
generation diversification. We examine human in-
terventions of replacing inaccurate labels with ac-
curate ones (label replacement) and filtering out-
of-scope data (out-of-scope data filtering). With
oracle studies (Section 6), we found that replac-
ing all incorrect labels increased model accuracy
by 14.4% when we used both logit suppression
and high temperature. This performance increase
brings in practical benefits—without label replace-
ment, the average accuracy of models trained with
GPT-3-generated data was lower than that of GPT-3
classification with few-shot learning, but with 180
instances label-replaced, the models trained with
generated data started to outperform GPT-3 few-
shot classification. Out-of-scope data filtering had
limited utility in increasing model accuracy, possi-
bly due to the negative impact of removing training
instances. We discuss how human interventions
can further facilitate the diversity and accuracy of
text data generation.

Our contributions are:

* A methodolgy that combines LLM generation
approaches and human supervision for diver-
sified and accurate data generation.

* An experiment showing how text generation
diversification impacts the accuracy of trained
models and other qualities of the data, such as
diversity and accuracy in the generation.

* Oracle studies on how human effort to replace
misaligned labels and filter out-of-scope data
instances can impact the performance of mod-
els trained on data generated with text diversi-
fication.

2 Related Work
2.1 Text Data Generation for Model Training

In NLP, data augmentation, where data are multi-
plied based on existing data, is one context where
text data are generated for model training. There
were many approaches, from replacing words with
synonyms (Wei and Zou, 2019; Zhang et al., 2015),
to randomly editing texts (Wei and Zou, 2019), pre-
dicting replaceable words (Ng et al., 2020), back-
translating (Fadaee et al., 2017), generating label-
flipped data (Zhou et al., 2022), or using reinforce-
ment learning to condition generation (Liu et al.,
2020). Inspired by MixUp (Zhang et al., 2018),
which mixes different examples in vision data, re-
searchers also blended texts to augment data (Guo
et al., 2020; Sun et al., 2020; Zhang et al., 2022).
Other approaches generate texts by learning from
different datasets (Xia et al., 2020; Hou et al., 2018;
Chen et al., 2020; Yoo et al., 2019).

Recently, with the generative capacity of LLMs,
researchers proposed generating datasets with zero
or very few samples and training a separate model
to serve the specific task (Kumar et al., 2020; Yoo
et al., 2021; Sahu et al., 2022; Yuan et al., 2021;
Hartvigsen et al., 2022). As this approach would
extract information from large models, they would
be analogous to knowledge distillation (Phuong
and Lampert, 2019; Hinton et al., 2015) or dataset
distillation (Wang et al., 2018; Cazenavette et al.,
2022). LLM-generated data has also been used to
test other trained models (Ribeiro and Lundberg,
2022; Perez et al., 2022). In this work, we extend
the previous work by investigating the generation
of high-quality data with accurate diversification.

2.2 Text Generation with LLMs

As the size of language models increases, re-
searchers found that LLMs can serve different
generation tasks based on input prompts and ex-
amples (Brown et al., 2020). This approach can
be used to generate text data with instructional
prompts and a few examples. However, for the
generated data to be useful, diversity and cover-
age should be ensured. Control of the sampling
temperature (Goodfellow et al., 2016) would be rel-
evant, as it facilitates the unlikely generation, but
it was not evaluated for the facilitation of diversity
and coverage. Inspired by previous work on con-
trolling LLM generation, we examine human-Al
approaches to steer data generation to have higher
diversity while securing accuracy in the alignment
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of specified labels.

2.3 Human-In-The-Loop

Human interventions are imperative to train high-
performance machine learning models, as people
curate datasets, configure model architectures, and
test the trained models. Researchers investigated
approaches to make human interventions more
interactive in model training pipelines, by clos-
ing gaps between model training and data cura-
tion (Fogarty et al., 2008; Amershi et al., 2009,
2012; Levonian et al., 2022), humans extracting
features (Branson et al., 2010; Cheng and Bern-
stein, 2015), interactively changing the error pat-
terns (Kapoor et al., 2010; Talbot et al., 2009), or
interactively testing models (Wu et al., 2019; Yuan
et al., 2022; Ribeiro et al., 2020; Cabrera et al.,
2021; Suh et al., 2019). Generative models intro-
duce novel approaches to interactively tune and
evaluate models by leveraging generated results as
data instances for training and testing (Ribeiro and
Lundberg, 2022). In this work, we explored har-
nessing diversified and accurate datasets by com-
bining LLM-based text generation and human in-
terventions.

3 Diversified Text Data Generation

We lay out the desired characteristics of the datasets
for model building. Then, we introduce approaches
to generate diversified datasets with LL.Ms.

3.1 Goals

Ideal classification datasets need to have the fol-
lowing characteristics: 1) Scoped: fall in the model
builder’s domain of interest while classifiable with
labels of interest, 2) Label accurate: accompany
accurate labels, and 3) Diverse: cover cases the
model would encounter during test time. These
goals are difficult to achieve simultaneously but
need to be balanced. Only considering diversity,
randomly generating any text would be enough, but
it would hurt scope and label accuracy. Likewise,
only considering the scope and label accuracy, gen-
erating an accurate but limited variety of text would
be enough, but it would hurt the diversity.

3.2 Diversifying Approaches

We introduce the setting to use LLM-based data
generation for model training. Then, we lay out
two approaches to promote diversity in text data
generation. We also note their potential risks of
harming the scope and accuracy.

Ratio of previously generated tokens: amazing (24%) / great (5%) /
Given Prompt: Write a positive movie review

Currently generated text: The movie was.

Probability of next tokens without and m diversification approaches:

a) Logit Suppression

NIFnr

amazing great fantastic one bad amazing great fantastic one bad

b) High Temperature

Figure 1: Examples of Diversification Approaches.

3.2.1 Settings for Data Generation

When prompting LLMs, we consider 1) a text type
and 2) labels in the prompts. While there can be
many different prompts, in our paper, we used the
following prompt:
Write a movie review (text type) to cover all fol-
lowing elements

Elements: positive sentiment (1abel)
Movie review (text type): "This is a great movie"

(A)

Model builders can also prepend examples in the
same format. The generation process is iterative,
and model builders can use intermediate data points
as examples in later prompts. The model builders
can generate data until they reach the desired num-
ber of data points. With the generated data, the
model builder would finetune a separate smaller
model that serves the target task. With this ap-
proach of finetuning a smaller model, there can be
a question of whether finetuning a separate model
would result in higher accuracy than using zero-
shot or few-shot learning of the LLM. In the later
study, we show the cases where finetuned smaller
models perform better than the LLM.

3.2.2 Logit Suppression

Logit suppression is a diversification approach that
suppresses tokens that have already been generated
frequently in the intermediate dataset (Figure 1a).
With this approach, the generation pipeline logs
the frequency of tokens that have been generated
so far. Then, to diversify the selection of tokens,
logit suppression decreases the probability of high-
frequency tokens. However, with this approach,
some tokens that could contribute to accurate gen-
eration can be suppressed.

3.2.3 High Temperature

The temperature of sampling distribution (Good-
fellow et al., 2016) controls how “flat” the token
sampling probability is (the equation is explained
in Appendix A). High temperature leads to “flatter”
token sampling probabilities (Figure 1b), increas-
ing the probability of sampling “less likely” tokens
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and diversifying generation. Similar to logit sup-
pression, extremely high temperatures can result in
tokens irrelevant to the prompt, hurting accuracy in
generation results.

4 Experimentl: Diversified Text Data
Generation

We evaluated how diversification approaches im-
pact the diversity of the generated data and the
accuracy of models trained with the dataset.

4.1 Experiment Settings

4.1.1 Tasks

We used tasks from eight datasets. SST-2 (Socher
et al., 2013) is a binary sentiment classification
dataset from Rotten Tomatoes movie reviews.
Clickbait classification dataset (CB) (Chakraborty
et al., 2016) is news headlines labeled either click-
bait or non-clickbait. CARER (Saravia et al., 2018)
is Twitter statements labeled with one of the six
emotion categories. PubMed 200k RCT (Dernon-
court and Lee, 2017) has five classes regarding the
roles of sentences in medical papers. The subjec-
tivity dataset (SUBJ) is movie review texts labeled
subjective or objective (Pang and Lee, 2004). For-
mality classification dataset (FO) (Lahiri, 2015)
has labels on whether the text is formal or informal.
HWU64 (Liu et al., 2021) is a dataset with hu-
man utterances to chatbots, and we used 18 domain
classes for our experiments. Corpus of Linguistic
Acceptability (COLA) (Warstadt et al., 2019) is
publication texts with annotations on whether the
text is grammatically correct or not.

4.1.2 Generation Method

As a generative LLM, we wused the
text-davinci-002 model of GPT-3 through
OpenAl API Access with Prompt A. We list the
specific text types and labels used for each dataset
in Appendix B.1. The generation process was
iterative, with 20 data points generated with a
single prompt for each API call. As a single
prompt can only generate data instances for a
single label, the generation process cycled through
all considered labels while balancing the number
of instances for each class. As our tasks dealt with
short text data, we limited the generation length
to 100 tokens. We set the frequency penalty and
top p to 0.02 and 1, respectively. Except for SST-2,
we generated 5600 instances for a single training
dataset. For SST-2, we generated 6922 data

points. We chose these numbers to ensure a low
generation budget while having fair quality when
training models. Specifically, with a maximum
length of 100 tokens for each generated instance,
if the prompt includes examples for n classes, the
number of required tokens for each instance would
be (100+30) x (n+1) (where 30 come from the
instructional prompts). With the generation pricing
of $0.02/1000 tokens for text-davinci-002
model, 5600 and 6922 instances resulted in
maximum spending of $14.56 x (n+1) and $17.80
X (n+1), respectively. In our pilot tests, model
accuracy saturated after these numbers of instances.
For the oracle training dataset, with which we
compared the quality of the datasets, we sampled
instances from the original training dataset for
the task. The test dataset was sampled from the
original test dataset. We provide details on how we
sampled these instances in Appendix B.2.

Generation Conditions In addition to logit sup-
pression and temperature sampling, we also con-
sider example seeding, whether the generation
pipeline begins with an initial set of example in-
stances. We can use multiple approaches simultane-
ously (e.g., using logit suppression and temperature
sampling together), and how these approaches in-
teract is also the scope of our questions. For a
single combination of conditions, we generated
three datasets, as there could be some variance in
the results with the initial seeds and the examples
generated initially.

We instantiated logit suppression with the logit
bias function in OpenAl API Access”, which can
increase or decrease the probability of sampling to-
kens. Every time we complete a single generation
iteration, we recorded the frequency of tokens gen-
erated by GPT-3. As the OpenAl API only allows
100 tokens for logit biasing, we suppressed only
the 100 most appeared tokens. Specifically, for the
logit bias weights, we multiplied the token appear-
ance ratio (in percentage) by -7.5 while capping the
minimum weight at —7.5. For temperature sam-
pling, we used four temperature values, 0.3, 0.7,
0.9, and 1.3. When seeding examples, we first ran-
domly sampled 18 examples from oracle training
data with a balanced number of labels. Only for
PubMed, which has five classes, we used 15 seed
examples. We used sampled data points as an initial
example pool. With example seeding, from the first

2ht’cps: //beta.openai.com/docs/api-reference/
completions/create#ticompletions/create-logit_bias
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Figure 2: Impact of logit suppression and high temperatures on model accuracy, label accuracy, diversity, and
similarity to the oracle dataset, averaged across eight tasks. Bars without hatches start generation without examples
while those with hatches start with few-shot generation. Throughout this paper, error bars indicate 95% confidence

interval.

generation iteration, examples were randomly cho-
sen from the pool. Without the seeding examples,
we completed the first cycle of generations as a
zero-shot generation. After the first cycle, since we
would have generated data instances for all labels,
we added examples to the prompt. When adding
examples, we randomly sampled the examples for
all labels, one example for each label.

4.1.3 Training Method

With the generated data, we finetuned base size
BERT (Devlin et al., 2019) classifiers with 109M
parameters using pretrained weights from the Hug-
gingface Transformer library (Wolf et al., 2020)
with a randomly initialized fully connected clas-
sifier layer. For each dataset, we trained the five
different models with the same dataset. With three
datasets for each combination of approaches, it
resulted in 15 models for a condition. While train-
ing, Adam optimizer was used, with a learning rate
of 3e-5 and a warm-up period of 3 epochs. We
adopted the early stopping with the patience of five
training epochs. We used PyTorch and RTX A6000
GPUs for training.

4.2 Metrics

We compared the accuracies of models trained with
generated data to 1) models trained with oracle
datasets (oracle model) and 2) GPT-3’s few-/zero-
shot classifications (text-davinci-002). For
GPT-3 few-shot learning, we used 18 examples
(15 only for PubMed) with the same number of
examples for each label. We also measured the
diversity of the dataset using Remote-Clique met-
ric (Rhys Cox et al., 2021), which is the average
mean pairwise distances. Specifically, we embed-

ded generated data with BERT (Devlin et al., 2019),
then calculated the distances. We also evaluated
label accuracy, which is the accuracy of the align-
ment between the generated texts and the specified
labels. For this metric, except for SST-2, we used
the oracle model as the evaluator. For SST-2, we
used GPT-3 few-shot classification as the evalua-
tor, as it has higher accuracy than the oracle model.
We also measured the similarity of the generated
dataset to the oracle dataset with the average mean
pairwise distances between the two. For similarity,
we also used BERT to embed the generated texts.

4.3 Results

Figure 2 shows the results of the first experiment
for all tasks. The first column shows the model
accuracy results. It also shows the accuracy of
zero-shot and few-shot GPT-3 classification (gray
solid and dashed line, respectively) and the model
trained with the oracle training dataset (purple line).
The second column shows the label accuracy, and
the third column shows the diversity. The diversity
plots also show the diversity of oracle datasets (pur-
ple line). The last column shows the similarity. It
also shows the base similarity (brown line), which
is the average distance between all the different
datasets that we considered.

First, to evaluate how diversity, label accuracy,
and similarity impact model accuracy, we per-
formed a linear regression analysis. The analysis
showed that label accuracy, diversity, and similarity
are positively correlated with model accuracy, with
significance (coef=.4797 and p<0.001 for label ac-
curacy, coef=.2260 and p<0.001 for diversity, and
coef=0.1980 and p<0.005 for similarity).
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Regarding specific patterns, logit suppression in-
creased diversity while hurting the label accuracy
and the similarity to the oracle dataset. High tem-
perature increased diversity and decreased label
accuracy, but to a smaller degree than logit sup-
pression. The application of each diversification
approach increased the model accuracy, but when
used together, the benefit did not add up. For in-
stance, in Model Accuracy of Figure 2, each high
temperature (1.3, red light bars) and logit suppres-
sion (dark blue bars) could increase the model ac-
curacy from when using a low temperature (0.3,
light blue bars). However, when using them to-
gether (dark red bars), the resulting accuracy was
not much different from only using high temper-
atures (light red bars). It indicates that the effect
of logit suppression has diminished by using high
temperatures and logit suppression together. Seed-
ing examples increases label accuracy and model
accuracy. Examples also slightly increased diver-
sity when used without logit suppression. Whether
models trained with LLM-generated data would
have higher accuracy than zero- or few-shot learn-
ing of LLMs depends on the task. We provide a
detailed result on each task in Appendix C.

5 Human Interventions to Fix Inaccurate
Text Generation

The first study shows that diversifying approaches
can have mixed effects, hurting the accuracy in gen-
eration. We propose two human interventions to
improve the generated data, based on issues that
we found from qualitatively analyzing the gener-
ated data. The first is label replacement (LR),
switching the misaligned label to the correct one.
The second is out-of-scope data filtering (OOSF),
which removes instances that are outside the do-
main of interest and do not match any labels (OOS
instances).

While LR and OOSF might facilitate accurate
generation with diversifying approaches, inspect-
ing all data points can require a lot of effort. Hence,
we propose a simple way to scale the effort of the
model builder, which is training a proxy model.
With this approach, model builders will first label
a small number of data points. Then, with those
labels, they will train binary classifiers as proxy
models, where each learns about a single label (i.e.,
a label class from labels of interest or if the instance
is out of scope). For unlabeled data points, proxy
models can make inferences on behalf of the model

builder. We introduced the specific implementation
of this approach in Section 6.

6 Experiment2: Human Interventions
For Diversifed Text Generation

We evaluated LR and OOSF. Except for adding LR
and OOSEF, we used the same tasks, datasets, train-
ing methods, and metrics as in Section 4. In this
section, we focus on reporting results for two tem-
perature values, 0.3 and 1.3. We present the results
with the rest of the temperatures in Appendix E.
Also, in this section, when reporting, we merged
conditions with and without example seeding.

6.1 Experiment Settings
6.1.1 Label Replacement

For LR, we conducted an oracle experiment. For
each task, we used the highest accuracy model as
the oracle labeler. Therefore, we used oracle mod-
els as a labeler, but only for SST-2, we used GPT-3
few-shot classification as a labeler. We conducted
LR on the datasets generated in experiment 1.

We had two approaches for LR: 1) do LR to all
data points and 2) use proxy models with LR on
partial data. For 1), we inspected all generated
texts with simulated labelers and replaced labels
as the labelers predicted. For 2), we sampled a set
of instances from the generated dataset, applied
the oracle labeler to them, and then trained proxy
models with those data. Specifically, we sampled
90, 180, or 270 data instances. When training, for
each class, we trained a proxy model that performs
binary classification for the class. For each proxy
model, the data instances labeled with the target
label were used as positive instances, while the rest
were used as negative instances. We applied proxy
models to the uninspected data to obtain confidence
scores for each label. For each class, we calculated
the final score as follows:

Sf’l': Svi*w—i—Spvi*(l—w) (1)

where for the class i, Sy ; is the final score, .S, ;
is the confidence score of the proxy model, S ; is
if the class is specified when generating the text (1
when the class is specified, 0 otherwise), and w is
the weighting constant. We considered S, ; as there
can be a chance that the proxy model is inaccurate
and the correct labels are swapped. For our experi-
ment, we used w of 0.3. We chose the label with
the highest final score as the label to be replaced.
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Task Ratio Task Ratio

CARER 20.56% | CB 1.39%
COLA 0.00% FO 0.56%
HWU64 0.28% PubMed 1.11%
SST-2 3.61% SUBJ 3.06%

Table 1: Ratio of out-of-scope instances from 360 sam-
ples.

Task Accuracy (std) | Task Accuracy (std)
CARER  94.93 (2.20) CB 100 (0.00)
SST-2 97.18 (0.89) SUBJ  97.5(1.04)

Table 2: OOSF proxy model performance. Note that
CB only had five OOS instances, with one used for test.

For training proxy models, we trained linear sup-
port vector classifiers with a maximum iteration of
10000 while using texts embedded with BERT (De-
vlin et al., 2019) as input. We chose to train mul-
tiple proxy models for each class over training a
single proxy model for all classes, as it tends to
be more reliable in our pilots when there are many
classes. As the labeling of the proxy model de-
pends on the initial samples, for each generated
dataset in experiment 1, we applied the approach
five times.

6.1.2 Out-of-Scope Filtering

With OOSF, we first tried to understand how OOS
instances occur. Therefore, we sampled 360 data
instances for each task from the union of all the
datasets generated for the task. Then, an author
served as the oracle and annotated if they were
OOS or not. Note that, as the definition of OOS
instance, we filtered those instances that are out-
side the task domain or to which no label is appli-
cable. We found that COLA, FO, HWU64, and
PubMed have zero to four instances of OOS (Ta-
ble 1). For the later analysis, we only considered
the rest of the datasets, with at least five OOS in-
stances. We present examples of OOS instances in
Appendix D.1.

With the annotated data, we trained proxy mod-
els to annotate the instances unseen by the author,
which were binary linear support vector classifiers
with the maximum iteration of 10000 and BERT-
embedded inputs. With the trained model, we did
OOSF on the datasets generated in experiment 1.
Table 2 shows the accuracy of the proxy model,
when we divide the annotated data into training
and test sets with an 8:2 ratio, with a split of ten
times. Note that the perfect accuracy in CB is be-
cause we identified only five OOS instances from
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Figure 3: Impact of label replacement on label accuracy
and model accuracy. Throughout this paper, error areas
indicate 95% confidence interval.

our samples, which are extremely few.

After applying LR or OOSF, we trained BERT
models that serve the target task. For each dataset
that applied LR without proxy models or used
OOSF, we ran the training five times. For each
dataset that used LR with proxy models, since each
dataset from experiment 1 has been label-replaced
five times, we ran training only once. With this
approach, we acquired 15 model accuracy results
for each task and condition.

6.2 Results

6.2.1 Label Replacement

Label Accuracy and Model Accuracy in Figure 3
shows the results with LR. It shows how model
accuracy and label accuracy change with the num-
ber of instances inspected (x-axis). Other metrics,
diversity, and similarity would not change with LR,
as it keeps the texts as they are. For model accuracy,
we also visualized the performance of oracle mod-
els and the GPT-3 few-/zero-shot classification.
LR increases the model accuracy and label ac-
curacy. Moreover, with more labels inspected,
the model accuracy and label accuracy further in-
creased. LR also added more values to logit sup-
pression. For example, without LR, using both
high temperature (1.3) and logit suppression did
not have a comparative benefit over using only
high temperature. However, with label replace-
ment, the addition of logit suppression started to
benefit the model accuracy when using high tem-
perature. When doing LR with proxy models, the
benefit of logit suppression increased with more in-
stances inspected, but with full LR, the size of this
gap decreased a little bit. With LR of all instances,
using both high temperature and logit suppression
increased the absolute model accuracy by 17.8%,
compared to when using neither. It was greater than
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Figure 4: The ratio of instances filtered with OOSF, and its impact on model accuracy, label accuracy, diversity, and
similarity, in aggregation across all tasks. As we examined the effect of OOSF with LR, for model accuracy and
label accuracy, numbers left to +OOS indicate how many instances are inspected with LR.

the increase from diversification approaches when
LR was not used (9.4%). Furthermore, with high
temperature and logit suppression, using LR on all
instances could increase the absolute model accu-
racy by 14.4% compared to not doing LR. When
a high temperature and logit suppression are used
together, the model accuracy outperformed GPT3’s
few-shot classification when LR was done for 180
instances. Across tasks, we found that specific pat-
terns on how diversification approaches and LR
impact the model accuracy can vary between tasks.
We provide details in Appendix E.1.

6.2.2 Out-of-Scope Instances Filtering

Figure 4 shows how many instances were filtered
with OOSF and how it affects model accuracy, la-
bel accuracy, diversity, and similarity. We present
model accuracy from both unbalanced and bal-
anced data: when we balanced data, we used
datasets with the same number of instances across
different conditions by subsampling data with the
smallest size of the filtered dataset. It was because
filtering can make the number of instances different
between conditions. For unbalanced data, we did
not balance the number of instances.

OOSF either increases or maintains label accu-
racy and similarity while decreasing or maintaining
diversity, but there was no unified pattern of how
they impact the model accuracy. There tend to be
few OOS-filtered instances without diversification
approaches. For example, with a temperature of 0.3
and without logit suppression, OOSF removed very
few data instances. Consequently, label accuracy,
diversity, and similarity remained the same with
OOSF. Without diversification approaches, the ac-
curacy of trained models tends to be more unstable
with large confidence intervals. On the other hand,
with diversification approaches, OOSF removed
more instances, and hence there were slightly more
changes in label accuracy, diversity, and similarity,

with small increases in label accuracy and similar-
ity while decreasing diversity. However, in some
cases, these changes were subtle or within the 95%
confidence intervals. Moreover, how the OOSF
changes the model accuracy depends on the spe-
cific task and condition. We provide the OOSF
results for each task in Appendix E.2.

7 Conclusion

In this work, we investigate approaches to harness
LLMs and human efforts to generate text classi-
fication datasets with high accuracy and diversity.
We study two text generation diversification ap-
proaches, 1) logit suppression, which restrains gen-
erating already frequently generated tokens, and 2)
high temperature, which flattens the sampling prob-
ability of tokens. We found that they diversify text
generation but hurt the accuracy in aligning speci-
fied labels with the generated data. We experiment
with two human intervention approaches, 1) replac-
ing misaligned labels with more adequate ones, and
2) filtering out-of-scope instances. We found that
replacing labels makes diversification approaches
more beneficial by increasing the accuracy of mod-
els trained with the generated dataset. On the other
hand, efficient filtering of out-of-scope instances
did not have a positive impact on the model accu-
racy.

8 Limitations

Our implementation of proxy models applies those
models after the whole data is generated. Due
to this, in the resulting dataset, the number of in-
stances can often be unbalanced between labels.
Such a limitation might be addressable by training
proxy models from intermediate datasets with a
smaller number of instances, and using those mod-
els while generating the rest of the dataset. As
the data become unbalanced during the generation,
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the generation pipeline can try to generate more
instances with labels that are a minority in the in-
termediate dataset. However, when we piloted this
approach, we identified potential problems. First,
intermediately trained proxy models could perform
worse than those trained after all data are generated,
due to the lower diversity in intermediate data used
to train proxy models. Second, if many data points
generated with a specific label (label a) actually
belong to another label (label b), there can be cases
where most instances of label b come from the
prompt with label a. It can skew the linguistic pat-
terns of instances within the dataset, as only a small
number of texts for label b might have been from
the prompt with label b. Advanced approaches to
address these issues can be future work directions.

Our implementation of efficient OOSF was not
effective in increasing model accuracy. It might be
due to the negative impact of removing instances,
such as filtering instances on the decision boundary.
As our study of OOSF was not complete, future
work is necessary. Applying OOSF to the entire
generated dataset and seeing the impact of their
removal would be the first step. With a comprehen-
sible understanding of OOSF, we would be able
to design better OOSF strategies, such as filtering
instances with various criteria.

In this work, we only examined the
text-davinci-002 model of GPT-3. Al-
though we believe that the overall trends of results
would be similar for other models, examining
other models with our approaches is a necessary
future work. We also examined only one prompt
(Prompt A), while there may be other options. In
Appendix F, we present partial results on using
another prompt, showing that our approach is
generalizable to other prompts. Combining human
interventions with automatic annotation error
detection (Klie et al., 2023) can be another future
direction.

9 Ethics Statement

LLM-generated text data could have replicated bi-
ases within the used LLM. Diversification might
alleviate such issues, as it steers the LLM to gener-
ate texts that it considers less probable, but bias can
still exist after using the approach. More human
intervention approaches can be a potential solution.
For example, the model builder can provide more
specific prompts and examples to counter the bi-
ased generation (Hartvigsen et al., 2022). However,

these approaches still would have limitations and
how these approaches would impact the data bias
and the resulting model performance would need
to be further researched.
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A Equation for Temperature Sampling

Mathematically, with the temperature 7" and origi-
nal probability of token, p;, the temperature sam-
pled probability of token i, fr(p);, would be de-
noted as below:

1/T

p.
: (2)
Ejp;/T

fr(p)i =

B Experiment 1 Details

B.1 Prompts Used in LLM Generation

For each task, we used prompt A with text types
and labels as in Table 3. For example, for CB, a
prompt can look like the below with examples:

Write a news headline to cover all following elements
Elements: valid news
News headline: "Zach Johnson Wins Sony Open"

Write a news headline to cover all following elements
Elements: clickbait (B)
News headline: "10 Of The Biggest Lies We Were
Told In 2015"

Write a news headline to cover all following elements
Elements: clickbait
News headline:"

B.2 Sampling Oracle Dataset

For the oracle dataset, if there are more than 5600
data points in the original dataset (CB, CARER,
HATE, COLA, HWUG64, SUBJ), we subsampled
5600 training data points. For SST2, we used all
6922 instances from the original dataset. Note that
these numbers are the same as the number of gen-
erated data instances. For FO, we used the original
training dataset as is (with 3622 data instances),
as there are fewer than 5600 instances. For test
datasets, from the same original dataset exclud-
ing instances used for the oracle dataset, we sam-
pled 2400 data points for CB, CARER, HATE, and
HWU64. For FO, COLA, SUBJ, and SST-2, we
used the original test datasets as there were fewer
than 2400 instances.

C Results of the Experiment 1 on
Individual Dataset

Here, we introduce the result of the first experiment
for individual tasks (Figure 5).
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Figure 5: Impact of logit suppression and high temperatures on model accuracy, label accuracy, diversity, and
similarity to the oracle dataset, for each task.
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Task Text type Label — Label in prompts
CARER | emotional tweet joy — expressing joy, anger — expressing anger, fear — expressing fear,
sadness — expressing sadness, love — expressing love, surprise — expressing surprise
CB news headline non-clickbait — valid news, clickbait — clickbait
COLA | sentence grammatically acceptable — grammatically correct sentence,
grammatically unacceptable — grammatically incorrect sentence
FO sentence informal — informal, formal — formal
HWUG64 | human utterance to | news — news, weather — weather, play — play, datetime — datetime, iot — iot,

a chatbot cooking — cooking, recommendation — recommendation, calendar — calendar,
music — music, takeaway — takeaway, lists — list, transport — transport, qa — qa,
social — social, general — general, alarm — alarm, email — email, audio — audio

PubMed | sentence from a | objective — sentence about objective, methods — sentence about methods, results —
medical paper sentence about results, conclusions — sentence about conclusions,
background — sentence about background
SST-2 movie review positive — positive sentiment, negative — negative sentiment
SUBIJ sentence from a | objective — objective statement, subjective — subjective statement
movie review

Table 3: Text types and labels used in prompts.

The benefit of logit suppression for each task
depends on the combination of label accuracy, di-
versity, and similarity. Tasks that have high base
label accuracy tend to improve model accuracy
more with logit suppressions. For example, for CB
and SST-2, those conditions with logit suppressions
were clear winners in model accuracy over other
combinations of approaches. For other tasks, where
overall label accuracy tends to be lower, logit sup-
pression did not have large benefits. COLA was the
extreme case where the label accuracy was about
50% in binary classification, indicating that the per-
formance of the LLM in generating label-accurate
instances was not better than random chance. In
this case, logit suppression resulted in almost no
increase in the model accuracy. Even in this case,
logit suppression could increase the diversity of the
generated text. With PubMed, we could observe an
exception of label accuracy increasing with logit
suppression when example seeding and high tem-
perature (1.3) are not used (compare light and dark-
colored unhatched bars in PubMed’s Label Accu-
racy from Figure 5, except for red bars). It was be-
cause GPT-3 generates many similar errors without
logit suppression and seeding examples. Specifi-
cally, without logit suppression, when prompted to
write about the background sentence in a medical
paper, GPT-3 generated many sentences starting
with “The purpose of this study was,” which is
more about the objective.

For temperature also, specific patterns on how
it affected label accuracy, diversity, and similarity
differ between tasks. In PubMed, without logit
suppression and example seeding, label accuracy
even increased with higher temperatures, which

was against the general pattern. In this case, similar
to what we found with logit suppression, the lack of
diversification approaches led to the generation of
narrowly populated error instances. CARER was
another case with the reversed trend: without logit
suppression and seeding examples, the mean diver-
sity was higher with a temperature of 0.7 than with
a temperature of 1.3. It was because, with the high
temperature of 1.3, many sentences started with
“I’m so,” (on average 3012 occurrences) which was
less the case for the lower temperatures of 0.7 and
0.9 (on average 841.5 occurrences). In CARER,
when example seeding and logit suppression are
not used, label accuracy was also higher with the
temperature of 1.3 than with lower temperatures,
although the means were within 95% confidence
intervals. In this case, with lower temperatures of
0.7 and 0.9, more instances started with “No matter
what,” which continues with advice on what to do
in emotional situations. For such cases, no label is
applicable since they are not the self-expression of
emotions (on average, 32 occurrences with a tem-
perature of 1.3 and 682.7 occurrences with temper-
atures of 0.7 or 0.9). Note that these are examples
of out-of-scope instances. Summarizing results of
logit suppression and temperature sampling, these
approaches increased diversity while hurting the
label accuracy, but specific patterns could vary be-
tween tasks.

The utility of example seeding in label accuracy
and model accuracy could also vary between tasks.
For example, in the extreme case of COLA, ex-
amples did not increase label accuracy and model
accuracy. How seeding examples impact the gen-
eration of data similar to the oracle dataset also
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Task Example Reason for filtering
CARER | No matter what life throws at you, always | Not a self-expression of emotion
remember to find joy in the little things.
#HappyThoughts
CB Valid News Not a news headline
SST-2 Jurassic World Fallen Kingdom Only movie title
SUBJ For what it’s worth, Incomplete sentence and unable to decide subjectivity

Table 4: Examples of OOS instances.
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Figure 7: Impact of label replacement on model ac-
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temperature values.

depends on the task.

For CARER, HWU64, and PubMed in Figure 35,
there were cases where the model accuracy was
higher than the accuracy of GPT-3’s few-shot learn-
ing. Other tasks showed lower accuracy than GPT-
3’s few-shot learning accuracy, indicating that GPT-
3 few-shot classification can be a better alternative
than training a model with generated data if the
model builder has a budget to continuously access
GPT-3 and is willing to hand over data through
API. In Section 6, we show that human interven-
tions can be a way to make the data generation
approach applicable in more tasks by increasing
the model accuracy higher than that of few-shot
classifications from GPT-3.
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Ratio of Unfiltered Unbalanced Model Accuracy
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Figure 8: The ratio of instances filtered with OOSF, and its impact on model accuracy, label accuracy, diversity, and
similarity, for all tasks aggregated, on all temperature values. As we examined the effect of OOSF with LR, for
model accuracy and label accuracy, numbers left to +OOS indicate how many instances are inspected with LR.

D Experiment 2 Details

D.1 Examples of OOS instances.

We present examples of OOS instances in Table 4.

E Results of the Experiment 2 on Varying
Tasks

We present the results of experiment 2 for individ-
ual tasks. Note that we also show results for all
temperature values (0.3, 0.7, 0.9, and 1.3).

E.1 Label Replacement

Figure 6 and 7 shows the LR result for individ-
ual tasks and whole tasks aggregated, respectively,
with all temperatures. First, there were cases where
logit suppression provided additional benefit upon
high temperature only when LR was applied (com-
paring thick and thin red lines in Model Accuracy
of CARER, HWU64, and PubMed in Figure 6).
Second, for tasks that already have high accuracy
without LR (CB and SST-2), LR either resulted in
very small model accuracy increases or even hurted
the accuracy. For example, in SST-2, the label ac-
curacy was already high without LR, and doing LR
with proxy models could even decrease the label
accuracy and model accuracy. Third, without diver-
sification approaches, there were also cases where
LR did not increase model accuracy much while la-
bel accuracy was greatly increased (thin blue lines
in Model Accuracy of CARER, CB, FO, PubMed,
SST2, SUBJ in Figure 6). It may show that fixing
labels is more beneficial when there is enough di-
versity in the generated dataset. Fourth, CB, FO,
and SUBJ were cases where models trained with
generated data could outperform GPT-3’s few-shot
classification only with label replacement (some
colored lines go over gray dashed lines with LR in
Model Accuracy of CB, FO, and SUBJ in Figure 6).
Among them, with FO, inspecting partial instances
could also turn the model accuracy higher than

that of GPT-3 few-shot classification. As expected,
no approaches outperform oracle models as those
models are used for LR. Fifth, for tasks with many
classes (CARER, HWUG64, and PubMed), when us-
ing LR with proxy models, the performance tends
to increase not much dramatically as the number
of annotated instances increases (Model Accuracy
of CARER, HWU64, and PubMed in Figure 6).
Higher model accuracy leaps occurred when all
instances were inspected. It may indicate the diffi-
culty of training accurate proxy models with many
classes to consider.

E.2 Out-of-Scope Filtering

Figure 8 and 9 shows the OOSF results with all
temperatures, for the aggregation of all tasks and
individual tasks, respectively. As mentioned in the
main text, it was difficult to find a general pattern of
how OOSF impacts the model accuracy. Consistent
patterns were that OOSF tends to increase or main-
tain label accuracy and similarity while decreasing
or maintaining diversity.

F Results on Prompt C

On two tasks (FO, HWUG64), we conducted the
experiment with another instructional prompt:

Show me a text type that has the following charac-
teristics

Characteristics: 1abel

text type: "Generated text"

©

We measured model accuracy, label accuracy,
diversity, and similarity of generated datasets and
also investigated how label replacement impacts la-
bel accuracy and model accuracy. The experiment
setting was the same as the main experiment we
conducted, except the prompt used. The trend in
the results (Figure 10) was similar to that of the
prompt A.
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