
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics
Volume 1: Long Papers, pages 6043–6063

July 9-14, 2023 ©2023 Association for Computational Linguistics

Language model acceptability judgements are not always robust to context

Koustuv Sinha ∗,∞ Jon Gauthier ∗,1

Aaron Mueller †,3 Kanishka Misra †,2 Keren Fuentes ∞

Roger Levy 1 Adina Williams ∞
∞Meta AI; 1MIT 2Purdue University 3Johns Hopkins

∗, † Equal contributions
koustuvs@meta.com, jon@gauthiers.net

Abstract

Targeted syntactic evaluations of language mod-
els ask whether models show stable prefer-
ences for syntactically acceptable content over
minimal-pair unacceptable inputs. Our best
syntactic evaluation datasets, however, provide
substantially less linguistic context than mod-
els receive during pretraining. This mismatch
raises an important question: how robust are
models’ syntactic judgements across different
contexts? In this paper, we vary the input con-
texts based on: length, the types of syntac-
tic phenomena it contains, and whether or not
there are grammatical violations. We find that
model judgements are generally robust when
placed in randomly sampled linguistic contexts,
but are unstable when contexts match the test
stimuli in syntactic structure. Among all tested
models (GPT-2 and five variants of OPT), we
find that model performance is affected when
we provided contexts with matching syntactic
structure: performance significantly improves
when contexts are acceptable, and it signifi-
cantly declines when they are unacceptable.
This effect is amplified by the length of the con-
text, except for unrelated inputs. We show that
these changes in model performance are not ex-
plainable by acceptability-preserving syntactic
perturbations. This sensitivity to highly spe-
cific syntactic features of the context can only
be explained by the models’ implicit in-context
learning abilities.

1 Introduction

The unprecedented progress in the development
of neural large language models (LLMs; Devlin
et al., 2019; Radford et al., 2019; Brown et al.,
2020; Zhang et al., 2022) has been accompanied by
a comparable proliferation of methods that aim to
better understand and characterize models’ linguis-
tic capacities (Linzen et al., 2016; Ettinger et al.,
2016; Alishahi et al., 2019; Hu et al., 2020; Jeretic
et al., 2020; Mueller et al., 2020, i.a.). Of the many
methods for this, the minimal-pair paradigm (MPP),
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Figure 1: We measure the impact of different contexts
on the performance of an LM on linguistic acceptability
tasks by prefixing sentences (here, sourced from subject-
verb agreement challenge sets) from a diverse sources.
Each block represents a sentence: Red striped blocks
are unacceptable sentences within a given task, while
green solid ones are acceptable. We also vary the diver-
sity of prefixes by sampling them from tasks/datasets
different from the test suite (indicated by shape).

which is methodologically standard in linguistics,
has emerged as a popular approach to evaluate mod-
els’ knowledge of linguistic phenomena in an unsu-
pervised manner (Marvin and Linzen, 2018; Kann
et al., 2019; Warstadt et al., 2019, 2020a; Misra
et al., 2023). Under the MPP, models are presented
with datasets containing pairs of minimally differ-
ing text sequences—usually differing in word order
or in a few tokens—one of which is deemed by hu-
mans to be acceptable and the other unacceptable.
Drawing on the LLMs’ trained ability to produce
probabilities over token sequences, we can evalu-
ate them according to the MPP by testing whether
models assign relatively greater probability to the
acceptable sequence.

Studies that employ MPP datasets generally com-
pare the probability of two stand-alone text se-
quences without any explicit linguistic context.
However, this is not a naturalistic or realistic ap-
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proach: utterances usually occur in some linguistic
context, where the context itself could affect lin-
guistic preferences. The syntactic priming litera-
ture investigates the effect of linguistic contexts to
some extent, but mostly in a constrained setting
with only one or a small number of context sen-
tences (van Schijndel and Linzen, 2018; Prasad
et al., 2019). The interaction of context with min-
imal pair accuracies remains underexplored for
multi-sentence contexts, despite the fact that multi-
sentence inputs are more likely for many NLP
tasks—especially with the rise of prompting and
in-context learning (Brown et al., 2020; Schick and
Schütze, 2021b). Furthermore, Transformer-based
language models are typically trained on large se-
quences, where masked tokens are predicted given
a completely full context window, consisting of
many sentences. It is unclear how to evaluate MPP

by utilizing this context window, given recent re-
search that has raised questions about the sentence
representations acquired in long-form input (Sinha
et al., 2022; Haviv et al., 2022).

We evaluate the sensitivity of LLMs’ acceptabil-
ity preferences in a more realistic evaluation setting,
with one or more additional sentences in the input
context. We focus on LLM sensitivity to three par-
ticular features of the context: (1) the length of
the input sequence, (2) the similarity of the context
to the minimal pair being judged, and (3) whether
the context itself contains acceptability violations.
Figure 1 illustrates our method at a high level: For
a given MPP dataset (BLiMP, Warstadt et al. 2020a
and SyntaxGym, Hu et al. 2020), we generate new
minimal pair test examples for a given syntactic
phenomenon by artificially simulating a long con-
text window. Specifically, we prepend the given
test example pair with sentences drawn by the axis
of similarity, from unrelated (Wikipedia), minimal-
pair sentences from different (mismatched) or the
same (matched) syntactic phenomena in the MPP

dataset. We also introduce violations in the context
by drawing unacceptable counterparts of the above
similarity scale from the MPP dataset.

We find that the model’s judgements are highly
robust to the presence of unrelated Wikipedia sen-
tences in the context, regardless of the size of the
prefix. However, we observe strong sensitivity to
matched context manipulations. As the context
length increases, acceptable matched contexts im-
prove the models’ judgements significantly. Con-
versely, we observe a strong opposite effect of ex-

posing the model to longer and longer prefixes
containing acceptability violations: models’ judge-
ments degrade drastically, performing far below
chance. This sensitivity is specific to the partic-
ular type of syntactic structural similarity of the
context: we do not see the same degree of improve-
ment/degradation in prediction behavior for con-
texts consisting of mismatched sentences of valid
or violated syntactic structures.

To better understand our results, we performed
several exploratory analyses. To determine whether
the results are an effect of the acceptability judge-
ment task, we replicated our experiments for an-
other task, that of stereotypicality judgements (Nan-
gia et al., 2020), and found largely concurring re-
sults. We also investigated the syntactic overlap be-
tween the context and the test pair, and observe only
minor effects on the judgements with phenomena-
preserving syntactic perturbations. Our results,
therefore, can only be explained by the model
displaying some kind of implicit, instruction-free,
in-context learning ability, and they invite further
scrutiny of and investigation into long-form sen-
tence understanding capabilities of LLMs.

2 Background

Sequence Length and Out-of-domain General-
ization. When evaluating language models’ lin-
guistic abilities in particular, one ought to addition-
ally consider the domain of the test data fed into the
model, as it can have large consequences for model
performance if it mismatches from the model train-
ing data. Length mismatches are quite common in
NLP datasets. For example, MPP test sequences are
considerably shorter than that of the inputs LLMs
typically receive during pre-training (≈ 512–1024
tokens)—the test pairs in standard MPP datasets for
the linguistic acceptability task, for example, are
≈ 4–30 tokens in the case of BLiMP. It is also rela-
tively well established that mismatching sequence
lengths between (pre-)training and testing scenar-
ios can affect performance (Hupkes et al., 2020;
Newman et al., 2020; Varis and Bojar, 2021; Hup-
kes et al., 2022), raising the question: how much
does test sequence length impact our measurements
of model performance on MPP datasets? We contex-
tualize LLMs’ performance on acceptability judge-
ments against work in length extrapolation, and an-
alyze generalization during test time to both shorter
and longer sequences.
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Priming Language Models. Recent work has
explored the effects of providing additional linguis-
tic context to LLMs by “priming” or prepending
their inputs with words/sentences.1 For instance,
Misra et al. (2020) and Kassner and Schütze (2020)
show LLMs’ behave in ways that are reminiscent
of semantic priming, assigning greater probabili-
ties to words that were semantically related to their
words/sentence prefixes. More recently, Sinclair
et al. (2022) used a priming paradigm to measure
the probability assigned by LLMs to sentences pre-
fixed with well-formed but structurally different
sentences. They found that several autoregressive
LLMs assign greater probability to sentences that
are similar in structure to their prefixes across a
number of diverse constructions, thereby demon-
strating a pattern analogous to what is known
in psycholinguistics as structural priming (Bock,
1986; Pickering and Ferreira, 2008). Together with
the findings of van Schijndel and Linzen (2018);
Prasad et al. (2019), these works suggests that
LLMs may represent at least some of the relevant
structural similarities between sentences, and that
their word predictions could reflect an expectation
of repeating structures. While these methods do
not focus on length per se, their manipulation of
the input context is necessarily accompanied by an
increase in length. This leaves open the question
as to how structural properties of the context may
interact with varying levels of input lengths.

In-context Learning. A practical application of
the priming paradigm is that it can be used to elicit
learning behavior in LLMs. That is, LLMs can be
primed using labelled task demonstrations (Brown
et al., 2020), instructions/explanations (Lampinen
et al., 2022, though see Webson and Pavlick., 2022),
or a combination of the two (Wei et al., 2022; Ko-
jima et al., 2022) as supervision for tasks such as
sentiment analysis or reasoning. This suggests that
LLMs seem to be able to extract higher-level infor-
mation from their context when processing a new
test example from a supervised task. Our approach
contributes to this body of work by testing whether
LLMs can also extract more abstract features, such
as grammaticality or stereotypicality, given enough
priming examples.

1This is related to but differs from the operationalization
of priming as finetuning/adaptation as developed by van Schi-
jndel and Linzen (2018); Prasad et al. (2019).

3 Approach

Terminology. We follow standard practice in
MPP, where we evaluate the preference (P) of a
language model M towards acceptable sentence
(x) over its unacceptable counterpart (x′), with re-
spect to log-likelihood, and compute the value over
the full evaluation dataset D. D typically consists
of several test suites, each of which instantiates
a particular linguistic phenomenon. We denote
the particular test suite under evaluation as the tar-
get suite: S ⊂ D. Each target suite consists of
k pairs of acceptable and unacceptable sentences,
(x, x′)ki=1 ∈ S, and may have multiple conditions.
Within each target suite, we compute the accept-
ability judgements on one or more experimental
conditions, comparing a given LM’s log-likelihood
preference P for the acceptable and unacceptable
sentence in each condition. The accuracy (A) over
a test pair from a single condition is defined as:

A(xi, x
′
i) = 1[P(xi) > P(x′i)], (1)

where 1 is the indicator function which returns 1
if the inequality is satisfied and 0 otherwise. De-
pending on the dataset, it can have either one or
multiple conditions evaluated for each test item.

To simulate increasing length of input, we
prepend a prefix sequence c to both x and x′, and
compute the preferences over the concatenated se-
quence, P([c, xi]) and P([c, x′i]), where c can be
arbitrarily long.

Datasets. We focus on the standard targeted syn-
tactic evaluation datasets of BLiMP (Warstadt et al.,
2020a, licensed CC-BY) and SyntaxGym (Hu et al.,
2020, MIT license). BLiMP is a large-scale MPP

dataset consisting of 67 different subsets of 1000
English sentence pairs each. Each BLiMP subset
targets a particular linguistic paradigm that belongs
to 12 different overarching linguistic phenomena—
for instance, subject-verb agreement, argument
structure, etc. SyntaxGym is a syntactic evaluation
benchmark designed with more stringent evalua-
tion criteria. For 34 different linguistic phenom-
ena, the SyntaxGym benchmark defines test items
with two to four different conditions, consisting
of minimal structural variations on the same sen-
tence which render the sentence either grammati-
cal or ungrammatical. Model log-likelihoods are
measured at a critical region within each sentence,
rather than across the whole sentence, and models
are expected to produce log-likelihoods that satisfy
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multiple inequalities across all conditions. Syntax-
Gym is smaller than BLiMP (with about 20 items
per phenomenon on average) and all of the exam-
ples are hand-written. We adapt 23 of the 34 test
paradigms in SyntaxGym whose structure was com-
patible with the prefixing analyses of this paper.2

These two datasets offer complementary value to
the analyses in this paper: BLiMP’s large scale
allows us to make general conclusions about the
average effect of prefix interventions, while Syn-
taxGym’s stringent evaluation allows us to verify
that the effects are sustained under more rigorous
experimental conditions.

To better understand whether our results are spe-
cific to syntactic evaluation MPP datasets, we also
replicate a portion of our experiments using the
CrowS-Pairs dataset for stereotype evaluation (Nan-
gia et al., 2020, licensed CC-BY-SA). CrowS-Pairs
examples fall into 9 bias types (e.g., race, gen-
der, age) and consist of minimal pairs with one
stereotypical sentence and one less stereotypical
sentence about a historically disadvantaged group.
We view the bias types in CrowS-Pairs as analo-
gous to particular linguistic test suites in BLiMP
or SyntaxGym for the purposes of our replication:
we re-code “less-stereotypical” as “acceptable” and
“more-stereotypical” as “unacceptable”.3 More dis-
cussion of the dataset and further methodological
information is provided in Appendix A.

Method. We compute the log-likelihood of the
given input using the minicons library (Misra,
2022),4 which is based on huggingface (Wolf
et al., 2020). For each dataset D, we first compute
the baseline acceptability accuracy according to
Equation 1. Next, we re-evaluate the acceptability
accuracy as we steadily increase the token length
of the input. Following prior work on priming (§2),
we analyze how prepending the test examples with
additional context affects a given model’s accept-
ability judgements.

To increase the token length while maintaining
the MPP formulation, we introduce a context c by
prepending the same sequence to each target x
and x′ in S. To construct a context c, we sam-

2See Appendix F for more technical details on the Syntax-
Gym analysis.

3Our definition of “unacceptable” for the CrowS-Pairs
does not imply grammatically ill-formed, but instead it implies
socially inappropriate. We are aware that recoding in this way
does some terminological violence to the well established
psycholinguistic term (un-)acceptable (c.f. Chomsky 1965;
Schütze 1996), which we chose to do for reasons of space.

4https://github.com/kanishkamisra/minicons

ple from several possible sources (acceptable sen-
tences, unacceptable sentences, and control sen-
tences) discussed below. We also gradually in-
crease the length of the context c by sampling multi-
ple sentences from a known set, and concatenating
them with periods and spaces as delimiters.

Next, we recompute the log-likelihood over
the stimuli (x or x′) by conditioning on c, i.e.,
P([c, xi]) = log p(xi | c).5 For each item pair
(xi, x

′
i) in target suite S ∈ D, we first sample ac-

ceptable sentences to construct context c as fol-
lows:

• Matched: Contexts are sampled from the same
test suite (or bias type) as the target suite S:
x, c ∈ S | x ̸= c.

• Mismatched: Contexts are sampled outside
the target suite (or bias type) S: x ∈ S, c ∈
D | c /∈ S.

For each x ∈ S, we construct the context c by
sampling N sentences (without replacement) from
each group, concatenating them, until the input
reaches 1000 tokens.6

Traditionally, most work on priming has only
considered grammatically acceptable sentences as
the context. While there has been some work on
syntactic priming in humans showing they can
be primed with ungrammatical sentences to pro-
duce other ungrammatical sentences (Kaschak and
Glenberg, 2004; Pickering and Garrod, 2017; Yang
and Stocco, 2019), there is little evidence in the
NLP literature about how a model would react to
grammatically unacceptable sentences in the in-
put. Therefore, we perform our evaluation on both
acceptable prefixes (c ∈ x) and unacceptable pre-
fixes (c ∈ x′), drawn from the same phenomena
(matched, c ∈ S) or from a different phenomena
(mismatched, c /∈ S).

For evaluation, we compute the ∆ accuracy of
acceptability judgements for each model:

1

|D|

|D|∑

i

A([c, xi], [c, x̂i])−
1

|D|

|D|∑

i

A(xi, x̂i),

(2)
where |D| is the total number of samples in a given
dataset (D). Taking this difference allows us to
quantify the precise contribution (in terms of the

5Since c is held constant for every item, the difference
in the conditional measure is equivalent to that in the full
sequence log-likelihood.

6Since GPT and OPT models have a context window of
1024 tokens, we investigate 1000 tokens as an approximate.
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Figure 2: Prefixing type affects model performance (∆ Accuracy) for GPT2 and OPT (6.7B) on BLiMP, SyntaxGym
and CrowS-Pairs datasets. Longer prefixes tend to elicit performance enhancement, an effect which is modulated by
whether the prefixes are acceptable, and whether the prefixes match the test suite/bias.

gain or loss in accuracy of the LM on the accept-
ability task) of the priming contexts (c), which are
held constant for a given pair of test samples. It
further allows us to report a unified measure across
our systematic manipulations of the context.

Models. We study autoregressive language mod-
els at varying sizes—we consider GPT2 (small,
124M parameters) (Radford et al., 2018), and a sub-
set of the OPT family (125M, 350M, 1.3B, 2.7B
and 6.7B parameters; Zhang et al. 2022).

Control. While we define matched and mis-
matched with respect to the phenomena or bias
type provided by the dataset (target suite, S), we
are still in the regime of in-distribution prefix sen-
tences, as the context is drawn from the same MPP

dataset. By design, these sentences are lexically
constrained, and constructed to be as simple as pos-
sible while still testing for the relevant phenomena.
To simulate an out-of-distribution context relative
to the BLiMP/SyntaxGym test examples, we sam-
ple prefix sentences from a completely unrelated
Wikipedia domain, the WikiText-103 test set (Mer-
ity et al., 2017).

Regression Analysis. We define and test our
claims about the effect of length on acceptability

with a mixed-effects logistic regression for each
combination of model and dataset. The regression
predicts a model’s acceptability judgement accu-
racy for a given phenomenon as a function of the
three previously introduced properties of the prefix
c: its length, whether it is matched or mismatched,
and its acceptability. The model includes a three-
way interaction term and all lower-order terms for
these variables, with sum-coded categorical vari-
ables and log-transformed prefix lengths, along
with a random intercept term for the phenomenon
(controlling for variation in baseline accuracies per
phenomenon).

4 Main Results

Figure 2 presents the summary results of our prefix-
ing manipulation, charting models’ accuracy on
MPP evaluations as a function of the prefix (1)
length (x-axis), (2) acceptability (teal and orange vs.
red and purple), and (3) whether it is drawn from
a domain that is matched (teal and purple), mis-
matched (orange and red), or unrelated Wikipedia
(light green). We further explore the main qualita-
tive findings in the following paragraphs, plotting
results on the BLiMP dataset for simplicity. De-
tailed results on SyntaxGym and CrowS-Pairs are
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available in Appendix F and A, respectively.

Model acceptability judgements are largely robust
across lengths—for unrelated, control prefixes.
We first investigate the impact of increasing con-
text length on model acceptability judgement per-
formance. We start with the control case defined
in §3, simulating lengthy context windows with no
other notable grammatical properties by drawing
sentences from Wikipedia, an out-of-distribution
text domain for the target MPP datasets. As we in-
crease the context length, acceptability judgement
results do not significantly change (Figure 3, long
dashed lines), suggesting that LMs, in general, are
very robust to unrelated changes in their context
window. Quantitatively, no main effect of prefix
length is significant (p > 0.2 for all models) for
Wikipedia sentences.

The length of the context matters when the prefix
is related to the acceptability task. We next inves-
tigate the effect of long context on acceptability by
drawing prefixes that are in-distribution (from the
same MPP dataset). As prefix length grows, model
performance on average changes monotonically
from baseline accuracy (Figure 2: rising for ac-
ceptable sentences, falling for unacceptable ones).
When the prefix consists of acceptable sentences
(teal, orange) for example, ∆ accuracy increases
up to 10–20 percentage points for all datasets, and
mostly uniformly across all model sizes. However,
unacceptable prefixes (purple, red) elicit the op-
posite effect: ∆ accuracy falls as context context
length grows (Figure 2, dashed lines).

Scale amplifies this effect only for unacceptable
sentences (Figure 3). For example, OPT 6.7B suf-
fers the largest degradation of acceptability task
accuracy with increasing length of ungrammatical
context, compared to GPT2. Surprisingly, GPT2 re-
covers some percentage of the degradation on very
long sequences, while also showing attenuated the
matched gains. We speculate that this effect de-
rives from a relative weakness of GPT2 to learn
in-context, as it is trained on markedly less data
(8B tokens, as estimated by Warstadt et al.) than
models from the OPT family (180B tokens).

Quantitatively, this interaction between prefix
length and acceptability is highly significant for all
models and evaluations (p < 0.002 for all models
on BLiMP and SyntaxGym). Overall, we observe
length can influence LM’s acceptability judgement
performance for in-distribution contexts, and more
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Figure 3: Interaction of length and prefix type on
BLiMP (collapsed across match/mismatch). Across
all tested models, accuracy improves for acceptable pre-
fixes and worsens for unacceptable ones, as length in-
creases (p < 10−11 for all models). Shaded regions are
the 95% confidence interval.

so when the contexts contain acceptability viola-
tions. One possible driver for these results could
be that longer contexts are more conducive to large
LMs’ in-context learning abilities, and mimic their
k-shot learning scenario. This would mean that the
length of preceding context matters only insofar as
length is a proxy for the number of acceptable (or
unacceptable, with an opposite effect) matched pre-
fixes in the context (see §5 for a related analysis).

Matched context impacts acceptability judge-
ments more than mismatched contexts. We now
dig into the interaction between length and accept-
ability, investigating whether the magnitude of the
effect is modulated by whether the phenomena are
matched or not. In case of BLiMP, the average
effect of acceptable prefixes is ≤ 12 ∆ accuracy
points (Figure 3). However, matched prefixes drive
this improvement more (∆ ≥ 15) than mismatched
ones (∆ ≤ 5) (Figure 4, left subfigure). Con-
versely, while the average effect of unacceptable
prefixes is between 30–40 ∆ accuracy points (Fig-
ure 3), this too is more heavily impacted by the
effect of matched prefixes (50 ≤ ∆ ≤ 80) than by
mismatched ones (∆ ≤ 20) (Figure 4, right sub-
figure). These effects manifest quantitatively in a
three-way interaction between prefix (un-)accept-
ability, (mis-)match, and length (p < 0.007 for all
models on BLiMP and SyntaxGym).

The effects of unacceptable prefixes are ampli-
fied substantially when they are consistent—i.e.,
when they violate the grammatical rules (of En-
glish) in the same way (matched), as opposed to
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in more diverse ways (mismatched).7 These re-
sults could explain why in-context learning ability
works: perhaps prepending contexts that are syntac-
tic similarity can help the model learn or unlearn
acceptability at a higher rate.

5 Prefix Similarity Analysis

We have observed that length effects on accept-
ability judgements are conditional on the similar-
ity between the prefix phenomenon and the test
phenomenon. However, we have only analyzed
prefixes that are either very similar (i.e. contain
predominantly the same abstract syntactic struc-
ture as the test sentence, matched prefixing), or
are almost entirely unrelated (mismatched prefix-
ing, or unrelated prefixing such as Wikipedia). This
leads us to wonder about the nature of the similarity
driving our results thus far: are the models respond-
ing to the presence of shared syntactic structure in
the prefix? Or are they responding to something
more shallow and brittle, such as the exact match
in sentence templates between the prefix content
and the test? If the former is true, we should see a
smooth relationship between prefix syntactic simi-
larity and length effects, such that slight changes in
the syntactic structure of the prefix content results
in similarly slight modulations of length effects.
If models are using more shallow template-based
comparisons between the prefix content and the
test content, we might see a more discontinuous
response, in which even small changes to prefix
content result in large changes in length effects.

To test this, we narrow our focus to the top 20

7Note, however, (i) we assumed that all Wikipedia sen-
tences are acceptable, and (ii) we found that acceptable pre-
fixes have a generally weaker effect on the acceptability task.
Were we to test unacceptable Wikipedia sentences as well, we
might expect a small priming effect.
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Figure 5: Perturbation analysis on OPT 6.7B, using
BLiMP prefixes.

BLiMP phenomena which responded most strongly
to matched prefixing in our previous analyses.8 We
perform controlled perturbations on each prefix
sentence c that preserve the presence of the origi-
nal syntactic structure, but incorporate mild struc-
tural variations or additions. These perturbations
increase prefix length and shift the position of cer-
tain tokens (e.g., the main verb) in c relative to their
counterparts in the test sentence. This enables us
to test whether the models are merely learning to
associate fragile token-position pairings between
the prefix and test sentences, or whether they are
relying on relevant abstract syntactic information.
We leave the test sentence x unchanged.

Our perturbations include the following, all of
which preserve both the grammaticality and the rel-
evant overarching syntactic structure of the BLiMP
phenomena:

• Prefix/suffix adverbs: add a single-word sen-
tential adverb to the start or end of the sen-
tence (e.g., “However, c.”).

• Long prefix adverb: add an adverbial phrase
to the start of the sentence (e.g., “First and
foremost, c.”).

• Add clause: Add a dependent clause to the
start or end of the sentence (e.g., “Regardless
of what {NAME} thinks about it, c.”)

• Quote: Embed the sentence in a quotation
(e.g., “Yesterday, {NAME} said, ‘c.”’).

We also combine all of these strategies into a single
large perturbation, referred to as All.9

8We selected the phenomena which showed the greatest
change in accuracy (averaged across models) between their
baseline accuracy and their accuracy after matched prefixing at
the greatest lengths tested in the analysis (Appendix Table 1).

9We exclude short prefix adverbs from the All perturbation
in favor of long prefix adverbs. Combining these sometimes

6049



Our findings (Figure 5) show that minor per-
turbation of the prefixes results in only very mi-
nor reductions to length effects, suggesting that
matched prefixing effects do not require identically
structured prefixes. Increasingly aggressive pertur-
bations result in increasing (if small) reductions
to ∆ accuracy magnitudes, especially when using
fewer prefixes. We correlate ∆ accuracies with the
mean similarity of prefix sentences before and after
a perturbation, where similarity is an ordinal vari-
able assigned to each perturbation based on how
many tokens it adds to the sentence; see App. B
for details. The Spearman rank-order correlation
(ρs = 0.93, p < .001) is significantly positive for
acceptable prefixes; it is weaker but still signifi-
cantly negative (ρs = −0.7, p < .05) for unaccept-
able prefixes. Thus, there is a smooth relationship
between prefix similarity and length effects.

This perturbation analysis shows that model
judgments are mostly robust to syntactic variations
in the prefix content, with a smooth relationship
between degrees of syntactic variation and model
performance. Appendix D investigates whether
these similarity effects can be described in terms
of lexical overlap or matches in low-level syntactic
features between the prefix and test content; we
find no clear relationship between these low-level
features and models’ acceptability judgment perfor-
mance. Taken together, these results suggest that
the changes we observe in models’ acceptability
judgments are likely due to an abstract comparison
between structural features of the prefix content
and test content. In other words, language mod-
els are sensitive to latent syntactic features, and
the syntactic similarity of the context to the test
examples.

6 Discussion

Short and single-sentence inputs may not be
representative of language models’ true abili-
ties. Our results have implications for interpret-
ing results from MPP benchmark datasets, as these
datasets often consist of shorter inputs that are not
what many pre-trained language models expect,
given that their pre-training procedures often entail
packing many sentences into a single training ex-
ample (Brown et al., 2020; Liu et al., 2019). This
strengthens prior findings showing that reformat-
ting train and test inputs in a way that more closely
resembles the pre-training setup can boost perfor-

results in unacceptable sentences.

mance (Hupkes et al., 2020; Newman et al., 2020;
Varis and Bojar, 2021; Chada and Natarajan, 2021).

More broadly, our work adds to the literature on
prompt sensitivity in pre-trained language models,
which found that LMs are sensitive to individual
prompts (Kojima et al., 2022), and that the ordering
of in-context examples (Lu et al., 2022) can greatly
affect model performance. Smaller LMs are also
sensitive to the choice of prompt and output verbal-
izer (Schick and Schütze, 2021a; Gao et al., 2021),
and we indeed observe that a variety of model sizes
and prefixing strategies elicit prefix sensitivity. To
our knowledge, our study is the first to consider
structural priming in concert with in-context learn-
ing; we have found quantitative, graded effects of
structural priming on string probabilities, subject
to the length of the context.

Language models are sensitive to latent syntactic
features, as well as syntactic similarities across
multiple sentences. Our analyses add to a lit-
erature that has found that language models are
sensitive to more than just lexical or surface-level
syntactic features (Warstadt et al., 2020b; Mueller
et al., 2022). Indeed, LMs are capable of lever-
aging abstract syntactic features, and are sensitive
to latent syntactic similarities between the context
and test examples. Strengthening this finding, we
also observe that models are capable of adapting
to the structures of both acceptable and unaccept-
able examples: LMs show marked improvements
on acceptability tasks when prefixed by matched
acceptable sentences, and they also (more substan-
tially) show the opposite behavior—preferring un-
acceptable sentences—when prefixed by matched
unacceptable sentences (§4). This shows that LMs
are sensitive enough to sentence acceptability to be
able to produce not just systematically grammati-
cal outputs, but also systematically ungrammatical
outputs. While this is not a practical application,
it does demonstrate how well LMs capture this
important linguistic feature. Furthermore, our per-
turbation analysis demonstrated that this two-way
adaptation was robust to irrelevant syntactic vari-
ations in the context (§5). The present work bol-
sters the findings of other recent work that only
explores this behavior in the grammatical direction
(Lampinen, 2022; Sinclair et al., 2022).

Our finding of models’ reliance on abstract struc-
tural features that are made available in their con-
text can be further strengthened by controlling for
lexical exposure (Kim et al., 2022). That is, fu-

6050



ture work can augment our contexts by replacing
real lexical items—especially content words—with
nonsense words (e.g., wug, dax, etc.), following
recent works (Dasgupta et al., 2022; Misra et al.,
2023, i.a.). Doing so would maintain the struc-
tural features of the context while also more strictly
controlling for superficial cues such as lexical over-
lap or similarity, and would make our conclusions
stronger.

7 Conclusion

In this work, we study how robust the acceptabil-
ity judgements of autoregressive Transformer lan-
guage models are to manipulations of the context.
We find that acceptability judgements are generally
robust when the test sentences are preceded by ran-
domly sampled linguistic contexts. However, when
the contexts contain syntactic structures closely
matching those in the test sentence, that can sig-
nificantly improve or degrade the models’ perfor-
mance. This effect is amplified as we lengthen the
context provided to the model. Our results demon-
strate in-context learning in a highly specific way:
models are sensitive to granular syntactic proper-
ties of the context when making predictions over
a target sentence, such that they can be driven to
produce both correct and reliably incorrect outputs.

Limitations

The prefixes we use are semantically independent
from the test sentences, and also semantically im-
plausible when chained together. This is the oppo-
site of what we typically expect in natural language,
where sentences follow from some pragmatically
licit prior context. While our findings are theo-
retically relevant to any NLP task that leverages
natural language inputs, we may see qualitatively
different trends in more naturalistic settings.

Our results are currently limited to English. Cer-
tain languages have grammatical features (such as
case marking) that could strongly impact on lan-
guage models’ acceptability judgments, and this
could affect the trends we have observed. Future
work should investigate similar phenomena across
languages to ensure that these findings suitably
general.
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A Fairness Analysis

Datasets. CrowS-Pairs (Nangia et al., 2020) con-
tains 1508 sentence pairs denoting stereotypes
about nine types of demographics, including gen-
der, age, nationality, etc. CrowS-Pairs differs from
BLiMP and SyntaxGym in construction, since it
was crowdsourced using untrained English speak-
ers from Amazon Mechanical Turk. Despite this
difference, the resulting test pair sentences still only
minimally differ from each other (except for some
instances where more than a few tokens differ due
to annotation noise, see Blodgett et al. 2021 for

Figure 6: Effects of length and stereotypical prefixes
per model. Shaded regions indicate the 95% confidence
intervals across 9 demographics.

more discussion). Thus, we can leverage CrowS-
Pairs in the similar MPP paradigm and test whether
our results are specific to syntactic evaluation.

Similar to the approach in SyntaxGym, (Nangia
et al., 2020) propose to measure fairness in masked
language models by focusing only on the tokens
which differ, computing the pseudo-log-likelihood
of the sentences conditioned on those tokens. To
maximize the comparability of the CrowS-Pairs
results with our results on BLiMP/SyntaxGym,
we compute the conditional log-likelihood, as de-
scribed in §3. We then compute the acceptability of
each test pair as described in equation 2, where we
recode the definitions of unacceptable and accept-
able items to stereotypical and antistereotypical,
in-line with the definitions in this dataset. An ideal,
fair model would show no special preference to-
wards stereotypical sentences.

Method. We construct contexts using the same
approach described in §3. In lieu of phenomena
in SyntaxGym/BLiMP, Crows-Pairs dataset pro-
vides test pairs over multiple demographies. Thus,
for a given test example, we construct matched
contexts by sampling from the same demographic
cohort the test pair belongs to, and conversely sam-
ple from different demographic subset to construct
mismatched context. We re-use the same control
experiment setup, i.e. sampling from Wikipedia for
irrelevant contexts.

Analysis. Figure 6 compares stereotypical con-
texts from mismatched and matched demographics
across models of varying sizes. The results show
that mismatched contexts don’t show any signifi-
cant impact on the fairness scores. Across all model
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Figure 7: Effects of length and anti-stereotypical pre-
fixes per model. Shaded regions indicate the 95% confi-
dence intervals across 9 demographics.

Figure 8: Effects of length and antistereotypical
matched prefixes per model. Shaded regions indicate
the 95% confidence intervals across 9 demographics.

sizes, we see a score decrease when prefixed with
matched stereotypical context. Meanwhile, Fig-
ure 7 shows that prefixing with an antistereotypical
context improves the fairness scores. This raises
the question, can we prime models with antistereo-
typical contexts to reduce stereotypical bias? Fig-
ure 8 shows that prefixing with an antistereotypical
matched context can enable models to reach the
ideal score of an unbiased model, and even surpass
it (i.e, making the model biased in the other direc-
tion). However, it is worth noting that this does not
necessarily indicate that a model is unbiased, as
there is significant variation between demograph-
ics, and more detailed examination is needed to
evaluate the effects per demographic cohort.

B Prefix Similarity Analysis

Here, we provide more detail to support the ex-
periment in §5. Specifically, we present the exact
numbers we use to compute the rank-order correla-
tion coefficients, and describe the implications of
this finding for future work.

To compute the rank-order correlation, we first
obtain mean accuracies across the 20 BLiMP phe-
nomena that respond most strongly to matched pre-
fixing. We do this for each perturbation strategy,
as well as the non-perturbed matched prefixes. We
then take the mean across all prefixing lengths for
OPT 6.7B (i.e., we convert each line in Figure 5
into a single number by taking the mean along the
x-axis). This yields a metric that approximately
captures how much of a priming effect a given pre-
fixing strategy has for this model; we use this as
our dependent variable.

The independent variable is the strength of the
perturbation prefix. It is difficult to define how
strong a given perturbation is, as there are different
notions of linguistic similarity that can be contra-
dictory; for instance, embedding a sentence c into
a quote, as in “Yesterday, Sarah said ‘c”’, does
not add many lexical items to the sentence, but it
significantly modifies the syntactic structure of the
sentence. In our case, we simply measure the token
F1 score between the original prefix sentence and
a perturbed prefix sentence; this metric captures
the token similarity between the original and per-
turbed sentences. Future work could consider more
sophisticated similarity metrics, such as syntactic
or semantic similarities.

We summarize these results in Figure 9. Note
the highly monotonic relationship when using ac-
ceptable prefixes, and the similarly (but slightly
less) monotonic relationship with unacceptable pre-
fixes. This visually displays the strong correlations
we found in §5.

Why are language models being more primeable
with longer contexts given more similar prefixes?
Perhaps models can determine whether tokens are
meaningfully similar between multiple sentences
in the same context; this would be expected given
the implications of the distributional hypothesis.
Alternatively, the model could be effective at re-
lating tokens that are similar in the pre-training
corpus, as long as their positions are within some
limited range of each other. Finally, perhaps the
model is simply effective at ignoring (for exam-
ple) adverbs and adjuncts that are semantically or
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Figure 9: Token similarity before and after perturbing
the prefixes vs. ∆ accuracy across BLiMP phenomena
for OPT 6.7B. We show ∆ accuracies using acceptable
(top) and unacceptable (bottom) prefixes.

syntactically irrelevant, and thus otherwise views
the perturbed prefixes and test sentences as more
or less structurally identical. Our results cannot
currently disambiguate between these possibilities,
but future work could investigate perturbed prefix-
ing in significantly more depth to better understand
why we observe these effects and correlations.

C Metric correlation analysis

To what degree can the priming effects discussed
in this paper reveal facts about a model’s capacities
not already evident from existing MPP evaluations?
To test this, we evaluated (for every model and
dataset) the correlation between a model’s baseline
performance and its performance with a maximal
amount of acceptable or unacceptable matched pre-
fixes. For example, we evaluated the correlation
between a model’s accuracy in un-prefixed BLiMP
phenomena, and its accuracy on each of the phe-
nomena after prefixing with the maximal amount
of possible unacceptable prefixes (start vs. end of
dashed purple line in Figure 2).

Figure 10 and Figure 11 show the results of this
analysis. A single point in any of these scatter-
plots indicates the relationship between a particular
model’s performance on a particular suite at base-
line (no prefix, x-axis) and its performance with
a maximal-length prefix, either acceptable (Fig-
ure 10) or unacceptable (Figure 11; y-axis). If our

prefixing results reveal facts about model capaci-
ties not already present in MPP evaluations, then
we should see substantial variance in the y-axis
not explained by the x-axis on these plots. This
is apparent in most of the plots, especially in the
BLiMP evaluations (leftmost plots).

We also see variation among models: GPT2 has
a prefixing response which is relatively predictable
from its baseline performance (correlation with
acceptable prefixing effect, mean across datasets:
r = 0.85; unacceptable: r = 0.79). In contrast,
OPT 2.7B is far less predictable in its prefixing
response (correlation with acceptable prefixing ef-
fect, mean across datasets: r = 0.59; unacceptable:
r = 0.52).

Overall, this analysis suggests that there are non-
trivial variations in the way that models respond
to these prefixing interventions which is not cap-
tured by models’ baseline performance on matched
stimuli. This suggests that prefixing reveals new
aspects of model capacity not exactly captured by
existing MPP evaluations.

D BLiMP Phenomenon Similarities

Length effects are conditional on the similarity of
the prefix to the target BLiMP phenomenon. Does
some specific kind of similarity (e.g., syntactic or
lexical similarity) explain length effects? Perhaps
the prefix is syntactically priming the model for
the target sentence (Sinclair et al., 2022), in which
case we would expect the syntactic similarity of
the sentences to correlate smoothly with accuracy
when using grammatical prefixes. Another pos-
sibility is that a more spurious feature—such as
lexical overlap—is responsible (Misra et al., 2020;
Kassner and Schütze, 2020). To test this, we can
correlate syntactic similarity and lexical overlap
with accuracies on each example.

To measure lexical overlap, we use F1 scores
to measure how many tokens10 in the prefix and
test sentences are shared. To approximate syntactic
overlap, we can compute the F1 score over depen-
dency labels in two sentences, rather than across
tokens. If multiple prefix sentences are present,
we can take the mean similarity with the target
sentence across prefixes. Then, we compute the
point-biserial correlation11 (ρp) between the sim-

10We tokenize the inputs using GPT2’s tokenizer before
computing overlap.

11The point-biserial correlation coefficient measures the
strength of the relationship between a continuous variable
(e.g., our overlap metrics) and a binary variable (accuracy on
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Figure 12: Token overlap (left) and dependency overlap (right) across BLiMP phenomena. We compute these using
a sample of 10,000 sentences from the target phenomenon and from the prefix phenomenon. The phenomena are
ordered alphabetically.

6057



ilarity metric and accuracy on a given example,
averaging similarities across prefix sentences. We
compute the correlation separately for each model
size and each prefixing strategy. Note that we only
use grammatical prefixes; thus, we expect positive
correlations if priming explains the length effects.

However, this instance-level analysis could be
confounded by the mixture of various phenom-
ena in the prefixes. The model could be sensi-
tive to sentences from certain phenomena more
than others, or the varying lengths of sentences
from each phenomenon. To more specifically mea-
sure whether priming can explain our findings, we
focused on BLiMP and prefixed sentences from
one phenomenon at a time with a given test phe-
nomenon; in other words, we sample mismatched
prefixes, but controlling which phenomenon we
sample from. Using this approach, we can capture
how structurally similar each BLiMP phenomenon
is with each other BLiMP phenomenon, and how
this correlates with accuracies.

Here, we present the lexical and syntactic simi-
larity across each pair of BLiMP phenomena (Fig-
ure 12).12 We find very low and non-significant
correlations with dependency overlap and token
overlap (ρp < 0.05, p > 0.1) regardless of prefix-
ing strategy or model size. This could be evidence
that the model is more sensitive to the length of
the prefixes than any notion of syntactic or lexical
similarity on this task. These are computed across
each prefix and test phenomenon using a sample of
10,000 test sentences and 10,000 prefix sentences
for each point in the confusion matrix. We find
that dependency overlap is generally higher than
token overlap across inputs, perhaps unsurprisingly
given that the size of the set of possible dependency
labels is much smaller than the size of the set of
possible tokens in a given sentence.

We next try correlating these values with accura-
cies on each BLiMP phenomenon as a function of
these phenomenon-level similarity metrics. Accu-
racies with prefixes (and changes in accuracies after
after prefixing) for GPT2 are presented in Figure 13.
Essentially, we are now measuring how similar the
trends are across a similarity confusion matrix and
an accuracy confusion matrix. As we are now mea-
suring similarity across continuous variables, we

an individual example).
12For visual conciseness across confusion matrices, we use

indices rather than individual phenomenon names. For each
confusion matrix in Figures 12 and 13, all phenomena are
presented in alphabetical order.

compute the Spearman correlation (ρs). We find
that correlations here are a bit stronger than when
we mix mismatched prefixes (ρs = 0.11 for depen-
dency overlap, and ρs = 0.18 for token overlap,
p < 0.001 for both). While the magnitude of the
correlations is very low, these are still significant.
Thus, there is some relationship between the simi-
larity of the prefix and test sentence with accuracy,
but the relationship tends to be weak. Also, lexical
overlap seems to be more strongly predictive of
accuracies than structural similarities, indicating
that the model may indeed be more sensitive to spu-
rious lexical similarities than any deeper abstract
notion of syntactic similarity between a prefix and
the test sentence. Nonetheless, this is still prelimi-
nary evidence that priming effects do not explain
much of the accuracy trends we observe with prefix-
ing; instead, perhaps length itself makes a stronger
difference than any specific notion of similarity
between the prefix and test sentence.

This is preliminary evidence that lexical overlap
and low-level syntactic similarity effects partially
explain accuracy increases with BLiMP prefix-
ing, but most of the trends we observe cannot
be explained by these effects alone. Perhaps this
is because the model is more sensitive to multiple
similarities simultaneously than any one isolated
type of similarity. Or, perhaps models are sensitive
to some other latent feature that we did not analyze.
Nonetheless, it is difficult to draw strong conclu-
sions from the lack of a strong correlation, and
correlations alone cannot causally implicate simi-
larities in explaining our findings. Perhaps future
work could disambiguate the relationship between
these factors using causal methods.

D.1 Suite-by-suite prefixing performance

Figure 14 shows GPT2’s improvement in predic-
tion accuracy on different SyntaxGym test suites
(rows) after drawing as many acceptable prefix
sentences as possible from another SyntaxGym
test suite (columns). The values are a percent-
age increase in prediction accuracy, relative to
GPT2’s baseline performance with no additional
context. We see a substantial diversity in how dif-
ferent suites respond to prefixing of acceptable
sentences. Some suites, such as an NPI licensing
suite (npi_src_any) and a filler-gap dependency
suite (fgd_subject), show across-the-board im-
provements in response to any prefixing at all. The
suites labeled reflexive_*_fem, which test under-
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Figure 13: Accuracies for GPT2 on individual BLiMP phenomena after prefixing 10 sentences from a single BLiMP
phenomenon (left). Change in accuracy from no prefix to 10 prefixes on each BLiMP phenomenon (right). We
exclude the diagonal in both cases, as we are interested in mismatched prefixing effects.

standing of feminine reflexive anaphor agreement,
demonstrate interesting unstable behavior: GPT2’s
predictions degrade when these particular tests are
preceded by grammatical sentences containing mas-
culine reflexive anaphors (see e.g. the blue boxes
in the row labeled reflexive_orc_fem, but the
same predictions are facilitated when preceded by
feminine reflexive anaphors.

We also provide a snapshot of the top 10 suites in
BLiMP (Warstadt et al., 2020a) which get the best
and worst changes in accuracy (∆ Accuracy), when
primed with acceptable (Table 1) and unacceptable
prefixes (Table 2) respectively.

E Margin Analysis

How confident are LMs as input length increases?
The results on length priming indicates that longer
matched acceptable prefixes tend to induce bet-
ter acceptability judgements to the target model.
However, investigating the accuracies as com-
puted in Equation 2 alone does not fully explain
the nuances of the model confidence. To under-
stand how model confidence values themselves
differ in acceptable/unacceptable target sentences,
we plot and investigate the perplexity margins in
Figure 15. Specifically, we compute the differ-
ence in the model perplexities δ for each accept-
able/unacceptable pair:

δ(xi, x̂i) = ppl(xi)− ppl(x̂i), (3)

We observe the margins on BLiMP for a candi-
date model, OPT 6.7B in Figure 15, for grammati-

cal, ungrammatical and Wikipedia prefixes. For all
cases, δ starts from a high value for short sequences,
and approaches zero as the context length increases.
There is a marked difference in δ values compared
to Wikipedia and BLiMP prefixes: Wikipedia pre-
fixes appear to display a high value, suggesting
high surprisals. The average δ for Wikipedia also
remains higher than the baseline value (without any
priming), while δ is significantly lower for BLiMP
prefixes. This behavior potentially explains why
we observe almost no change in the accuracy of
Wikipedia prefixes, as the margin remains high and
stable with increasing length of tokens.

Within matched prefixes, we observe the δ to be
significantly lower for unacceptable prefixes com-
pared to the acceptable contexts, and it reduces with
length. This behavior partially explains why we
observe the trend of sharp decrease in acceptability
accuracy for matched unacceptable prefixes, as the
monotonically decreasing δ flips the acceptability
judgement associations.

F SyntaxGym Results

We run our prefixing evaluations for 23 of the 34
SyntaxGym evaluations whose prediction struc-
tures are compatible with this paper’s evaluation
setup – that is, where model success is a function
of one or more differences in surprisal measured
between two experimental conditions. These ap-
plicable suites are shown in the axes of Figure 14.
In contrast to BLiMP, model surprisal is measured
only at a critical region, at which differing content
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Figure 14: Relative improvement (in percentage points) in accuracy on SyntaxGym test suite evaluations (rows)
after prefixing with sentences from other SyntaxGym test suites (columns) for GPT2.

Phenomena GPT2 OPT 125M OPT 350M OPT 1.3B OPT 2.7B OPT 6.7B Mean ∆

principle_A_reconstruction 0.528 (0.13) 0.62 (0.1) 0.699 (0.1) 0.599 (0.06) 0.585 (0.05) 0.585 (0.05) 0.603 (0.05)
existential_there_quantifiers_2 0.322 (0.07) 0.827 (0.04) 0.528 (0.04) 0.683 (0.02) 0.538 (0.03) 0.538 (0.02) 0.573 (0.15)
sentential_subject_island 0.58 (0.19) 0.556 (0.14) 0.536 (0.18) 0.491 (0.11) 0.402 (0.1) 0.48 (0.11) 0.507 (0.06)
wh_vs_that_with_gap_long_distance 0.457 (0.13) 0.48 (0.12) 0.465 (0.14) 0.481 (0.17) 0.446 (0.15) 0.514 (0.21) 0.474 (0.02)
matrix_question_npi_licensor_present 0.566 (0.01) 0.49 (0.03) 0.477 (0.03) 0.357 (0.01) 0.307 (0.01) 0.358 (0.01) 0.426 (0.09)
wh_vs_that_with_gap 0.353 (0.09) 0.376 (0.07) 0.394 (0.09) 0.435 (0.12) 0.447 (0.13) 0.468 (0.14) 0.412 (0.04)
left_branch_island_echo_question 0.443 (0.21) 0.462 (0.17) 0.357 (0.17) 0.359 (0.14) 0.361 (0.12) 0.344 (0.1) 0.388 (0.05)
only_npi_scope 0.38 (0.05) 0.511 (0.02) 0.198 (0.02) 0.321 (0.02) 0.375 (0.02) 0.347 (0.02) 0.355 (0.09)
npi_present_1 0.327 (0.1) 0.337 (0.11) 0.236 (0.09) 0.267 (0.07) 0.305 (0.09) 0.352 (0.08) 0.304 (0.04)
complex_NP_island 0.316 (0.12) 0.271 (0.09) 0.264 (0.1) 0.241 (0.1) 0.274 (0.09) 0.356 (0.1) 0.287 (0.04)

Table 1: Top 10 phenomena in BLiMP (Warstadt et al., 2020a) with largest average ∆ increase in acceptability over
the full context window, when primed with acceptable prefixes. The numbers in parenthesis reflect the standard
deviation over length of the context.
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Phenomena GPT2 OPT 125M OPT 350M OPT 1.3B OPT 2.7B OPT 6.7B Mean ∆

only_npi_licensor_present -0.693 (0.21) -0.726 (0.16) -0.934 (0.19) -0.953 (0.14) -0.945 (0.1) -0.961 (0.07) -0.869 (0.11)
existential_there_quantifiers_1 -0.783 (0.27) -0.871 (0.21) -0.869 (0.21) -0.856 (0.2) -0.911 (0.21) -0.906 (0.21) -0.866 (0.04)
principle_A_case_1 -0.782 (0.42) -0.863 (0.35) -0.813 (0.33) -0.871 (0.34) -0.867 (0.35) -0.872 (0.34) -0.845 (0.03)
superlative_quantifiers_2 -0.817 (0.1) -0.822 (0.07) -0.847 (0.06) -0.832 (0.05) -0.862 (0.05) -0.845 (0.04) -0.837 (0.02)
sentential_negation_npi_licensor_present -0.637 (0.25) -0.733 (0.23) -0.882 (0.23) -0.907 (0.24) -0.904 (0.22) -0.911 (0.22) -0.829 (0.11)
wh_questions_subject_gap -0.731 (0.32) -0.811 (0.27) -0.804 (0.29) -0.839 (0.28) -0.837 (0.27) -0.832 (0.27) -0.809 (0.04)
wh_vs_that_no_gap_long_distance -0.715 (0.33) -0.806 (0.24) -0.742 (0.23) -0.806 (0.24) -0.852 (0.25) -0.889 (0.25) -0.801 (0.06)
wh_questions_subject_gap_long_distance -0.782 (0.24) -0.802 (0.22) -0.781 (0.22) -0.828 (0.22) -0.784 (0.23) -0.833 (0.24) -0.801 (0.02)
superlative_quantifiers_1 -0.685 (0.15) -0.746 (0.06) -0.832 (0.07) -0.836 (0.11) -0.849 (0.11) -0.806 (0.07) -0.792 (0.06)
irregular_past_participle_adjectives -0.671 (0.33) -0.788 (0.23) -0.838 (0.24) -0.834 (0.23) -0.786 (0.22) -0.829 (0.23) -0.791 (0.06)

Table 2: Top 10 phenomena in BLiMP (Warstadt et al., 2020a) with largest average ∆ decrease in acceptability over
the full context window, when primed with unacceptable prefixes. The numbers in parenthesis reflect the standard
deviation over length of the context.
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matical and Wikipedia prefixes on BLiMP for OPT 6.7B
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between conditions render minimal-pair sentences
grammatical or ungrammatical. For example, the
number_prep suite measures the surprisal differ-
ence at the underlined critical region between the
following four conditions:

1. The farmer near the clerks knows many peo-
ple.

2. * The farmer near the clerk know many peo-
ple.

3. * The farmers near the clerk knows many peo-
ple.

4. The farmers near the clerk know many people.

In this example test suite, model surprisals for
the word knows in sentence 3 must be higher than in
sentence 1, and surprisals for the word know must
be higher in sentence 2 than in sentence 4. The
full list of included suites is visible in Figure 14.
Additional plots for SyntaxGym, analogous to Fig-
ure 3 and Figure 4, are provided at Figure 16 and
Figure 17.
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