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Abstract

Multilingual Vision-Language Pre-training
(VLP) is a promising but challenging topic due
to the lack of large-scale multilingual image-
text pairs. Existing works address the prob-
lem by translating English data into other lan-
guages, which is intuitive and the generated
data is usually limited in form and scale. In this
paper, we explore a more practical and scal-
able setting: weakly supervised multilingual
VLP with only English image-text pairs and
multilingual text corpora. We argue that the
universal multilingual representation learned
from texts allows the cross-modal interaction
learned in English to be transferable to other
languages. To this end, we propose a frame-
work to effectively unify cross-lingual and
cross-modal pre-training. For unified model-
ing on different data, we design an architec-
ture with flexible modules to learn different
interactions. Moreover, two unified tasks are
introduced to efficiently guide the unified cross-
lingual cross-modal learning. Extensive experi-
ments demonstrate that our pre-trained model
learns universal multilingual multimodal rep-
resentations, allowing effective cross-lingual
transfer on multimodal tasks. Code and mod-
els are available at https://github.com/
FudanDISC/weakly-supervised-mVLP.

1 Introduction

In recent years, self-supervised pre-training tech-
nology has been studied extensively in various
fields. The pre-trained models are able to en-
code generalized contextual representations for
texts (Devlin et al., 2019; Liu et al., 2019; Lewis
et al., 2020), images (Bao et al., 2021a; He et al.,
2022), and image-text pairs (Chen et al., 2020; Li
et al., 2020, 2021a), further facilitating the down-
stream tasks and research. However, most pre-
training studies are limited to English corpora. In
order to overcome the language barrier and benefit
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Figure 1: An illustration of the differences between
existing multilingual VLP methods and our method.

a wider range of audience, it is important to extend
the success of English-centric research to a multi-
lingual scenario. Recent works have demonstrated
the effectiveness of cross-lingual language model-
ing (Conneau and Lample, 2019; Conneau et al.,
2020). Based on large-scale multilingual corpora,
the models are able to learn universal representa-
tions for texts in multiple languages.

However, large-scale and tightly associated mul-
tilingual image-text pairs are unavailable and costly
to acquire. Therefore, it is not straightforward to
transfer existing VLP methods to other languages.
As shown in Figure 1 (a, b), previous works (Ni
et al., 2021; Zhou et al., 2021) address the prob-
lem by transferring English data to other languages
through different data augmentation strategies (e.g.,
code switch or translation engines), and then per-
form VLP on the generated multilingual data. De-
spite being simple and intuitive, these methods
have limitations since the augmentation is either
constrained to specific forms that differ from nat-
ural data, or it is time-consuming to ensure the
equality, making it difficult to scale effectively to
more languages and larger datasets. Meanwhile,
large volumes of natural language texts are readily
accessible in various languages as shown in Fig-
ure 1 (a). This raises a question: can we relax the
requirement for multilingual image-text pairs and
use existing multilingual text resources to transfer
English VLP to other languages?
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In this paper, we explore this weakly supervised
setting to develop a more scalable multilingual
VLP framework. We argue that by unifying cross-
lingual text modeling in cross-modal models, uni-
versal representations can be learned for multiple
languages, and thus the cross-modal modeling abil-
ity learned from English image-text pairs can be
easily transferred to other languages. The biggest
challenge for such unification is that data in differ-
ent forms (i.e., different languages or modalities)
have different intrinsic properties. Therefore, the
key issue is how to effectively incorporate multi-
lingual text pre-training into the VLP framework
without conflicts among different data streams.

From the model perspective, if we simply feed
all data to a vanilla Transformer model (Vaswani
et al., 2017), different desired interactions are en-
tangled in self-attention layers and may compete
with each other during pre-training. To address
this issue, we propose to disentangle different func-
tionalities into different modules. Specifically, we
design a novel architecture by incorporating plug-
gable cross-attention layers into standard Trans-
former layers. These layers can be activated to
perform cross-modal and cross-sentence modeling
or skipped for unpaired text modeling. Multilingual
text learning can thus transfer the self-attention to
fit more languages, indirectly requiring the cross-
attention to adapt to the universal representations
rather than competing with cross-lingual modeling
in self-attention.

In terms of training, VLP and language model-
ing methods tend to optimize different objectives.
For unified pre-training, we introduce two tasks
that share unified formulations for different data
streams and guide unified cross-lingual and cross-
modal learning. Before the cross-modal fusion,
we propose unified contrastive learning to simul-
taneously align parallel sentences in different lan-
guages and English image-text pairs, making it
easier for the upper encoder to learn interactions
shared across languages and modalities. On top of
the whole model, we consider three self-supervised
tasks: cross-lingual masked language modeling on
unpaired texts to achieve universal multilingual rep-
resentations, visual language modeling on English
image-text pairs to learn cross-modal interaction,
and translation language modeling on parallel sen-
tences to enhance cross-lingual alignment. Three
tasks are further unified as a mask modeling task
and cross-lingual learning is naturally unified with

cross-modal learning.
Our contributions can be summarized as follows:

• We explore weakly supervised multilingual
VLP by unifying cross-lingual modeling from
multilingual text corpora and cross-modal
modeling from English image-text corpora.

• To effectively unify multilingual text model-
ing with VLP, we introduce a flexible archi-
tecture to consistently encode different data
streams and unified pre-training tasks to effi-
ciently learn different capabilities from them.

• We conduct extensive experiments to validate
the effectiveness of our approach. Our pre-
trained model can encode universal multilin-
gual multimodal representations, enabling ef-
fective cross-lingual and cross-modal transfer.

2 Related Works

2.1 Multi-modal Pre-training

Vision-Langauge Pre-training VLP methods
aim to learn generalized representations for image-
text pairs. To represent images with visual se-
quences, pioneer works employ frozen object de-
tectors to extract region features from images (Lu
et al., 2019; Su et al., 2019), recent works demon-
strate the effectiveness of end-to-end VLP with
vision Transformers (CNNs) to encode patch (grid)
features (Huang et al., 2020; Kim et al., 2021; Li
et al., 2021a). As for the architecture, single-stream
models first concatenate the textual and visual se-
quences, then encode the multimodal sequences
with self-attention layers where intra-modality and
cross-modality interactions are jointly learned (Su
et al., 2019; Chen et al., 2020; Li et al., 2020). Two-
stream models further disentangle the process with
separate self-attention layers and cross-attention
layers (Lu et al., 2019; Tan and Bansal, 2019; Li
et al., 2021a). Due to the absence of large-scale
multilingual image-text pairs, most VLP methods
are only able to handle English inputs.

Unified Pre-training Li et al. (2021b) first ex-
plore unified pre-training on texts, images, and
image-text pairs. To make parameters efficiently
shared across modalities, Bao et al. (2021b) pro-
pose an architecture with modality-specific experts.
Recent works further extend the idea for large-scale
pre-training (Wang et al., 2022a,b). Unified pre-
training benefits both multimodal and uni-modal
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learning. In this work, we claim that unifying mul-
tilingual text pre-training helps overcome the lan-
guage barrier in previous VLP methods.

2.2 Multilingual Pre-training

Multilingual Langauge Modeling Multilingual
BERT (Devlin et al., 2019) first validates the ef-
fectiveness of masked language modeling on an
unlabeled multilingual corpus. Universal cross-
lingual representations are learned, allowing ef-
fective cross-lingual transfer on downstream tasks.
XLM (Conneau and Lample, 2019) and Uni-
coder (Huang et al., 2019) enhance cross-lingual
alignment with additional tasks on parallel transla-
tion corpora. XLM-R (Conneau et al., 2020) further
scales up the cross-lingual pre-training in terms of
the number of languages and the amount of data.

Multilingual VLP MURAL (Jain et al., 2021)
extends the contrastive framework in (Radford
et al., 2021) by explicitly aligning different lan-
guages, but the dual-encoder architecture is not
capable of fulfilling reasoning tasks like VQA. The
most related works to ours are M3P (Ni et al., 2021)
and UC2 (Zhou et al., 2021). Both methods address
the data problem through different augmentation
methods. M3P generates code-switched pairs in
which English words are replaced with their trans-
lation in other languages. UC2 utilizes translation
engines to transform English image captions into
other languages, CCLM (Zeng et al., 2022) further
extends this idea with existing translation pairs to
enhance the cross-lingual alignment but CCLM re-
lies on a larger backbone to show its effectiveness.
In contrast to using generated multilingual pairs,
we explore weakly supervised multilingual VLP
with unified pre-training on existing resources.

3 Method

3.1 Data Stream

Different from prior works, our approach does not
rely on multilingual image-text pairs and explores
weak supervision in available datasets. We consider
N languages {li}Ni=1 including English and adopt
three parts of publicly open resources. To learn
cross-lingual modeling, we utilize a multilingual
text corpus Dm = ∪N

i=1{T li
j }

Nli
j=1, where T li

j is the
j-th sentence in language li and Nli is the number
of sentences in language li. Following (Conneau
and Lample, 2019), we make use of parallel transla-

tion corpora Dt = ∪N
i=1{(T en, T li)j}

N ′
li

j=1 to learn

cross-lingual alignment, where (T en, T li)j is an
English-li translation sentence pair and N ′

li
is the

size of the English-li dataset. In order to learn
cross-modal modeling, we adopt an English image-
text corpus Dv = {(I, T en)i}Nm

i=1, where (I, T en)i
is an English image-sentence pair and Nm is the
number of paired samples.

For a sentence T li in language li, we em-
ploy the learned multilingual SentencePiece (Kudo
and Richardson, 2018) tokenizer in (Conneau
et al., 2020) to transform it into tokens tli =
{tcls, t

li
1 , ..., t

li
n , tsep}. All languages share special

tokens like CLS and SEP. Following (Dosovitskiy
et al., 2020), each 2D image I ∈ RH×W×C is split
into M = HW/P 2 fixed-size patches, where C
is the number of channels, (H,W ) is the image
resolution, and (P, P ) is the size of each patch. An
image is further represented by a visual sequence
{vcls, v1, ..., vM}, each visual token vi ∈ RP 2×C

is a flattened vector of pixel values in the corre-
sponding patch, vcls is a special embedding vector
to gather the global information.

3.2 Unified Model Architecture

As our model is required to handle inputs of dif-
ferent forms, we introduce a novel unified model
architecture as shown in Figure 2. To disentangle
intra-modality and cross-modality modeling, we
follow (Tan and Bansal, 2019; Li et al., 2021a) to
construct a two-stream model that consists of an
image encoder, a text encoder, and a high-level
unified encoder. In Figure 2, we use the colors of
rectangles to indicate the data flow in our model.
Textual tokens and image patches are first fed to the
corresponding uni-modal encoders to perform intra-
modality interaction. The text and image encoders
are standard Transformer (Vaswani et al., 2017)
encoders with NL and NV layers respectively.

Based on uni-modal representations, a NC-layer
unified high-level encoder is learned. To consis-
tently encode different data streams, we introduce
a novel architecture for the high-level unified en-
coder. Each unified layer comprises a self-attention
layer, a feedforward layer, and a pluggable cross-
attention layer. We consider different routines for
different data streams. Once the cross-attention lay-
ers are activated, the encoder serves as a condition-
grounded text encoder where the conditional in-
formation comes from the paired images or trans-
lation source sentences in another language. The
cross-attention can be skipped for unconditional
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Figure 2: The proposed pre-training framework. The bottom part illustrates the unified contrastive learning on top
of uni-modal encoders. The top part displays the unified MLM based on the proposed unified high-level encoder.
Modules with the same color share the same parameters. We use the colors of the rectangles to indicate the data
flow in the model, rectangles with mixed colors denote data streams that consist of texts in both English and other
languages. Residual connections in the model architecture are omitted for brevity.

text modeling on unpaired texts. Different rou-
tines are comprehensively illustrated in Figure 5.
Compared with the previous methods to entangle
cross-modal and intra-model interaction in a single
self-attention layer, our unified architecture disen-
tangles different functionalities into different mod-
ules. Such a design would allow the knowledge
learned from different data streams to be better
integrated into the unified model without conflicts.

3.3 Unified Pre-training Tasks

We propose two pre-training tasks: unified con-
trastive learning and unified masked language mod-
eling. These tasks share unified formulations for
different data streams and help the unified model
acquire cross-lingual and cross-modal modeling
capabilities from them.

3.3.1 Unified Contrastive Learning
As introduced in Section 3.2, the unified high-level
encoder relies on attention to perform cross-modal,
cross-sentence, and intra-sentence interactions. In
order to make the learned modeling capability trans-
ferable across languages and modalities, we pro-
pose to learn an aligned cross-lingual cross-modal

semantic space on top of the uni-modal encoders.
Since no multilingual image-text pairs are ac-

cessible, we propose unified contrastive learning
(UCL) to simultaneously align cross-lingual texts
and English image-text pairs. UCL is based on
InfoNCE loss (Oord et al., 2018):

LUCL = −E(a,b)∼Dv,t
[log

exp(s(a, b)/τ)
∑

b̂∈B exp(s(a, b̂)/τ)

+ log
exp(s(a, b)/τ)∑
â∈A exp(s(â, b)/τ)

]

(1)

where (a, b) is a image-text pair or translation pair
sampled from Dv,t = Dv∪Dt. A is a batch includ-
ing the positive sample a and |A| − 1 negative sam-
ples, the same for B. s(a, b) computes the global
similarity between a and b, which is the cosine sim-
ilarity between the uni-modal CLS representations
of a and b. τ is the learnable temperature.

UCL employs English texts as natural anchors
to bridge both the language and modality gap.

3.3.2 Unified Masked Language Modeling
To learn token-level contextual representations, the
effectiveness of masked language modeling (MLM)
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has been validated in various domains (Devlin et al.,
2019; Chen et al., 2020; Conneau and Lample,
2019). We consider three variants of MLM: cross-
lingual MLM (xMLM) on multilingual sentences
in Dm, translation language modeling (TLM) on
translation pairs in Dt, and visual language model-
ing (VLM) on image-text pairs in Dv.

xMLM is a standard MLM task on multilingual
texts. As pointed out in previous works (Conneau
et al., 2020; Artetxe et al., 2020), it enhances cross-
lingual text modeling and endows universal repre-
sentations for multiple languages.

TLM and VLM can be unified as conditional
MLM with complement information available.
VLM trains the model to learn visually grounded
representations by cross-modal interaction. TLM
helps the model learn token-level alignment across
languages through cross-sentence interaction. At
the same time, TLM and VLM are consistent with
each other for two reasons: our unified encoder
is agnostic to the modality of the conditional in-
formation and the representations of conditions in
different modalities are aligned through UCL.

Generally, three tasks share the same mask-then-
predict paradigm. The target token sequence is
masked with 0.15 probability following (Devlin
et al., 2019). The model is optimized to recover the
original tokens based on the contextual outputs of
the unified high-level encoder. The unified MLM
loss is formulated as:

LMLM =− Etli∼Dm
logPMLM(tlim|tli\m)

− E
(tli ,tlj )∼Dt

logPMLM(tlim|tli\m, tlj )

− E(ten,I)∼Dv
logPMLM(ten

m|ten
\m, I) (2)

where tlim and tli\m denote the masked and masked
tokens respectively, PMLM is the predicted distribu-
tion over the vocabulary for masked tokens.

In addition, we adopt a commonly-used task,
image-text matching (ITM), for global cross-modal
learning. ITM is a binary classification task based
on the image-grounded text encoder:

LITM = −E(T en,I)∼Dv
[log(PITM(T en, I))

+ log(1− PITM(T̂ en, Î))] (3)

where PITM is the predicted matching probability.
(T̂ en, Î) is a negative pair, we follow (Li et al.,
2021a) to utilize the similarities s(a, b) in Equa-
tion 1 to perform in-batch hard negative sampling.

4 Experiments

4.1 Pre-training Details
Pre-training Corpora We consider 21 languages
including English to cover the target languages in
downstream tasks. We construct Dv by includ-
ing 4M image-text pairs from Conceptual Cap-
tions (Sharma et al., 2018), MSCOCO (Lin et al.,
2014), and Visual Genome (Krishna et al., 2017).
Dt is composed of 19M parallel translation pairs
between English and other 20 languages collected
from WikiMatrix (Schwenk et al., 2021). As for
Dm, we adopt CC-1001 which is an open-source
recreation of the dataset for training XLM-R (Con-
neau et al., 2020), we sample a subset of 0.8B
sentences following the language distribution used
in XLM-R. More details are in Appendix B.1.1.

Implementation Details For each transformer
layer, we consider the base size in (Devlin et al.,
2019) and we set NL = NC = 6 and NV =12. The
image encoder is initialized from (Li et al., 2021a),
while the textual encoder and the high-level en-
coder are initialized from the first 6 and last 6 lay-
ers of XLM-R (Conneau et al., 2020) respectively.
As XLM-R does not contain cross-attention layers,
we initialize those layers in our high-level encoder
with the parameters of self-attention layers.

Our model is pre-trained to minimize
LUCL + LMLM + LITM for 240K steps with
AdamW (Loshchilov and Hutter, 2018) optimizer.
Each training batch comprises 512 image-text
pairs, 2048 translation pairs, and 2048 multilingual
sentences. The learning rate is warmed-up from
0 to 1e-4 in the first 24K steps and then linearly
decays to 0. Based on the ZERO-2 optimization
and half-precision training under the framework of
DeepSpeed (Rasley et al., 2020), the pre-training
takes around 6 days on 8 RTX 3090 GPUs. More
pre-training hyper-parameters are provided in
Appendix B.1.3. Notice that our method can
be easily scaled up in terms of the number of
languages, the model size, and the scale of the
dataset used. We adopt the current setup for a fair
comparison with existing models.

4.2 Downstream Tasks
To comprehensively evaluate the learned universal
multilingual multimodal representations, We con-
duct experiments on downstream vision-language
(V-L) and text tasks under different settings.

1https://data.statmt.org/cc-100/
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Model
VNLI VQA Reasoning Retrieval

XVNLI xGQA MaRVL
xFlickr&CO WIT

IR TR IR TR

mUNITER 53.7 (76.4) 10.0 (54.7) 53.7 (71.9) 8.1 (44.5) 8.9 (40.9) 9.2 (19.9) 10.48 (22.3)
xUNITER 58.5 (75.8) 21.7 (54.8) 54.6 (71.6) 14.0 (38.5) 13.5 (32.1) 8.7 (16.7) 9.8 (18.5)
UC2 62.1 (76.4) 29.4 (55.2) 57.3 (70.6) 20.3 (37.4) 17.9 (34.6) 7.8 (17.9) 9.1 (19.7)
M3P 58.3 (76.9) 28.2 (53.8) 56.0 (68.2) 12.9 (31.4) 11.9 (24.6) 8.1 (15.5) 10.0 (15.3)
Ours 69.5 (79.7) 42.1 (57.4) 62.1 (75.3) 59.8 (86.6) 58.7 (91.7) 36.3 (56.0) 36.6 (56.2)

Table 1: Zero-shot performance of multilingual VLP models trained on English and evaluated on target languages
in IGLUE (Bugliarello et al., 2022). The results are averaged over all target languages. IR and TR are short for
image retrieval and text retrieval respectively. Numbers in brackets are evaluation results on the English test sets.

Cross-lingual transfer on V-L tasks To vali-
date that the learned cross-modal modeling ca-
pability can be transferred across languages, we
evaluate our method on the IGLUE (Bugliarello
et al., 2022) benchmark. IGLUE incorporates dif-
ferent kinds of tasks including visually-grounded
NLI (VNLI) in XVNLI, visual question answering
(VQA) in xGQA (Pfeiffer et al., 2022), V-L reason-
ing in MaRVL (Liu et al., 2021), and image-text
retrieval in xFlickr&CO and WIT (Srinivasan et al.,
2021). For all tasks, we consider the zero-shot lan-
guage transfer setting where the model is trained in
English and directly evaluated in other languages.
Accuracies are reported for XVNLI, xGQA, and
MaRVL. As for xFlickr&CO and WIT, while for
text-to-image retrieval and image-to-text retrieval,
recall is adopted as the evaluation metric.

Multilingual fine-tuning on V-L tasks Follow-
ing (Ni et al., 2021; Zhou et al., 2021), we adapt
our method to multilingual image-text retrieval task
on the multilingual extensions of MSCOCO (Lin
et al., 2014) and Flickr30K (Young et al., 2014).
The training and test sets are valid in all languages.
Mean recall (mR) is used as the evaluation metric,
which is the average of recall at K = {1, 5, 10}
of both image and text retrieval. In addition to
retrieval, we fine-tune our model on 2 multilin-
gual VQA datasets: Japanese-VQA (Shimizu et al.,
2018) and FM-IQA Chinese (Gao et al., 2015).

Cross-modal transfer from L to V-L As our
method is a unified model, we evaluate the
cross-lingual transfer ability for text modeling on
xNLI (Conneau et al., 2018). Assuming that the
learned modeling capability can be even trans-
ferred across modalities, we consider a zero-shot
modality-transfer task from NLI to VNLI: models
are trained with sentence pairs in the English SNLI

dataset (Bowman et al., 2015) and directly evalu-
ated on image-text pairs in XVNLI. More details of
different tasks, datasets, and the corresponding fine-
tuning settings are summarized in Appendix B.2.

4.3 Compared Models

Baseline The baseline method adopted in the ex-
periment is (Liu et al., 2021), which employs the
UNITER architecture and pre-trains with MLM
on both cross-lingual texts and English image-text
pairs. It can be regarded as the baseline method
of ours without the unified architecture and unified
pre-training tasks. Two variants of pre-trained mod-
els named as mUNITER and xUNITER, are gen-
erated by initializing from mBERT (Devlin et al.,
2019) and XLM-R (Conneau et al., 2020).

Multulingual VLP We also compare with two
existing multilingual VLP models named as
M3P (Ni et al., 2021) and UC2 (Zhou et al., 2021),
respectively. Both models are initialized from
XLM-R and rely on data augmentation. M3P ex-
tends xUNITER with code-switched image-text
pairs where English words are randomly replaced
with their translation in other languages. UC2 uti-
lizes translation engines to transform English im-
age captions into other 5 languages. Based on the
generated multilingual pairs, M3P performs stan-
dard VLP with commonly used tasks while UC2

introduces 2 more tasks to enhance cross-lingual
and cross-modal modeling.

4.4 Main Results

Cross-Lingual Transfer As shown in Table 1,
our model shows a superior cross-lingual zero-
shot ability on various V-L tasks. For XVNLI,
xGQA, and MaRVL, compared with other methods,
our method achieves significant performance im-
provements in other languages, bridging the perfor-
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Method
XNLI SNLI → XVNLI

en ar es fr ru mean en ar es fr ru mean

XLM-R 85.8 73.8 80.7 79.7 78.1 78.1 - - - - - -
UC2 83.4 65.9 74.5 74.0 72.4 71.7 54.2 37.4 45.0 48.4 41.5 43.1
Ours 82.7 73.0 77.8 78.5 75.4 76.2 71.5 53.9 57.8 60.1 58.2 57.5

Table 2: Cross-lingual and cross-modal zero-shot transfer performance. Models are fine-tuned on English NLI
datasets and evaluated on NLI and VNLI datasets in other languages.

Model
Flickr30K MSCOCO

EN DE FR CS EN ZH JA

English-only Fine-tune

UC2 87.2 74.9 74 67.9 88.1 82 71.7
M3P 87.4 58.5 46.0 36.8 88.6 53.8 56.0
Ours 94.9 84.4 86.1 77.2 89.6 83.3 73.1

Single-Language Fine-tune

UC2 87.2 83.8 77.6 74.2 88.1 84.9 87.3
M3P 87.4 82.1 67.3 65.0 88.6 75.8 80.1
Ours 94.9 92.5 92.4 91.0 89.6 92.5 90.4

All-Language Fine-tune

UC2 88.2 84.5 83.9 81.2 88.1 89.8 87.5
M3P 87.7 82.7 73.9 72.2 88.7 86.2 87.9
Ours 95.3 93.6 93.8 92.4 90.4 92.6 90.0

Table 3: Multilingual image-text retrieval performance
on Flickr30K and MSCOCO across multiple languages.

mance gap between English and target languages.
For retrieval task, the superior performance in En-
glish is also effectively transferred to other lan-
guages.These results validate the effectiveness of
our pre-training framework and under our frame-
work, the cross-modal modeling capability learned
from English image-text corpora can be transferred
across languages, since our model learns universal
multilingual multi-modal representations.

In addition, our model is able to perform cross-
lingual transfer on text-only tasks. The results
are listed in the left part of Table 2. As a unified
model, our pre-trained model is better than UC2 but
slightly worse than XLM-R, we attribute this to that
we only sample a small part of the corpus used in
XLM-R. Nevertheless, it shows that cross-lingual
modeling capabilities for text and image-text pairs
are consistently integrated in our model.

Cross-Modal Transfer Unlike previous meth-
ods, our unified framework endows cross-model
transfer capability and achieves better cross-modal
zero-shot transfer performances as shown in the
right part of Table 2. The learned interaction be-

Method Japanese VQA FM-IQA

UC2∗ 29.57 30.09
Ours 32.21 34.31

Table 4: Fine-tuning accuracies on multilingual VQA
tasks, UC2∗ denotes our re-implementation of UC2.

tween sentence pairs can be directly applied to
perform image-text interaction. It further validates
our claim that our framework consistently unifies
text and cross-modal modeling.

Cross-Lingual Fine-tuning As shown in the
fine-tuning results on retrieval in Table 3 and VQA
in Table 4, our model improves the performances of
previous methods under different settings. Mean-
while, we notice that the retrieval performance of
M3P and UC2 varies across languages while ours
achieves a balanced performance. It indicates that
our pre-trained model is a better initialization for
downstream V-L tasks in multiple languages.

4.5 Ablation Study

To validate the effects of different components, we
conduct ablation studies. All variants compared in
this section are only pre-trained for 120K steps to
save resources. Results are provided in Table 5.

Effects of TLM It is shown that TLM mainly
helps the learning of shared interaction for all lan-
guages. Removing TLM significantly degrades the
performance on tasks requiring inferring the image-
text relationship, namely VNLI and retrieval, it
conforms to results in Section 4.4 and further vali-
dates the consistency between TLM and VLM.

Effects of xMLM We apply xMLM to help learn
universal representations for various languages, the
results show that xMLM contributes to all tasks
but the effect is not significant. We think the ef-
fect of xMLM is weakened by the strong XLM-R
initialization and provide further analysis in Ap-
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Figure 3: Visualization of the learned cross-attention between image regions and words in different languages. The
model is not fine-tuned and the sample comes from the test set of xFlickr&CO that has not been seen by the model.

Method XVNLI xGQA
xFlickr&CO Multi30K
IR TR All-Lang

Ours 67.9 42.1 58.6 57.7 91.9

w/o TLM 64.3 41.9 54.4 53.4 91.6
w/o xMLM 67.3 41.6 58.2 57.7 91.6
w/o XLC 67.1 41.0 51.7 50.8 91.5
w/o uni-arch 65.5 40.5 49.1 49.6 88.2

Table 5: Results of ablation studies. For ablated sub-
modules, XLC is short for cross-lingual contrastive, and
uni-arch denotes the unified architecture.

pendix C.1. Another benefit of xMLM is to achieve
a balance between languages. For low-resource bn,
xMLM helps improve the accuracy from 27.8 to
33.8 in xGQA. This result is consistent with XLM-
R (Conneau et al., 2020), it is mainly due to the
balanced language distribution in Dm.

Effects of XLC As we argued, cross-lingual con-
trastive learning (XLC) explicitly guides the align-
ment among languages, which endows the high-
level attention layers with the ability to be trans-
ferred across languages. Therefore, when remov-
ing XLC, the cross-lingual transfer performance
degrades significantly. The results verify the effec-
tiveness of XLC.

Effects of the Unified Architecture We ablate
the introduced flexible architecture by removing the
pluggable cross-attention layers in the high-level
encoder. The entangled model does not perform
well on all tasks, supporting our claim that different
desirable interactions may compete in self-attention
layers and thus hinder the unification.

4.6 Discussion
Results on Weakly Associated Data Another
solution for scalable multilingual VLP is to relax
the tight association requirement between image-
text pairs. As noisy pairs can be crawled from
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Figure 4: Retrieval performance under different pre-
training costs which are controlled by the amounts of
pre-training data.

the web (Radford et al., 2021), noisy multilingual
pairs can be collected efficiently. We explore this
idea with a noisy image-text corpus in Chinese (Gu
et al., 2022). Following (Schuhmann et al., 2021),
we employ a pre-trained model to filter out those
pairs with a similarity lower than 0.25. Then the
weakly related data is utilized for regular VLP with
objectives used in (Li et al., 2021a).

As the result shown in Figure 4, more pre-
training time and data yield better performance
of both methods. At the same time, our method
is more effective at the same cost. Considering
that Wang et al. (2021) utilizes billions of noisy
pairs to achieve satisfactory results, we speculate
that the noisy data needs to be further scaled up
for reliable multilingual VLP. Generally, the result
indicates the efficiency of our method.

Attention Visualization We further visualize the
learned cross-attention in Figure 3. The attended
regions are similar for salient words with similar
meanings in different languages, illustrating that

5946



the cross-modal interaction learned in English can
be applied to other languages. As German and
Russian are in the same language family as English,
the learned attention is more effectively transferred.

5 Conclusion

In this paper, we explored weakly supervised multi-
lingual VLP without multilingual image-text pairs.
We proposed a flexible architecture and unified
tasks to effectively unify cross-lingual modeling
on multilingual texts and cross-modal modeling
on English image-text pairs. Experimental results
validate the effectiveness of our approach to learn
universal multilingual multimodal representations.

Limitations

Despite promising, the current work still has lim-
itations. First, the current model mainly focuses
on understanding problems. The generation ability
of our model has not yet been investigated. It is
unclear whether our weakly supervised framework
also fits generative models and transfers strong gen-
eration capability across languages. Secondly, the
current work explores multilingual corpora and
overlooks the domain gaps in existing image re-
sources. As argued in (Liu et al., 2021), the visual
appearances of objects are diverse across cultures.
Bias naturally exists in the distribution of images
in existing V-L corpora. To develop a truly gen-
eralized multilingual multimodal model, the gap
between visual distributions in different cultures
should be considered.

Ethics Statement

Although multilingual multimodal representation
learning is a promising topic, it has not been stud-
ied systematically due to the lack of multilingual
data. Our work provides a solution to extend the
success of English-centric works to more languages
without the need for multilingual image-text pairs.
Our pre-trained model can serve as a tool for v-
L research or application in other languages and
cultures. We hope that our work will motivate mul-
timodal research to develop more effective methods
for learning V-L representations in other cultures,
benefitting more people in the world.
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A Additional Discussion on Related
Works

Noticing that M3P also utilizes multilingual texts
during pre-training, we comprehensively distin-
guish between our approach with M3P from the
following perspectives: (1) A code-switch-based
method is proposed in M3P to further generate mul-
tilingual image-text pairs for training, so it is not a
weakly-supervised method; (2) M3P simply feeds
mixed data streams of multilingual texts and image-
text pairs to a vanilla Transformer for joint pre-
training. Referring to the results in IGLUE, M3P
does not enable effective cross-lingual transfer on
downstream tasks, which means that M3P struggles
to learn universal representations across languages.
Therefore, we propose an appropriate framework
that unifies cross-lingual and cross-modal model-
ing, which is our main contribution.

ERNIE-Unix2 (Shan et al., 2022) is a concur-
rent work to ours. ERNIE-Unix2 aims to unify
understanding and generation in multilingual VLP.
To achieve this, ERNIE-Unix2 extends the idea
of UC2 (Zhou et al., 2021) to generate and col-
lect more multilingual pairs, the process introduces
an additional cost to scale up. Results of ERNIE-
Unix2 are not included and compared in our main
experiments since much more data is used, ERNIE-
Unix2 consumes 89M multilingual image-text pairs
during pre-training. Notice that our method demon-
strates commendable performance in the context of
an unfair setting.

B Additional Implementation Details

B.1 Pre-training Details

B.1.1 Language Distribution

We list the distribution of all languages {li}Ni=1 ∪
{en} considered in our model in Table 6. We use all
data of target languages in WikiMatrix (Schwenk
et al., 2021), we further transform traditional Chi-
nese sentences into simplified Chinese which is
more commonly used in China. For CC-100, we
sub-sample 0.8B sentences following the language
distribution used in XLM-R (Conneau et al., 2020):

qi =
pαi∑N
j=1 p

α
j

with pi =
ni∑N

k=1 nk

where ni is the number of sentences in li in the full
dataset. α is set to 0.3 for a balanced distribution.

Language Distribution
Name Code Family WikiMatrix CC-100

English en Indo-E 1.000 0.085
Arabic ar Afro-A 0.051 0.037
Bengalu bn Indo-E 0.014 0.029
Bulgarian bg Indo-E 0.019 0.045
Czech cs Indo-E 0.027 0.037
Danish da Indo-E 0.022 0.050
Estonian et Uralic 0.013 0.027
German de Indo-E 0.077 0.053
Greek el Indo-E 0.032 0.043
French fr Indo-E 0.139 0.053
Indonesian id Austron 0.051 0.070
Japanese ja Japonic 0.044 0.054
Korean ko Koreanic 0.015 0.052
Chinese zh Sino-T 0.041 0.043
Potuguese pt Indo-E 0.122 0.050
Russian ru Indo-E 0.084 0.066
Spanish es Indo-E 0.165 0.051
Swahili sw Niger-C 0.003 0.019
Tamil ta Dravidian 0.003 0.031
Turkish tr Turkic 0.024 0.037
Vietnamese vi Austro-A 0.053 0.069

Table 6: Language distribution in the pre-training cor-
pus. Language codes are based on ISO 639-1. A, C,
E, and T are short for Asiatic, Congo, European, and
Tibetan respectively. Austron denotes Austronesian.

B.1.2 Implementation of TLM

As illustrated in Figure 3.2 and Figure 5, our TLM
task is slightly different from the original TLM
task introduced in (Conneau and Lample, 2019),
we activate the cross-attention layers to perform
cross-sentence modeling. If the original TLM is
applied, the cross-attention layers will only accom-
modate English inputs through VLM, our design al-
lows cross-attention layers to adapt to non-English
languages, and its effectiveness is demonstrated in
Section 4.5.

B.1.3 Hyper-Parameters

For the model size, we follow the base-setting in
BERT (Devlin et al., 2019): the hidden size is 768,
the intermediate size is 3072, and the number of
attention heads is 12. Our model consists of around
377M parameters in which the word embeddings of
the large vocabulary take 200M parameters. During
pre-training, the image resolution is 256× 256 and
the patch size is 16×16, and RandAugment (Cubuk
et al., 2020) is applied to images. To avoid overfit-
ting, dropout is applied with 0.1 probability, and
0.2 weight decay is used in the optimizer. The max-
imal lengths of sentences in Dm, Dv, and Dt are
respectively 64, 35, and 50.
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Figure 5: Illustration of the inference procedure for different data streams, the colors correspond to Figure 2.

B.2 Details of Fine-tuning

Due to the limitation of the text length, supple-
mentary details of the fine-tuning experiments on
different datasets are provided in this section.

B.2.1 Datasets
XVNLI is introduced in (Bugliarello et al., 2022),
which is the multilingual extension of SNLI-
VE (Xie et al., 2019). This task requires the model
to infer the relationship between image-text pairs,
the candidate answers include ‘entailment’, ‘con-
tradiction’, and ‘neutral’.

xGQA is introduced in (Pfeiffer et al., 2022),
they extends the evaluation data of GQA (Hudson
and Manning, 2019) dataset with manually trans-
lated questions in other 7 languages. The balanced
English training set is used for training.

MaRVL is the Multicultural Reasoning over
Vision and Language dataset introduced in (Liu
et al., 2021). It can be regarded as a multicul-
tural extension of the English NLVR2 dataset (Suhr
et al., 2019). Each description is accompanied by 2
images, the model is asked to distinguish if the de-
scription is true for these 2 images. Different from
xGQA and XVNLI, MaRVL address the problem
of the gap between cultures by employing native
speakers to collect images and descriptions which
are representative in different cultures. The English
training data comes from NLVR2.

xFlickr&CO is also created by IGLUE, they cre-
ate a new multilingual evaluation set on 1000 im-
ages from Flickr30K (Young et al., 2014) and 1000
images from MSCOCO (Lin et al., 2014). They
ask annotators to directly describe the images rather
than translate the English captions. The English

training set is constructed by sampling from the
training sets of Flickr30K and MSCOCO.

WIT is short for the Wikipedia-based Image
Text dataset (Srinivasan et al., 2021). They collect
image-text pairs from Wikipedia in 108 languages.
Compared to Flickr30K and MSCOCO, the rela-
tionship between the image-text pairs in WIT is
relatively weaker and covers a diverse set of con-
cepts. They create an English training set of 500K
captions and evaluation sets in 10 languages where
each language has at least 500 image-text pairs.

The datasets mentioned above are integrated into
the IGLUE benchmark (Bugliarello et al., 2022),
please refer to the original paper for more statistics.

Multi30K and MSCOCO Multi30K is based on
the English Flickr30K dataset (Young et al., 2014).
Several works (Elliott et al., 2016, 2017; Barrault
et al., 2018) translate English captions into other
languages. An image is paired with 5 captions in
English and German, and 1 caption in French and
Czech. The dataset is split into 29000/1000/1000
images for the train/val/test sets.

The original MSCOCO dataset is made of 123K
images where 5 captions are used to describe an
image. STAIR dataset (Yoshikawa et al., 2017)
collects 820K Japanese captions for 165K images
in COCO, for these 2 datasets, we use the standard
Karpath split (Karpathy and Fei-Fei, 2015). COCO-
CN (Li et al., 2019) is the Chinese counterpart, we
use the human-written part of 20K images with
around 1 caption per image and follow their split.

Japanese VQA and FM-IQA Both datasets are
created based on the VQA task, which requires the
model to answer a question conditioned on the vi-
sual content. Japanese VQA (Shimizu et al., 2018)
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Task XVNLI xGQA xFLickr&CO WIT Multi30K MACOCO FM-IQA Ja-VQA

Peak learning rate 2e-5 3e-5 2e-5 2e-5 2e-5 4e-5 3e-5 3e-5
Epochs 10 10 10 10 15 15 15 15
Batch size 512 512 96 96 96 96 256 256
Max text length 40 40 50 50 50 50 40 40
Re-rank candidates NA NA 16 16 32 128 NA NA
Frozen modules uni-modal uni-modal None None None None None None

Table 7: Fine-tuning hyper-parameters of experiments in different datasets.

Task MaRVL XNLI SNLI→ XVNLI

Peak learning rate 4e-5 4e-5 4e-5
Epochs 10 10 10
Batch size 256 1024 1024
Max text length 40 50 50
Re-rank candidates NA NA NA
Frozen modules uni-modal uni-modal uni-modal

Table 8: Additional fine-tuning hyper-parameters.

use images from Visual Genome and FM-IQA (Gao
et al., 2015) provide Chinese questions for COCO
images. Both datasets use natural sentences to an-
swer the question and do not provide simplified
answers like GQA (Hudson and Manning, 2019).

XNLI is a multilingual extension (Conneau et al.,
2018) of the natural language inference (NLI) task.
Sentence pairs are used as input, our model is re-
quired to infer the relationship between the premise
and hypothesis. XNLI covers 15 languages while
we only consider languages included in XVNLI.

B.2.2 General Setup
Inference The inference procedure is illustrated
in Figure 5. Data are first encoded by uni-modal en-
coders, the cross-attention layers in the high-level
encoder are skipped for unpaired text modeling.
For paired inputs, cross-attention is activated for
cross-modal or cross-sentence modeling.

Hyper-parameters The setup of several hyper-
parameters is shared by all tasks. The image resolu-
tion is 384× 384 and the patch size is 16× 16, and
the new visual position embedding is initialized
with 2D interpolation following (Dosovitskiy et al.,
2020), RandAugment (Cubuk et al., 2020) is also
applied. All tasks are optimized by an AdamW
optimizer with 0.2 weight decay. No warming-up
is considered and the learning rates always linearly
decay to zero. During fine-tuning, we may freeze
the uni-modal encoders of our model to ensure the
aligned multilingual multimodal semantic space is
not influenced by English training data. We list the

Method XVNLI xGQA
xFlickr&CO
IR TR

Ours (XLM-R init) 67.9 42.1 58.6 57.7
w/o xMLM 67.3 41.6 58.2 57.8

Ours (ALBEF init) 65.1 37.3 57.6 56.0
w/o xMLM 63.8 34.3 56.7 55.6

Table 9: Results of ablation studies on xMLM for mod-
els with different initializations.

frozen parts for different tasks in Table 7.

Evaluation Metrics As for the metrics reported
in this paper, we report the single-run results for
two reasons: the pre-training procedure is costly,
and as the pre-trained model provides a good ini-
tialization, we find that there is little variation in
the fine-tuning results of different runs.

B.2.3 Task-Specific Setup
Retrieval For the retrieval task, we employ the
pre-ranking and re-ranking mechanism as in (Li
et al., 2021a). Pre-ranking similarities are com-
puted by uni-modal encoders and re-ranking simi-
larities come from the ITM head of the high-level
encoder. We list the numbers of candidates for
re-ranking in Table 7.

VQA We consider VQA as a classification task,
we create the answer set with the Na labels with
the highest frequency in the training set. In xGQA,
Na =. We add dataset-specific MLPs on top of the
high-level encoder.

MaRVL As each sample consists of 2 images, we
first use the full image-grounded encoder to encode
2 image-text pairs, then the global representations
of 2 pairs are concatenated and fed to an MLP to
predict the score for true description.

NLI and VNLI Both tasks are 3-way classifi-
cation. For NLI, our model encodes the sentence
pairs in the same way as translation pairs, the en-
coded premise serves as the condition. For VNLI,
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Model
VNLI VQA Reasoning Retrieval

XVNLI xGQA MaRVL
xFlickr&CO WIT
IR TR IR TR

zero-shot

UC2 62.1 29.4 57.3 20.3 17.9 7.8 9.1
M3P 58.3 28.2 56.0 12.9 11.9 8.1 10.0
Ours 69.5 42.1 62.1 59.8 58.7 36.3 36.6

translate-test

UC2 73.7 50.2 63.1 36.0 30.4 12.7 14.1
M3P 73.4 48.8 62.5 27.7 21.3 11.5 13.6
Ours 75.5 52.5 71.1 79.1 77.6 46.6 46.8

Table 10: Zero-shot cross-lingual transfer results in IGLUE. The models are trained in English and evaluated in
target languages, the results are averaged over all target languages.

the encoded image is conditional information. The
2 tasks share the same architecture which enables
us to test the cross-modal transfer capability.

C Additional Results and Analysis

In this section, we list more results of the main and
supplementary experiments. Some complementary
analysis is also provided.

C.1 Effects of Initialization

As we propose to perform weakly-supervised mul-
tilingual VLP by jointly learning cross-lingual text
modeling and cross-modal modeling, the initializa-
tion model can provide strong capability in one of
the 2 aspects. In the main paper, we use XLM-
R (Conneau et al., 2020) for the cross-lingual mod-
eling capability. In this section, we explore utiliz-
ing the text encoder of ALBEF (Li et al., 2021a) for
the cross-modal modeling capability. The results
are listed in Table 9.

It is obvious that the XLM-R initialization is bet-
ter than the ALBEF initialization for cross-lingual
V-L modeling. We think there are several factors
that lead to the result. Firstly, XLM-R is a better-
trained model that requires much more pre-training
cost than ALBEF, this is a common phenomenon
of the comparison between VLP and text-only pre-
training. Secondly, in our framework, we just per-
form a relatively small-scale multilingual text pre-
training in terms of the scale of data and maximal
sequence lengths. The xMLM task in our method
can not help the model to be comparable with XLM-
R for universal multilingual text modeling.

At the same time, we find that xMLM is much

Model
Language

mean
ar es fr ru

Compared models

UC2 56.2 57.5 69.7 64.9 62.1
M3P 55.3 58.9 56.4 62.5 58.3
Ours 66.3 69.5 71.7 70.4 69.5

Ablation study

Ours 62.9 69.7 70.8 68.1 67.9
w/o TLM 60.4 65.7 66.1 65.1 64.3
w/o xMLM 61.2 70.7 70.8 66.3 67.3
w/o XLC 61.0 69.6 70.0 68.0 67.1
w/o uni-arch 59.5 68.5 68.7 65.3 65.5

Table 11: Language-specific results of cross-lingual
zero-shot transfer experiments in XVNLI.

more important for the ALBEF-initialized model to
achieve universal cross-lingual representations. As
the XLM-R initialization naturally implies strong
a cross-lingual modeling capability. The effect of
xMLM in Table 5 may be weakened.

C.2 Translation-Test Baselines

Following previous works on cross-lingual trans-
fer (Conneau et al., 2018; Conneau and Lample,
2019; Conneau et al., 2020; Bugliarello et al.,
2022), there are strong baseline models to utilize
translation engines to perform translate-test: the
test sets in other languages are translated to English
and evaluated. Generally, these baselines are really
competitive due to the strong translation engines.
We provide the results in Table 10.

We can see that the translate-test baseline mod-
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Model
Language

mean
bn de id ko pt ru zh

Compared models

UC2 20.0 42.9 28.7 21.4 30.4 31.0 31.2 29.4
M3P 18.6 33.4 32.5 25.1 31.4 27.5 28.7 28.2
Ours 31.9 48.7 45.3 39.1 47.0 39.0 43.4 42.1

Ablation study

Ours 33.8 47.1 45.2 38.6 47.3 40.5 42.5 42.1
w/o TLM 33.6 46.4 43.3 39.1 45.8 42.8 42.4 41.9
w/o xMLM 27.8 47.2 45.1 39.4 47.1 41.6 43.2 41.6
w/o XLC 33.6 46.9 44.3 37.6 45.1 36.5 43.0 41.0
w/o uni-arch 31.5 45.4 42.1 37.7 43.6 38.0 41.5 40.0

Table 12: Language-specific results of cross-lingual zero-shot transfer experiments in xGQA.

Model
Language

mean
id sw ta tr zh

Compared models

UC2 56.7 52.6 60.5 56.7 59.9 57.3
M3P 56.5 55.7 56.0 56.8 55.0 56.0
Ours 65.3 58.7 60.3 65.3 60.6 62.1

Table 13: Language-specific results of cross-lingual
zero-shot transfer experiments in MaRVL.

els always perform better. At the same time, our
method narrows the gap between the zero-shot and
translate-test performance, which means that our
method learns better universal multilingual multi-
modal representations. This result conforms with
the main results in Section 4.4.

C.3 Language-Specific Results of IGLUE

In this section, we provide the experimental results
of IGLUE in all languages separately. Results of
XVNLI, xGQA, MaRVL, xFlickr&CO, and WIT
are respectively listed in Table 11, 12, 13, 14, 15.
The results of the ablated variants are also included
for XVNLI, xGQA, and xFlickr&CO.

C.3.1 Supplementary Analysis
Generally, our method outperforms M3P and UC2

across languages and tasks in different datasets ex-
cept ta in MaRVL. At the same time, we notice that
the UC2 is skewed towards the languages (de, fr,
cs, zh, ja) in which the translated image captions
are generated. M3P does not perform well in low-
resource languages like bn. However, our model
achieves a more balanced performance among vari-

ous languages.
xMLM is the main factor of balanced perfor-

mance. The balanced language distribution of Dm

helps the learning of low-resource languages bn (in
Table 12) and minority languages in WikiMatrix
like ar and ru (in Table 11).
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Model
Language

mean
de es id ja ru tr zh

IR TR IR TR IR TR IR TR IR TR IR TR IR TR IR TR

Compared models

UC2 28.6 23.9 16.0 15.3 14.6 13.6 24.3 22.4 20.0 16.8 7.2 7.0 31.6 26.3 20.3 17.9
M3P 13.4 11.9 13.4 12.2 13.2 12.1 10.3 9.7 16.0 14.5 7.8 8.4 16.5 14.8 12.9 11.9
Ours 58.2 57.2 69.6 68.7 62.7 60.6 49.8 48.2 63.2 62.6 50.8 50.8 64.2 63.2 59.8 58.7

Ablation Study

Ours 58.2 56.8 67.6 67.5 61.3 60.1 48.5 46.1 62.5 60.5 48.1 50.5 64.1 62.5 58.6 57.7
w/o xMLM 56.6 55.7 66.4 66 59.4 59.4 51.8 52.3 62.8 62.6 47.4 47.0 63.1 62.2 58.2 57.7
w/o TLM 55.6 54.1 62.2 63.0 57.1 55.7 44.5 40.0 55.6 56.2 45.9 45.1 59.8 59.9 54.4 53.4
w/o XLC 53.1 51.9 61.7 60.5 53.8 52 42 41.5 55.4 54.0 39.4 40.0 56.8 55.8 51.7 50.8
w/o uni-arch 49.0 48.8 58.4 57.4 50.5 51.6 42.3 43.1 48.1 50.6 41.5 40.0 53.9 55.7 49.1 49.6

Table 14: Language-specific results of cross-lingual zero-shot transfer experiments in xFlickr&CO.

Model
Language

mean
ar bg da el et id ja ko tr vi

Image Retrieval

UC2 6.6 8.8 9.4 8.8 4.7 9.9 9.8 4.3 7.5 8.5 7.8
M3P 8.9 8.8 9.4 9.7 5.4 8.7 7.0 6.1 6.5 10.8 8.1
Ours 37.3 30.8 41.8 37.7 26.5 47.1 31.9 25.6 36.1 48.1 36.3

Text Retrieval

UC2 8.3 7.7 10.4 11.6 6.0 11.5 10.8 5.7 8.8 9.9 9.1
M3P 8.3 9.8 11.8 12.0 8.2 10.9 8.4 7.1 10.6 12.7 10.0
Ours 37.8 31.4 40.7 37.3 26.9 44.0 33.3 26.0 40.8 47.3 36.6

Table 15: Language-specific results of cross-lingual zero-shot transfer experiments in WIT. Results are recalls for
image retrieval and text retrieval
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