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Abstract

Leveraging knowledge from electronic health
records (EHRSs) to predict a patient’s condition
is essential to the effective delivery of appropri-
ate care. Clinical notes of patient EHRs contain
valuable information from healthcare profes-
sionals, but have been underused due to their
difficult contents and complex hierarchies. Re-
cently, hypergraph-based methods have been
proposed for document classifications. Directly
adopting existing hypergraph methods on clin-
ical notes cannot sufficiently utilize the hier-
archy information of the patient, which can
degrade clinical semantic information by (1)
frequent neutral words and (2) hierarchies with
imbalanced distribution. Thus, we propose a
taxonomy-aware multi-level hypergraph neural
network (TM-HGNN), where multi-level hy-
pergraphs assemble useful neutral words with
rare keywords via note and taxonomy level hy-
peredges to retain the clinical semantic infor-
mation. The constructed patient hypergraphs
are fed into hierarchical message passing layers
for learning more balanced multi-level knowl-
edge at the note and taxonomy levels. We val-
idate the effectiveness of TM-HGNN by con-
ducting extensive experiments with MIMIC-III
dataset on benchmark in-hospital-mortality pre-
diction.!

1 Introduction

With improvement in healthcare technologies, elec-
tronic health records (EHRs) are being used to mon-
itor intensive care units (ICUs) in hospitals. Since
it is crucial to schedule appropriate treatments for
patients in ICUs, there are many prognostic models
that use EHRSs to address related tasks, such as in-
hospital mortality prediction. EHRs consist of three
types of data; structured, semi-structured, and un-
structured. Clinical notes, which are unstructured
data, contain valuable comments or summary of the
“These authors contributed equally to this work.

'Our codes and models are publicly available at:
https://github.com/ny1031/TM-HGNN
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Figure 1: (a) Examples of patient clinical notes with
difficult contents (e.g. jargons and abbreviations) and
complex structures. Patient p; owns notes of radiol-
ogy taxonomy (pink) and nursing taxonomy (blue). (b)
Differences between existing hypergraphs and our pro-
posed multi-level hypergraphs.

patient’s condition written by medical professionals
(doctors, nurses, etc.). However, compared to struc-
tured data, clinical notes have been underutilized in
previous studies due to the difficult-to-understand
contents and the complex hierarchies (Figure 1(a)).
Transformer-based (Vaswani et al., 2017) methods
like Clinical BERT (Alsentzer et al., 2019; Huang
et al., 2019a, 2020) have been proposed to pre-
train on large-scale corpus from similar domains,
and fine-tune on the clinical notes through transfer
learning. While Transformer-based methods can
effectively detect distant words compared to other
sequence-based methods like convolutional neural
networks (Kim, 2014; Zhang et al., 2015) and re-
current neural networks (Mikolov et al., 2010; Tai
et al., 2015; Liu et al., 2016), there are still limita-
tions of increasing computational complexity for
long clinical notes (Figure 2).

Recently, with the remarkable success of the
graph neural networks (GNNs) (Kipf and Welling,
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2017; Velickovi¢ et al., 2018; Brody et al., 2021),
graph-based document classification methods have
been proposed (Yao et al., 2019; Huang et al.,
2019b) that can capture long range word depen-
dencies and can be adapted to documents with dif-
ferent and irregular lengths. Some methods build
word co-occurrence graphs by sliding fixed-size
windows to model pairwise interactions between
words (Zhang et al., 2020; Piao et al., 2022; Wang
et al., 2022). However, the density of the graph in-
creases as the document becomes longer. Besides,
there are also some methods apply hypergraph for
document classification (Ding et al., 2020; Zhang
et al., 2022a), which can alleviate the high den-
sity of the document graphs and extract high-order
structural information of the documents.

Adopting hypergraphs can reduce burden for
managing long documents with irregular lengths,
but additional issues remain when dealing with
clinical notes: (1) Neutral words deteriorate clin-
ical semantic information. In long clinical notes,
there are many frequently written neutral words
(e.g. "rhythm") that do not directly represent the
patient’s condition. Most of the previous methods
treat all words equally at the learning stage, which
may result in dominance of frequent neutral words,
and negligence of rare keywords that are directly
related to the patient’s condition. Meanwhile, the
neutral word can occasionally augment information
of rare keywords, depending on the intra-taxonomy
context. Taxonomy represents the category of the
clinical notes, where implicit semantic meaning
of the words can differ. For example, "rhythm"
occurred with "fibrillation" in ECG taxonomy can
represent serious cardiac disorder of a patient, but
when "rhythm" is written with "benadryl" in Nurs-
ing taxonomy, it can hardly represent the serious
condition. Therefore, assembling intra-taxonomy
related words can leverage "useful" neutral words
with rare keywords to jointly augment the clini-
cal semantic information, which implies the ne-
cessity of introducing taxonomy-level hyperedges.
(2) Imbalanced distribution of multi-level hyper-
edges. There are a small number of taxonomies
compared to notes for each patient. As a result,
when taxonomy-level and note-level information
are learned simultaneously, note-level information
can obscure taxonomy-level information. To learn
more balanced multi-level information of the clini-
cal notes, an effective way for learning the multi-
level hypergraphs with imbalanced distributed hy-
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Figure 2: Advantages of the proposed model, compared
to sequence, graph and hypergraph based models. N
and E denote the number of nodes and edges respec-
tively. We address issues of complexity and different
lengths by adopting the hypergraph to represent each
patient. Our model retains semantic information by
constructing multi-level hypergraph (Section 3.2), and
hierarchical message passing layers (Section 3.3) are
proposed for balancing multi-level knowledge for pa-
tient representation learning.

peredges is required.

To address the above issues, we propose TM-
HGNN (Taxonomy-aware Multi-level HyperGraph
Neural Networks), which can effectively and effi-
ciently utilize the multi-level high-order seman-
tic information for patient representation learn-
ing. Specifically, we adopt patient-level hyper-
graphs to manage highly unstructured and long clin-
ical notes and define multi-level hyperedges, i.e.,
note-level and taxonomy-level hyperedges. More-
over, we conduct the hierarchical message passing
from note-level to taxonomy-level hyperedges us-
ing edge-masking. To hierarchically learn word
embeddings without mixture of information be-
tween note and taxonomy, note and taxonomy hy-
peredges are disconnected. Note-level word em-
beddings are learned only with intra-note local in-
formation. The following taxonomy-level propa-
gation introduce clinical semantic information by
assembling the intra-taxonomy words and separat-
ing inter-taxonomy words for better patient-level
representation learning. The contributions of this
article can be summarized as follows (Figure 2):

e To address issue 1, we construct multi-level
hypergraphs for patient-level representation
learning, which can assemble "useful" neutral
word with rare keyword via note and taxon-
omy level hyperedges to retain the clinical
semantic information.
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* To address issue 2, we propose hierarchical
message passing layers for the constructed
graphs with imbalanced hyperedges, which
can learn more balanced multi-level knowl-
edge for patient-level representation learning.

* We conduct experiments with MIMIC-III clin-
ical notes on benchmark in-hospital-mortality
task. The experimental results demonstrate
the effectiveness of our approach.

2 Related Work

2.1 Models for Clinical Data

With the promising potential of managing medical
data, four benchmark tasks were proposed by Haru-
tyunyan et al. (2019) for MIMIC-III (Medical Infor-
mation Mart for Intensive Care-III) (Johnson et al.,
2016) clinical dataset. Most of the previous works
with MIMIC-III dataset focus on the structured data
(e.g. vital signals with time-series) for prognostic
prediction tasks (Choi et al., 2016; Shang et al.,
2019) or utilize clinical notes combined with time-
series data (Khadanga et al., 2019; Deznabi et al.,
2021). Recently, there are approaches focused on
clinical notes, adopting pre-trained models such as
BERT-based (Alsentzer et al., 2019; Huang et al.,
2019a; Golmaei and Luo, 2021; Naik et al., 2022)
and XLNet-based (Huang et al., 2020) or utilizing
contextualized phenotypic features extracted from
clinical notes (Zhang et al., 2022b).

2.2 Graph Neural Networks for Document
Classification

Graph neural networks (Kipf and Welling, 2017;
Velickovi¢ et al., 2018; Brody et al., 2021) have
achieved remarkable success in various deep learn-
ing tasks, including text classification. Initially,
transductive graphs have been applied to docu-
ments, such as TextGCN (Yao et al., 2019). Trans-
ductive models have to be retrained for every re-
newal of the data, which is inefficient and hard to
generalize (Yao et al., 2019; Huang et al., 2019b).
For inductive document graph learning, word co-
occurrence graphs initialize nodes with word em-
beddings and exploit pairwise interactions between
words. TextING (Zhang et al., 2020) employs
the gated graph neural networks for document-
level graph learning. Following TextGCN (Yao
et al., 2019) which applies graph convolutional net-
works (GCNs) (Kipf and Welling, 2017) in trans-
ductive level corpus graph, InducT-GCN (Wang

et al., 2022) applies GCNs in inductive level where
unseen documents are allowed to use. TextSSL
(Piao et al., 2022) captures both local and global
structural information within graphs.

However, the density of word co-occurrence
graph increases as the document becomes longer,
since the fixed-sized sliding windows are used to
capture local pairwise edges. In case of hyper-
graph neural networks, hyperedges connect multi-
ple number of nodes instead of connecting words
to words by edges, which alleviates the high den-
sity of the text graphs. HyperGAT (Ding et al.,
2020) proposes document-level hypergraphs with
hyperedges containing sequential and semantic in-
formation. HEGEL (Zhang et al., 2022a) applies
Transformer-like (Vaswani et al., 2017) multi-head
attention to capture high-order cross-sentence re-
lations for effective summarization of long docu-
ments. According to the reduced computational
complexity for long documents (Figure 2), we
adopt hypergraphs to represent patient-level EHRs
with clinical notes. Considering issues of exist-
ing hypergraph-based methods (Figure 2), we con-
struct multi-level hypergraphs at note-level and
taxonomy-level for each patient. The constructed
graphs are fed into hierarchical message passing
layers to capture rich hierarchical information of
the clinical notes, which can augment semantic
information for patient representation learning.

3 Method

3.1 Problem Definition

Our task is to predict in-hospital-mortality for
each patient using a set of clinical notes. Given
a patient p € ‘P with in-hospital-mortality label
y € ), patient p owns a list of clinical notes N, =

nl ..., nz’“, ...], and each clinical note n' € N,
with taxonomy ¢ € 7, contains a sequence of
words W,;: = [w?t,...,w?t,...], where j, k and

¢ denote the index of clinical note n, taxonomy ¢
and word w of patient p. The set of taxonomies can
be represented by T = {t1,t2, ..., tg, ... }.

Our goal is to construct individual multi-level
hypergraphs G, for each patient p and learn patient-
level representation G, with the multi-level knowl-
edge by hierarchical message passing layers for
in-hospital-mortality prediction task. Since our
model is trained by inductive learning, patient p is
omitted throughout the paper.
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Figure 3: Overview of the proposed TM-HGNN. Taxonomy-aware multi-level hypergraphs are fed into the model
for hierarchical message passing. ¢y denotes the patient-level prediction.

3.2 Multi-Level Hypergraph Construction

We construct multi-level hypergraphs for patient-
level representation learning, which can address
the issues that are mentioned in introduction 1. A
hypergraph G* = (V, &) consists of a set of nodes
V and hyperedges £ where multiple nodes can be
connected to single hyperedge e € £. A multi-level
hypergraph G = {V,{Ex U E7}} is constructed
from patient’s clinical notes, where Exr and &
denote note-level and taxonomy-level hyperedges,
respectively. A word node v exists in note n with
the taxonomy of ¢ can be represented by {v €
n,n € t}. A note-level hyperedge is denoted as e,
and a taxonomy-level hyperedge is denoted as e;.

Multi-level Positional Encoding There are three
types of entries in the multi-level hypergraph G,
such as word nodes V, note-level hyperedges &y
and taxonomy-level hyperedges 7. To distinguish
these entries, we propose multi-level positional en-
coding to introduce more domain-specific meta-
information to the hypergraph G. The function
of multi-level positional encoding MPE(:) can be
defined as:

MPE(x) = [7(z),Zw(x), Iy (x), ZT(2)] 1)

where entry z € {V,En, 7}, and function
7 : x — {0,1,2} maps entry x to a single type
among nodes, note-level and taxonomy-level hy-

peredges. Functions Zyy(+), Zy(+), and Z7(-) maps
entry x to positions in the word, note and taxonomy-
level, respectively. To initialize embedding of node
v, we concatenate embedding MPE(v) from multi-
level position encoding and word2vec (Mikolov
et al., 2010) pre-trained embedding z,,. Since shal-
low word embeddings are widely used to initial-
ize node embeddings in graph-based document
representation (Grohe, 2020), we use word2vec
(Mikolov et al., 2010) embedding. A word node

embedding hq(,o) is constructed as follows:
h{”Y = MPE(v) & z,, 2)
where @ denotes concatenation function.

3.2.1 Hyperedge Construction

To extract multi-level information of patient-level
representation using clinical notes, we construct
patient hypergraphs with two types of hyperedges,
one at the note-level hyperedge £z and the other
at the taxonomy-level hyperedge £7. A word node
v in note n with taxonomy ¢ is assigned to one
note-level hyperedge e,, and one taxonomy-level
hyperedge e;, which can be defined as:

E() = {en,etlv En,n €t} 3)

Note-level Hyperedges We adopt linear embed-
ding function f,, and obtain the index embedding
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using Zxr(n). To preserve time-dependent sequen-
tial information of clinical note n, we simply add
time information t(n) to the embedding. Then ini-

tial embedding of note-level hyperedge hé?q/) with
MPE(.) can be defined as:

h”) = MPE(n) @ £ (Zn(n), t(n)), “)

where 6 € R denotes the parameter matrix of
function f,,. Notably, we set the value of word in-
dex Zyy(n) as -1 since the note n represents higher
level information than word v.

Taxonomy-level Hyperedges Taxonomy-level
hyperedges e; are constructed by taxonomy index
Z7(t) through linear layers f; concatenated with
MPE(-) function, which can be defined as:

h? = MPE(t) & f{ (Zr (1)), )

where 6 € R%*¢ denotes the parameter matrix
of function f;. Like note-level hyperedge, we set
Iy (t) and Zx/(t) as -1 since the level of taxonomy
t is higher than the levels of note and word.

3.3 Hierarchical Message Passing

To leverage the characteristics of two types of hy-
peredges, we propose a hierarchical hypergraph
convolutional networks, composed of three layers
that allow message passing from different types of
hyperedges. In general, we define message passing
functions for nodes and hyperedges as follows:

1
Fw(h,E,0) = (9( fhu)), (6)
W( ) ’ u;(v) VdoVdy

1
Fo(b,V7,0) =0 ——=—h.)), @
ool 3 Zrv)

where Fyy denotes message passing function
for word nodes and F; denotes message passing
function for hyperedges with type 7 € {1, 2}, i.e.,
note-level hyperedges and taxonomy-level hyper-
edges, respectively. Function Fyy updates word
node embedding h, by aggregating embeddings of
connected hyperedges £(v) . Function F; updates
hyperedge embedding h, by aggregating embed-
dings of connected word nodes V7 (¢). o is the non-
linear activation function such as ReLLU, § € R4*d
is the weight matrix with dimension d which can be
differently assinged and learned at multiple levels.

Then we can leverage these defined functions to
conduct hierarchical message passing learning at
the note level and at the taxonomy level.

Statistics
# of patients 17,927
# of ICU stays 21,013
# of in-hospital survival 18,231
# of in-hospital mortality 2,679
# of notes per ICU stay 13.29 (7.84)

# of words per ICU stay
# of words per note
# of words per taxonomy

1,385.62 (1,079.57)
104.25 (66.82)
47475 (531.42)

Table 1: Statistics of the MIMIC-III clinical notes. Av-
eraged numbers are reported with standard deviation.

Initialization Layer Due to the complex struc-
ture of the clinical notes, the initial multi-level hy-
pergraph constructed for each patient has a large
variance. To prevent falling into local optima in ad-
vance, we first use an initialization layer to pre-train
the entries of hypergraphs by learning the entire
patient graph structure. In this layer, message pass-
ing functions are applied to all word nodes v € V
and hyperedges e € &7 = {Enr U E7}. Thus, em-
beddings of node v, hyperedges e,, and e; at both
levels can be defined as:

hi(v) = Fw (R, E2(v),01), (8)
hi(en) = Fr (B2 V7 (e0),01),7 = 1 )

hi(et) :]-"T(hé(z),VT(et),G]),TZQ (10)

Note-level Message Passing Layer Then we ap-
ply note-level message passing layer on hyper-
graphs with only word nodes v € V and note-level
hyperedges e, € Ear, and the taxonomy-level hy-
peredges are masked during message passing. In
this layer, the word nodes can only interact with
note-level hyperedges, which can learn the intra-
note local information.

hN(U)Ifw(h[(v),gN(U)7QN), (]l)
h(en) = Fr(haen). VT (en) 0x).7 =1, (12)

hN(et) = h[(et) (13)

Taxonomy-level Message Passing Layer The
last layer is the taxonomy-level message passing
layer, where all word nodes v € V and taxonomy-
level hyperedges e; € &7 can be updated. In
this layer, we block the hyperedges at the note
level. The node representations with note-level in-
formation are fused with taxonomy information
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via taxonomy-level hyperedges, which can assem-
ble the intra-taxonomy related words to augment
semantic information.

hr(v) = Fw (hn (v), E7(v), 1), (14)
hr(en) = hn(en), (15)
hr(er) = Fr(hn(e), V' (er),0r), 7=2  (16)

3.3.1 Patient-Level Hypergraph Classification

After all aforementioned hierarchical message
passing layers, node and hyperedge embed-
dings hp(v), hr(en), hr(er) € Hy follow mean-
pooling operation which summarizes patient-level
embedding z, which is finally fed into sigmoid
operation as follows:

9 = sigmoid(z) (17)

where ¢ denotes the probability of the predicted
label for in-hospital-mortality of the patient. The
loss function for patient-level classification is de-
fined as the binary cross-entropy loss:

L=—(yxlogg+ (1—y)xlog(l—g)) (18)

where y denotes the true label for in-hospital-
mortality. The proposed network, TM-HGNN, can
be trained by minimizing the loss function.

4 Experimental Settings

4.1 Dataset

We use clinical notes from the Medical Informa-
tion Mart for Intensive Care III (MIMIC-III) (John-
son et al., 2016) dataset, which are written within
48 hours from the ICU admission. For quantita-
tive evaluation, we follow Harutyunyan et al.’s
(2019) benchmark setup for data pre-processing
and train/test splits, then randomly divide 20% of
train set as validation set. All patients without
any notes are dropped during the data preparation.
To prevent overfitting into exceptionally long clin-
ical notes for a single patient, we set the maxi-
mum number of notes per patient into 30 from the
first admission. Table 1 shows the statistics of pre-
processed MIMIC-III clinical note dataset for our
experiments. We select top six taxonomies for ex-
periments, since the number of notes assigned to
each taxonomy differs in a wide range (Appendix
B Table 3). In addition, we select two chronic
diseases, hypertension and diabetes, to compare
prediction results for patients with each disease.

4.2 Compared Methods

In our experiments, the compared baseline methods
for end-to-end training are as follows:

* Word-based methods: word2vec (Mikolov
et al., 2013) with multi-layer perceptron clas-
sifier, and FastText (Joulin et al., 2017).

* Sequence-based methods: TextCNN (Kim,
2014), Bi-LSTM (Hochreiter and Schmidhu-
ber, 1997), and Bi-LSTM with additional at-
tention layer (Zhou et al., 2016).

* Graph-based methods: TextING (Zhang et al.,
2020), InducT-GCN (Wang et al., 2022), and
HyperGAT (Ding et al., 2020). In particu-
lar, HyperGAT represents hypergraph-based
method, and the other graph-based methods
employ word co-occurrence graphs.

4.3 Implementation Details

TM-HGNN is implemented by PyTorch (Paszke
et al., 2019) and optimized with Adam (Kingma
and Ba, 2015) optimizer with learning rate 0.001
and dropout rate 0.3. We set hidden dimension d
of each layer to 64 and batch size to 32 by search-
ing parameters. We train models for 100 epochs
with early-stopping strategy, where the epoch of 30
shows the best results. All experiments are trained
on a single NVIDIA GeForce RTX 3080 GPU.

5 Results

Since the dataset has imbalanced class labels for
in-hospital mortality as shown in Table 1, we use
AUPRC (Area Under the Precision-Recall Curve)
and AUROC (Area Under the Receiver Operating
Characteristic Curve) for precise evaluation. It is
suggested by Davis and Goadrich (2006) to use
AUPRC for imbalanced class problems.

5.1 Classification Performance

Table 2 shows performance comparisons of TM-
HGNN and baseline methods. Sequence-based
methods outperform word-based methods, which
indicates capturing local dependencies between
neighboring words benefits patient document clas-
sification. Moreover, all graph-based methods out-
perform sequence-based and word-based methods.
This demonstrates ignoring sequential information
of words is not detrimental to clinical notes. Fur-
thermore, hypergraphs are more effective than pre-
vious word co-occurrence graphs, indicating that
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Categories Models Whole Hypertension Diabetes
AUPRC AUROC AUPRC AUROC AUPRC AUROC

Word-based Word2vec + MLP 1349 +1.68 56.65£5.12 16.824+1.78 53.56 £4.20 18.15+ 142 51.94+3.40
FastText 17.06 £ 0.08 62.37 £0.11 2556 £0.28 62.39 £0.18 31.33 £0.33 67.59 +0.20
Bi-LSTM 17.67 £4.19 58.75+5.78 21.75£525 5739+6.11 2752+757 61.86=+8.38
Sequence-based Bi-LSTM w/ Att.  17.96 + 0.61 62.63 £ 1.31 26.05+1.80 63.24 £1.57 33.01 £3.53 68.89 + 1.58
TextCNN 20.34 £0.67 68251054 27.10£1.82 66.10+1.20 36.89 £2.54 71.83 +1.69
Graph-based TextING 34504+ 7.79 7820 +£4.27 36.63+£830 80.12+4.05 36.13+8.66 80.28 +3.84
InducT-GCN 43.03£1.96 8223 +£0.72 41.06 £2.95 8556+ 124 40.59 £3.07 84.42+1.45
HyperGAT 4442+ 196 84.00+0.84 4232+1.78 8641 £1.01 40.08+245 85.03+1.20
HyperGraph-based ~ T-HGNN (Ours) 45.85+ 191 84.29+0.31 43.53 £2.01 87.07+0.64 40.47£229 8548 +0.92
TM-HGNN (Ours) 48.74 + 0.60 84.89 + 0.42 47.27 £1.21 87.75+0.54 42.22+1.25 85.86+ 0.73

Table 2: Classification performance comparison on patient-level clinical tasks, evaluated with AUPRC and AUROC
in percentages. We report averaged results with standard deviation over 10 random seeds. Values in boldface denote

the best results.

. TextING HyperGAT TM-HGNN
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Figure 4: Prediction results of TextING, HyperGAT, and
TM-HGNN for three patient-level clinical note groups
divided by length (short, medium, and long). AUPRC
and AUROC are used for evaluation.

it is crucial to extract high-order relations within
clinical notes. In particular, as TM-HGNN outper-
forms HyperGAT (Ding et al., 2020), exploiting
taxonomy-level semantic information which rep-
resents the medical context of the notes aids pre-
cise prediction in patient-level. Another advantage
of our model, which captures multi-level high or-
der relations from note-level and taxonomy-level
with hierarchy, can be verified by the results in Ta-
ble 2 where TM-HGNN outperforms T-HGNN. T-
HGNN indicates the variant of TM-HGNN, which
considers note-level and taxonomy-level hyper-
edges homogeneous. Likewise, results from hyper-
tension and diabetes patient groups show similar
tendencies in overall.

5.2 Robustness to Lengths

To evaluate the performance dependencies to
lengths, we divide clinical notes in patient-level
into three groups by lengths, which are short,
medium, and long (Appendix B, Figure 8). For
test set, the number of patients is 645, 1,707, and

== w/o note mmm TM-HGNN

w/o initialization

mmm w/o taxonomy
w/o hierarchy

0.494 0.494

0.48 0.48

0.474 0.474

0.46- I
0.45-

0.44-

0.46-

AUPRC
AUPRC

0.454

0.44+

0.43-L5== 0.43- - .
Multi-level Hypergraph Hierarchical Message Passing

Figure 5: Performance results of ablation studies. The
effectiveness of the multi-level hypergraph and hier-
archical message passing in the proposed model TM-
HGNN are validated respectively.

856 for short, medium, and long group each, and
the percentage of mortality is 6.98%, 10.72%, and
15.89% for each group, which implies patients in
critical condition during ICU stays are more likely
to have long clinical notes. Figure 4 shows per-
formance comparisons for three divided groups
with TextING (Zhang et al., 2020) which utilizes
word co-occurrence graph, HyperGAT (Ding et al.,
2020), a ordinary hypergraph based approach, and
our multi-level hypergraph approach (TM-HGNN).
All three models were more effective to longer
clinical notes, which demonstrates graph based
models are robust to long document in general.
Among the three models, our proposed TM-HGNN
mostly performs the best and HyperGAT (Ding
et al., 2020) follows, and then TextING (Zhang
et al., 2020). The results demonstrate that our TM-
HGNN, which exploits taxonomy-level semantic
information, is most effective for clinical notes
regardless of the lengths, compared to other graph-
based approaches.
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Figure 6: PCA results of learned node representations from each layer of TM-HGNN, for patient case
HADM_ID=147702. "Rhythm" and "fibrillation" from ECG, "rhythm" and "benadryl" from Nursing/other taxonomy
are highlighted. (a) Input word node embeddings. (b) Initialized node embeddings from the first layer. (c) After
second layer, note-level message passing. (d) Final node embeddings from TM-HGNN, after taxonomy-level
message passing. Word node embeddings are aligned with the same taxonomy words.
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Figure 7: PCA results of learned node representations
from HyperGAT (a) and TM-HGNN (b). "Rhythm" and
"fibrillation" from ECG, "rhythm" and "benadryl" from
Nursing/other taxonomy are highlighted.

5.3 Ablation Study

Effect of Multi-level Hypergraph In order to
validate the effect of multi-level hypergraphs,
we ignore taxonomy-level and note-level hyper-
edges respectively. w/o taxonomy, which ignores
taxonomy-level hyperedges, deteriorates the per-
formance most significantly. w/o note shows de-
graded performance as well. Thus, effectiveness
of multi-level hypergraph construction for patient
representation learning can be verified (Figure 5).

Effect of Hierarchical Message Passing Figure
5 demonstrates that hierarchical message passing
(note-level to taxonomy-level) for multi-level hy-
pergraphs is effective than learning without hier-
archies, since w/o hierarchy shows inferior per-
formance compared to TM-HGNN. w/o hierarchy
represents T-HGNN from Table 2, which consid-

ers every hyperedge as homogeneous. Degraded
performance from w/o initialization shows the ef-
fectiveness of the initialization layer before hierar-
chical message passing, which indicates that pre-
training on the entire multi-level hypergraphs first
benefits the patient-level representation learning.

5.4 Case Study

Hierarchical Message Passing We visualize the
learned node representations based on principal
component analysis (PCA) (Jolliffe, 2002) results,
as hierarchical message passing continues in TM-
HGNN. In Figure 6(a), "rhythm" from ECG and
Nursing/other taxonomy are mapped closely for
initial word embeddings, since they are literally
same words. As the patient-level hypergraphs are
fed into a global-level, note-level, and taxonomy-
level convolutional layers in order, words in the
same taxonomies assemble, which can be found
in Figure 6(b), (c), and (d). As a result, "rhythm"
of ECG represents different semantic meanings
from "rhythm" of Nursing/other, as it is learned
considerably close to "fibrillation" from the same
taxonomy.

Importance of Taxonomy-level Semantic In-
formation To investigate the importance of
taxonomy-level semantic information extraction,
we visualize PCA results of the learned node em-
beddings from the baseline method and the pro-
posed TM-HGNN. We select patient with hospi-
tal admission id (HADM_ID) 147702 for case
study since TM-HGNN successfully predicts the
true label for in-hospital-mortality, which is pos-
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itive, but the other baseline methods show false
negative predictions. As in Figure 7, HyperGAT
learns "rhythm" without taxonomy-level semantic
information, since it is not assembled with other
words in the same taxonomy. But TM-HGNN sepa-
rately learns "rhythm" from ECG and "rhythm"
from Nursing/other based on different contexts,
which results in same taxonomy words aligned
adjacently, such as "fibrillation" of ECG and "be-
nadryl" of Nursing/other. Therefore, in case of
TM-HGNN, frequently used neutral word "rhythm"
from ECG with a word "fibrillation" means an ir-
regular "rhythm" of the heart and is closely related
to mortality of the patient, but "rhythm" from Nurs-
ing/other with another nursing term remains more
neutral. This phenomenon demonstrates that con-
textualizing taxonomy to frequent neutral words
enables differentiation and reduces ambiguity of
the frequent neutral words (e.g. "rhythm"), which
is crucial to avoid false negative predictions on
patient-level representation learning.

6 Conclusion

In this paper, we propose a taxonomy-aware multi-
level hypergraph neural networks, TM-HGNN, a
novel approach for patient-level clinical note repre-
sentation learning. We employ hypergraph-based
approach and introduce multi-level hyperedges
(note and taxonomy-level) to address long and
complex information of clinical notes. TM-HGNN
aims to extract high-order semantic information
from the multi-level patient hypergraphs in hierar-
chical order, note-level and then taxonomy-level.
Clinical note representations can be effectively
learned in an end-to-end manner with TM-HGNN,
which is validated from extensive experiments.

Limitations

Since our approach, TM-HGNN, aggregates every
note during ICU stays for patient representation
learning, it is inappropriate for time-series predic-
tion tasks (e.g. vital signs). We look forward to
further study that adopts and applies our approach
to time-series prediction tasks.

Ethics Statement

In MIMIC-III dataset (Johnson et al., 2016), every
patient is deidentified, according to Health Insur-
ance Portability and Accountability Act (HIPAA)
standards. The fields of data which can identify the

patient, such as patient name and address, are com-
pletely removed based on the identifying data list
provided in HIPAA. In addition, the dates for ICU
stays are shifted for randomly selected patients,
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each patient. Therefore, the personal information
for the patients used in this study is strictly kept
private. More detailed information about deiden-
tification of MIMIC-III can be found in Johnson
et al. (2016).
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A Detailed Statistics of MIMIC-III
Clinical Notes

Table 3 shows the number of clinical notes assigned
to 15 predefined taxonomies in MIMIC-III dataset.
Since the number of notes varies in a wide range
for each taxonomy, we select top six taxonomies
for experiments: Radiology, ECG, Nursing/other,
Echo, Nursing, and Physician.

Figure 8 shows histogram for the number of
words per patient-level clinical notes in train set.
Since 682, 1,070, and 1,689 are the first, second,
and third quantile of the train data, we select 600
and 1,600 as the boundaries to divide test set into
3 groups (short, medium, and long), which is used
to validate proposed TM-HGNN’s robustness to
lengths.

B Node Representations from Other
Methods

Figure 9 shows PCA results of learned node rep-
resentations from three different models. Accord-
ing to Figure 9(a) and 9(b), word co-occurrence
graphs (TextING) and homogeneous single-level
hypergraphs (HyperGAT) show node representa-
tions ambiguous to discriminate by taxonomies,
since every taxonomy has been shuffled. In Fig-
ure 9(c), node embeddings are aligned adjacently
and arranged with similar pattern for the same tax-
onomies. This verifies the effectiveness of the pro-
posed TM-HGNN which captures intra- and inter-
taxonomy semantic word relations for patient-level
representation learning. Example words (voltage,
lvef, benadryl, and obliteration) which are gener-
ally used in each taxonomy are shown in Figure
9 to emphasize that the keywords from each tax-
onomy are learned adjacently to words similar in
context within taxonomies in case of TM-HGNN,
but not for other methods.

C Explanation of the Medical Terms

* Fibrillation : Fibrillation refers to rapid and
irregular contractions of the muscle fibers, es-
pecially from the heart. It can lead to serious
heart conditions.

* Benadryl : Brand name for the drug Diphen-
hydramine, which is an antihistamine. Be-
nadryl is one of the over-the-counter drugs,
and generally used for alleviating the allergic
symptoms.
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Figure 8: Histogram for the length of patient-level clin-
ical notes in train set. 600 and 1,600 are selected as
boundaries to divide clinical notes into three groups
(short, medium, and long).

# of Notes
Radiology 17,466
ECG 16,410
Nursing/other 12,347
Echo 7,935
Nursing 3,562
Physician 3,545
Respiratory 2,024
Nutrition 1,270
General 1,135
Discharge Summary 608
Rehab Services 594
Social Work 424
Case Management 162
Consult 19
Pharmacy 14

Table 3: The number of clinical notes for 15 predefined
taxonomies in MIMIC-III dataset.

» Lvef: Abbreviation of left ventricular ejection
fraction, which is the ratio of stroke volume
to end-diastolic volume. Lvef is known as the
central measure for the diagnosis and manage-
ment of heart failure.

* Obliteration : In Radiology, obliteration refers
to the disappearance of the contour of an or-
gan, due to the same x-ray absorption from
the adjacent tissue.

D Additional Performance Comparison

We conduct additional experiments using LSTM
based on 17 code features selected by Johnson
et al. (2016), and Transformer-based ClinicalXL-
Net (Huang et al., 2020) without pre-training for
in-hospital mortality prediction. Table 4 shows that

Models AUPRC AUROC

LSTM (code features) 39.86 81.98
ClinicalXLNet (w/o pretrain) 16.77 62.16
TM-HGNN (Ours) 48.74 84.89

Table 4: Classification performance comparison on
patient-level in-hospital-mortality prediction task, eval-
uated with AUPRC and AUROC in percentages. Values
in boldface denote the best results.

Models AUROC F1
Clinical-Longformer 0.762 0.484
TM-HGNN (Ours) 0.847 0.462

Table 5: Classification performance comparison on
patient-level acute kidney injury prediction task, eval-
uated with AUROC and F1 score. Values in boldface
denote the best results.

TM-HGNN outperforms approaches using struc-
tured data and Transformer-based model without
pre-training.

In addition, we train our model on acute kidney
injury prediction task (MIMIC-AKI) following Li
et al. (2023). Table 5 shows comparative results of
our TM-HGNN to Clinical-Longformer (Li et al.,
2023) that justify TM-HGNN can effectively utilize
high-order semantics from long clinical notes, with
much less computational burden compared to long
sequence transformer models.
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Figure 9: PCA results of learned node representations for patient case HADM_ID=147702, compared with baseline
methods. (a) Final node embeddings from TextING. (b) Final node embeddings from HyperGAT. (c) Final node

embeddings from the proposed TM-HGNN.
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