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还有，你的新闻稿上有一些备
注。我只对前两页有意见。

Yeah, we're pretty lousy 
with pens around here, 
so knock yourself out.

Really? Thanks. Here are a few notes on 
your press release. I only 
had a problem with the 
first two pages.

It is two pages! Chicken korma from 
Rasika, and you're not 
gonna touch it?

Sorry, I'm just not hungry.

Scenei-1

Topicj-1 Topicj Topicj+1

Scenei

00:00 00:03 00:05 00:10 00:18 00:22

我们不喜欢太多笔, 你拿着
吧。

真的吗? 谢谢。 一共只有两页！

拉西卡的腰果滑汁鸡，你都
不尝一下吗？

抱歉，我只是不饿。

Figure 1: An overview of our VSTAR dataset. A 30 seconds video clip involves two dialogue scenes in which the
environments and interlocutors are totally different.

Abstract

Video-grounded dialogue understanding is a
challenging problem that requires machine to
perceive, parse and reason over situated seman-
tics extracted from weakly aligned video and
dialogues. Most existing benchmarks treat both
modalities the same as a frame-independent vi-
sual understanding task, while neglecting the in-
trinsic attributes in multimodal dialogues, such
as scene and topic transitions. In this paper,
we present Video-grounded Scene&Topic
AwaRe dialogue (VSTAR) dataset, a large
scale video-grounded dialogue understanding
dataset based on 395 TV series. Based on VS-
TAR, we propose two benchmarks for video-
grounded dialogue understanding: scene seg-
mentation and topic segmentation, and one
benchmark for video-grounded dialogue gen-
eration. Comprehensive experiments are per-
formed on these benchmarks to demonstrate
the importance of multimodal information and
segments in video-grounded dialogue under-
standing and generation.

∗This work was partially conducted when Yuxuan Wang
was a research intern at BIGAI.

†Correspondence to Zilong Zheng and Dongyan Zhao.

1 Introduction

“Every film should have its own world, a
logic and feel to it that expands beyond
the exact image that the audience is see-
ing.” — Christopher Nolan

Have you seen movie “Memento”? If so, you
may feel astonished for the mysterious movie plots
but also clap for the excellent directing and edit-
ing skills of director Christopher Nolan. In this
movie, the main character plays a role of a murder
victim with short-term memory. Truth, memories,
fake stories are cut into pieces and re-ordered in
the movie. Such nonlinear narrative structure is not
unique to Nolan’s movie but is frequently used in
story-based videos to increase the mysteriousness.
The audience has to identify the type and chrono-
logical order of each scene in order to understand
the entire movie. We call such ability as scene
transition identification. In our daily dialogue,
similarly, topic shifting commonly occurs during
chit-chatting. One typical example is a speaking
trick “callback” that is used by comedians, where
a previously mentioned joke verbatim is repeated
later. The listener has to comprehend relations be-
tween different topics in order to understand the
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entire discourse. We call such ability as topic tran-
sition identification.

However, these abilities have barely been inves-
tigated in modern literature of multimodal conver-
sational understanding. Over the recent years, we
have witnessed a growing trend of modeling longer
and more diverse video-grounded dialogues due to
growing computing capacity and hardware acceler-
ation. However, most tasks are based on multi-turn
Visual Question Answering (VQA) for its simplic-
ity in answer evaluation (Das et al., 2017; AlAmri
et al., 2019), which yields huge differences com-
pared with realistic conversations.

To fill the gap between the current multimodal
dialogue systems and realistic video-grounded di-
alogue understanding, in this work, we introduce
a new challenge, Video-grounded Scene&Topic
AwaRe dialogue (VSTAR) dataset, aiming to ad-
dress the frequent scene and topic transition within
open-domain video-grounded dialogues. We start
by constructing a VSTAR dataset by collecting a
total of 395 TV series and 8,159 TV episodes to-
gether with their corresponding story-line and key-
words; Figure 1 shows a typical example. To test
the machine’s abilities on scene and topic transition
identifications, we annotate video scene boundary
and dialogue topic boundary through determining
the semantic transition among short video-dialogue
turn pairs. Table 1 shows the statistics and main
differences of our new dataset compared with pre-
vious multimodal dialogue benchmark. Below, we
point out the distinguished challenges existing in
VSTAR:

Complicated video understanding. We carefully
selected story-based TV series as the main data
source. Compared with movies or homemade short
videos, TV series containing more complicated
plots: there are many remarkable scene transi-
tions and topic shifts within each video clip, which
brings in extra challenge in video understanding.

Multimodal scene&topic transition identifica-
tion. It is worth noting that identifying scene and
topic boundary in a video clip is non-trivial. Be-
sides the complexity of long videos, both identifica-
tions require reasoning over multi-modalities. For
example in Figure 1, it is hard to separate topics or
scenes solely based on visual cues or dialogue text.

High-level contextual information. In VSTAR,
the object-level links between video and language
are much weaker than high-level semantic connec-
tions. Different from showing captions that are

directly related with videos as VQA-based tasks
do, reasoning over contents in VSTAR requires
the capability of high-level multimodal contextual
understanding, i.e., making connections between
scenes, topics, and multimodal contexts.

We benchmark our dataset via three challeng-
ing tasks: scene segmentation, topic segmentation,
and response generation. Detailed task formula-
tion and evaluation are introduced in Section 4.
Moreover, we propose a sliding-window based dis-
criminative model (SWST) for segmentation tasks
and an autoregressive generative model (AVDT)
for dialogue generation. Extensive experiments are
performed to evaluate our model and baseline meth-
ods in video-grounded dialogue understanding and
generation; refer to Section 5 for detailed results
and analysis.

In summary, our contributions are three-fold:
(i) we collect and annotate VSTAR, a large-scale
video-grounded dialogue dataset with scene and
topic boundary annotations; (ii) we formalize three
challenging tasks regarding video-grounded scene
and topic segmentation and dialogue generation;
(iii) we benchmark three tasks and analyze experi-
mental results with baseline methods and two new
transformer-based models: SWST and AVDT.

2 Related work

Recently, multimodal dialogue systems have at-
tracted interest of many researchers with a number
of benchmarks and datasets proposed. VisualDia-
log (Das et al., 2017; Seo et al., 2017; de Vries et al.,
2017; Chattopadhyay et al., 2017; Zheng et al.,
2019) treated the problem as a multi-turn VQA that
aims to develop a dialogue agent that can answer
questions given dialogue histories and correspond-
ing images. Empowered by today’s high computa-
tional capacity, similar dialogue systems have been
extended to the video domain (AlAmri et al., 2019;
Le et al., 2021): questions about a given video are
positioned in a multi-turn QA-pairs. In each QA-
pair turn, a question usually exhibits different types
of cross-turn relations to other questions in prior
turns. To mimic the situations where common dia-
logues happen. Twitch-FIFA (Pasunuru and Bansal,
2018) introduces a video-context dialogue dataset
based on live-broadcast soccer game videos and
chats from Twitch.tv. Meng et al. (2020); Wang
et al. (2021a) construct OpenViDial dataset based
on movies and TV series. However, the subtitles ex-
tracted by OCR in this dataset contain much noise
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Table 1: Comparisons of different multimodal dialogue datasets.

Dataset Vision Language Scene Topic # Dialogues # Turns Turns/Clip Words/Turn
VisualDialog Image QA ✗ ✗ 120K 2.4M 20.0 4.0
Twitch-FIFA Live Video Dialogue ✗ ✗ 15K 161K 10.4 6.0
AVSD Recorded Video Dialogue ✗ ✗ 11K 118K 20.0 9.5
MoiveNet† Movies Dialogue ✓ ✗ - 421K - 7.2
OpenViDial 2.0 Movies & TV Series Dialogue ✗ ✗ 116K 5.6M 48.0 8.3
VSTAR (Ours) TV Series Dialogue ✓ ✓ 185K 4.6M 25.1 6.7
†: We compute statistics of the sub-dataset with scene boundary annotations.

and monologue. One of the closest work to us is the
recently proposed MovieNet (Huang et al., 2020),
a large scale dataset for movie understanding. In
this work, shot is viewed as the minimal visual
unit of a movie. However, shot boundary is anno-
tated automatically by existing tool (Sidiropoulos
et al., 2011), which leads to inaccurate predictions.
Besides, few methods take the multi-modal infor-
mation as input which make current models learn
little high-level semantic information.

3 The VSTAR Dataset

The VSTAR is collected from 395 TV series (8,159
episodes, 185K 90-second clips) with carefully
cleaned dialogues and metadata information. The
collection and data cleaning details are as follow:

Data Source We carefully selected and pur-
chased video sources from the copies of Blueray
disks and online Reddit Open Directories. Specifi-
cally, we filtered out animation and documentary
series because the former differ a lot in terms of vi-
sual input styles and are unrealistic, while the latter
mostly contain monologues. To ensure the quality
of selected series, we selected the TV shows rated
by over 1,000 IMDb users. The ultimate genre dis-
tribution is shown in Figure 2a. As seen, there are
19 genres covering almost all common genres of
TV series. For research purposes, we segmented
each TV episode into 90-second video clips. In the
end, we got 185K multi-modal dialogue clips.

Metadata We crawled metadata for each episode
from IMDb1 as complementary information. Each
TV episode is paired with genres, keywords, and
storylines. Compared to daily chat, the conversa-
tions in TV series are much longer and contain
richer background knowledge. Therefore the meta-
data will be helpful for further dialogue understand-
ing. We show the wordcloud of the story-lines in

1https://www.imdb.com

Figure 2b. It is interesting to observe that most
salient words are relevant with “work and life”.

3.1 Annotation in VSTAR

Video Scene Boundary A scene, according to
the previous definition (Rasheed and Shah, 2003;
Huang et al., 2020; Rao et al., 2020), is a plot-based
semantic unit in which a certain activity occurs
among a specific group of individuals. Recently
popular methods use off-the-shelf shot segmenta-
tion tools first and then determine whether the shot
boundaries are scene boundaries. Considering the
detection error of the shot segmentation tools, we
did not take previous shot-based methods to an-
notate scene boundaries. Instead, we segment the
TV episode into short videos by subtitle timeline.
Specifically, each short video is paired with a di-
alogue turn. Annotators are then asked to look
through these short videos with subtitles, and find
if the short video is the start of a dialogue scene.
With the help of multi-modal information, the dia-
logue scene boundaries are clearer. Thus the anno-
tation procedure is more efficient. In order to keep
consistency with previous work, we modified the
annotated boundaries as the end of a dialogue scene.
Finally we got 265k dialogue scene segments with
1.4 scene boundaries in each dialogue clip on av-
erage. Comparisons between VSTAR and other
datasets for video scene segmentation are shown
in Table 2. We demonstrate that VSTAR is signifi-
cantly larger than existing datasets. In addition, we
show the distributions of the number of dialogue
scenes in a TV episode in Figure 3a. The number of
scene segments in a TV episode is mostly between
10-60. To the best of our knowledge, VSTAR is
the first dataset whose scene boundaries are labeled
with the help of multimodal information.

Dialogue Topic Boundary We perform dialogue
topic boundary annotation and dialogue scene
boundary annotation at the same time. Specifi-
cally, we take the video as auxiliary information to
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Figure 2: Statistics of metadata in VSTAR
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Figure 3: Statistics of annotations in VSTAR

# Scene Video Source
# OVSD 300 21 MiniFilm
# BBC 670 11 Documentary
# MovieScenes 21k 150 Movie
# MovieNet 42k 318 Movie
# VSTAR (Ours) 265k 8159 TV Episode

Table 2: Comparisons of dialogue scene annotation in
VSTAR.

sentence sent/seg Language
DiaSeg_711 19K 5.6 English
Doc2Dial 19K 3.5 English
ZYS 12K 6.4 Chinese
VSTAR 4.6M 9.3 English

Table 3: Comparisons of dialogue topic annotations.

determine whether a dialogue turn is the end of a
dialogue topic. In total, we obtain 499k dialogue
topic segments with 2.7 topic boundaries in each
dialogue clip on average. Each scene segment con-
tains 1.88 topic segments. Comparisons between
VSTAR and other datasets for dialogue topic seg-
mentation are shown in Table 3. VSTAR is 200×
larger than previous datasets in scale. And the dia-

logue topic length is longer than current datasets,
which makes the dialogue topic segmentation task
more challenging. As shown in Figure 3b, the num-
ber of dialogue topics in a TV episode varies from
less than 10 to more than 160, which demonstrates
the diversity of VSTAR.

Annotation Process We recruited 30 highly-
educated students (undergraduates and above) with
high English proficiency for the annotation. Each
student is assigned with 4 groups of dialogues, each
of which includes 40K continuous dialogue turns.
For each dialogue group, we randomly sampled
5% data and checked them manually. If the error
rate is more than 4%, we asked the annotator to
re-annotate the whole dialogue turn sequence. We
repeated this validation procedure three times. In
the end, 4% data did not meet our requirements
and were all dropped off. During the annotation
procedure, the salary for annotating each utterance
is determined by the average time of annotation
and local labor compensation standard.

4 Benchmarks and Models

We set three benchmarks based on VSTAR for
video-grounded dialogue understanding and gener-
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ation. In Sec.4.1, we first introduce the task formu-
lation along with their evaluation metrics. Then in
Sec.4.2 we present our proposed transformer-based
video dialogue frameworks to benchmark our tasks.

4.1 Task formulation

VSTAR consists of a set of video-grounded dia-
logue clips (U, V ) ∈ D, where U = {u1, . . . , uN}
serves as a dialogue clip with ui denoting the i-th
dialogue utterance, V = {v1, . . . , vN} signifies the
corresponding video clip with vi paired with dia-
logue turn ui, N refers to the number of dialogue
turns. More precisely, vi can be separated into a
sequence of RGB image frames {zi,1, . . . , zi,K},
where zi,k is a RGB tensor of frame k, K is the
number of frames in vi.

Video-grounded dialogue scene segmentation
A dialogue scene segment is a series of video-
grounded dialogue pieces that sharing the same
visual scene context. We thereby formulate the dia-
logue scene segmentation task as a binary classifica-
tion problem: given a clip (U, V ) = {(ui, vi), i =
1...K}, the model is asked to predict si ∈ {0, 1}
indicating the dialogue scene boundary. We take
three commonly used metrics for evaluation:
• AP. We compute Average Precision (AP) of si =
1 for each video piece vi.

• mIoU. Following Huang et al. (2020), we use
mIoU to measure the averaged intersection-over-
union (IoU) between predicted dialogue scene
segments and their closest ground truth dialogue
scene segments.

• micro-F1. Inspired by Mun et al. (2022), we use
micro-F1 as an additional evaluation metric to
compare algorithms.

Video-grounded dialogue topic segmentation
Similar to scene segmentation, we formulate di-
alogue topic segmentation as a turn-level classifica-
tion problem. Concretely, given a video-grounded
dialogue clip (U, V ), we need to predict if the i-th
dialogue utterance is the end of a dialogue topic.
Following Xing and Carenini (2021), we apply
three standard metrics to evaluate the performance
of the proposed segmentation model in this bench-
mark:
• Pk error score (Beeferman et al., 2004). Pk is a

penalty computed via a sliding window of length
k.

• WinDiff (Pevzner and Hearst, 2002). WinDiff is
calculated based on the intersection between ref-

erence segments and predicted segments within
a moving window.

• macro-F1. We utilize the F1 score to make a
balanced comparison of precision and recall.

Video-grounded dialogue response generation
For each dialogue clip (U, V ), we set the first
N − 1 dialogue turns {u1, . . . , uN−1} as the di-
alogue context C and the last dialogue turn uN as
the gold reply r. We choose four commonly used
reference-based metrics: BLEU (Papineni et al.,
2002), ROUGE (Lin, 2004), METEOR (Lavie and
Agarwal, 2007) and CIDEr (Vedantam et al., 2015).

4.2 Transformer-based Video Dialogue Model
In this section, we propose a transformer-based dis-
criminative model, namely SWST, to benchmark
two segmentation tasks. For the response gener-
ation task, we develop a transformer-based gen-
erative model following encoder-decoder frame-
work (AVDT); Figure 4 depicts our overall archi-
tecture.

Sliding-window-based Segmentation Trans-
former (SWST) Inspired by currently popular
works (Rao et al., 2020; Chen et al., 2021; Mun
et al., 2022) in video scene segmentation, we adopt
the sliding window scheme to learn the contextual
representation of a dialogue scene. Specifically,
the window can be denoted as a pair of short video
sequence W v

i = {vi−L, . . . , vi, . . . , vi+L}, and
the corresponding dialogue turn sequence W u

i =
{ui−L, . . . , ui, . . . , ui+L}, with (vi, ui) as the cen-
ter of the window, K as the number of neighbor
pieces before and after the center. Our goal is
to train a model by maximizing the expected log-
likelihood:

θ∗ = argmax
θ

E [log pθ(si|W v
i ,W

u
i )] (1)

Figure 4A depicts the architecture of our
Transformer-based video-grounded dialogue scene
segmentation model. For visual feature W v

i , we fol-
low Lei et al. (2021) to randomly sample Ml frames
for i-th video piece vi instead of using the full-
length short video. Then, we utilize ResNet-50 (He
et al., 2016) pretrained on ImageNet dataset (Deng
et al., 2009) to extract 1,000 dim visual features
for each frame. For dialogue feature W u

i , we uti-
lize the same tokenizer and embedding matrix as
in BERT to obtain its initialization. We concate-
nate the sparse-sampled short video sequence W v

i

and the dialogue turn sequence W u
i as the model
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Figure 4: Transformer-based model architecture. (A) Sliding-window based segmentation transformer (SWST)
for scene and topic boundaries identification. The dashed rectangle indicates the current sliding window for turn i.
(B) Autoregressive video-grounded dialogue transformer (AVDT) for dialogue response generation.

input. The scene segmentation model leverages the
same architecture and parameters in BERT2 (De-
vlin et al., 2019) as its initialization:

evi = fscene([W
v
i ;W

u
i ]), (2)

where fscene : R(4L+2)×Ds → R(4L+2)×De repre-
sents the BERT-based contextual relation network,
Ds and De denote dimensions of the input and out-
put features, evi = {evi−L, . . . , e

v
i , . . . , e

v
i+L} repre-

sents the output feature sequence. After that, we
apply a dialogue scene boundary detection head hS
to predict the result for the contextualized represen-
tation. We then use cross-entropy loss to optimize
the contextual relation network fscene and the dia-
logue scene boundary detection head hS . In the test
procedure, we binarize the prediction score with a
threshold τ = 0.5 to get the result.

Similarly, we adopt the contextual relation net-
work that has the same structure with fscene to
encode the multi-modal inputs. And we use a lin-
ear layer as the dialogue scene boundary detection
head, which is optimized by the ground truth dia-
logue topic labels.

Autoregressive Video-grounded Dialogue Trans-
former (AVDT) Given a new dialogue context
C associated with a video clip V , our goal is to
learn a generative model p(r|V,C; θ) from dia-
logue D. Figure 4(B) illustrates the architecture of
our autoregressive generative model. The model
is composed of a BART-based multi-layer Trans-
former (Lewis et al., 2020) and an autoregres-
sive decoder. We concatenate dialogue context
C = {ui}N−1

i=1 and video clip V = {vi}Ni=1 as
the encoder inputs. Considering the computing
complexity, we sample one frame from each short
video. Same as in the segmentation model, we

2https://huggingface.co/bert-base-uncased

use ResNet-50 to extract features of the sampled
frames. We signify the dialogue scene segment
sequence as {1, . . . ,Mv} and the dialogue topic
segment sequence as {1, . . . ,Mu}, where Mv and
Mu are the number of scene segments in V and
topic segments in C, respectively. Then, we add
these segment tokens to inputs to learn a scene &
topic aware context representation.

We adopt two other image embedding backbones
to investigate the impact of the frame representation
in our model: OD-based region feature extractor
and ViT-based patch feature extractor. Specifically,
we use a Faster R-CNN (Ren et al., 2015) trained on
Visual Genome (Krishna et al., 2016) to extract the
OD-based Region feature embedding. Each region
feature is a 2048-d Region-of-Interest (RoI). Fol-
lowing ViT (Dosovitskiy et al., 2021), we reshape
the frame Zj ∈ R(C×H×W ) into a sequence of flat-
tened 2D patches Zp

j ∈ RN×(P 2×C), where P is
the size of each image patch and N = H ×W/P 2

is the number of patches.

5 Experiments

We split the whole dataset into Train, Val, and Test
with the ratio 17:1:1 on utterance level. For each
task, we demonstrate the main results compared
with baseline methods along with ablation stud-
ies on each module. Detailed information about
baseline methods and implementation details are
introduced in ?? and ??.

5.1 Video Scene Segmentation
We choose two popular methods as our baselines,
ShotCol (Chen et al., 2021) and Bassal (Mun
et al., 2022). In practice, we did not extract the
shot boundaries with external tools but used short
video pieces as video units. We additionally imple-
ment the Random method by setting the ratio of
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Model mIoU ↑ AP ↑ F1 ↑
Random 0.251 0.060 0.075
ShotCol 0.427 0.412 0.365
Bassal 0.466 0.442 0.401
SWST text-only 0.453 0.351 0.380
SWST video-only (1 frame) 0.448 0.419 0.385
SWST video-only (3 frames) 0.481 0.474 0.430
SWST (3 frames) 0.536 0.543 0.503

Table 4: Results of dialogue scene segmentation task.

Model WinDif ↓ Pk ↓ F1 ↑
Random 0.765 0.603 0.370
TextTiling 0.636 0.581 0.480
BERT+Greedy 0.615 0.565 0.486
BERT+CS 0.541 0.512 0.527
BERT+CS SP 0.531 0.422 0.610
SWST text-only 0.374 0.326 0.644
SWST full 0.336 0.281 0.690

Table 5: Results of the dialogue topic segmentation task.

scene segmentation label/non-segmentation label
the same as in the test set. The overall results are
shown in Table 4. Compared with ShotCol and
Bassal which focused on learning better shot-level
representations based on ResNet-50, our method
using offline-extracted video features can achieve
similar performance with a difference within 2
points on F1 score. Concretely, our method per-
forms better than ShotCol (Chen et al., 2021) but
worse than Bassal (Mun et al., 2022). This phe-
nomenon shows that a better video encoder does
help the model to distinguish the scene boundary.
However, training a video encoder is really a time-
consuming procedure.

Ablation Studies We ablated our method by
adopting different lengths of sampled short videos.
We find our method of taking 3 frames to represent
the short video outperforms the 1-frame version.
The frequency of change prediction between 1 sam-
pled frame and 3 sampled frames is 0.137. We
believe the length of frames is an essential part not
to be ignored for our transformer-based model. We
also compare models with uni-modal inputs against
ones with multi-modal inputs. The results demon-
strate that with the help of text input, our method
improves from 0.481 on mIoU to 0.536 (11.4%
relatively), from 0.474 on AP to 0.543 (14.6% rel-
atively), from 0.430 on F1 to 0.503 (17.0% rela-
tively). We are delighted to find the text informa-
tion is very helpful to video scene segmentation.

5.2 Dialogue topic segmentation

We compare several currently popular baselines:
TextTiling (Hearst, 1997), GreedySeg (Xu et al.,
2021) and BERT+CS (Xing and Carenini, 2021).
In addition, we train another BERT+CS SP model
under the supervision of the ground truth label for
comparison. We implement Random algorithm
following (Xing and Carenini, 2021). The overall
results are represented in Table 5. The BERT+CS
SP model with supervision signals improves 0.527
on F1 to 0.610 (15.7% relatively). This result
shows the importance of our dialogue topic bound-
ary annotations. Compared with BERT+CS SP
model, our sliding window-based approach SWST
improves 0.610 on F1 to 0.644(5.6% relatively).
To further investigate the validity of the visual in-
formation in dialogue topic segmentation, we add
the video clip to the inputs. The result turns out
that the visual information is important for the dia-
logue topic boundary detection where it leads to a
performance gain of 7.1% in F1.

5.3 Video-grounded Response Generation

We choose two commonly used transformer-based
models as our baselines: CoarseVisual (Wang
et al., 2021b) and RLM (Li et al., 2020). Visual
features in these models are all extracted through
ResNet-50 pre-trained on ImageNet dataset. The
overall results are shown in Table 6. Results
show that our model outperforms baseline methods
across all metrics.

Analysis & Ablation studies We further exam-
ined the performance of our model on different
input settings (rows 4-7) and made three funda-
mental observations: (i) When the input is only a
query (row 4), our model is slightly worse than the
input is the full dialogue clip history (row 5), which
demonstrates that the dialogue history containing
much noise is of limited help for response gener-
ation. (ii) Though our model using the text-only
setting (row 5) can reach comparable results with
the standard setting (row 6), the results improve
across all metrics when we increase the number of
input frames (rows 6-7). Such observation is sim-
ilar to Huang et al. (2021) — the utility of multi-
modality is positively correlated with the data scale.
(iii) Compared with the setting without segment
embedding (row 6), our method performs much
better. Specifically, the Rouge-L score increases
from 0.077 to 0.082 with an increment of 6.5%;
the CIDEr increases from 0.126 to 0.145 with an
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Model BLEU1 BLEU2 BLEU3 BLEU4 METEOR ROUGE-L CIDEr
OpenViDial coarse 0.075 0.026 0.013 0.006 0.035 0.063 0.066
RLM 0.072 0.032 0.017 0.010 0.032 0.061 0.079
AVDT 0.089 0.040 0.022 0.014 0.041 0.082 0.145
AVDT w/o seg query-only 0.082 0.035 0.019 0.011 0.037 0.073 0.119
AVDT w/o seg text-only 0.085 0.037 0.021 0.013 0.037 0.075 0.126
AVDT w/o seg (1 frame) 0.087 0.039 0.021 0.013 0.039 0.077 0.126
AVDT w/o seg (3 frames) 0.090 0.040 0.022 0.014 0.041 0.081 0.139
AVDT Faster-RCNN 0.089 0.040 0.022 0.014 0.040 0.080 0.137
AVDT ViT 0.092 0.041 0.023 0.014 0.041 0.082 0.144

Table 6: Results of the dialogue response generation task. AVDT denotes our Autoregressive Video-grounded
Transformer. All evaluation metrics denote better generation performance with higher scores.

Pick up. Pick up. That’s him. That’s
my husband.

Start tracing the
landline.

The number’s 177-
8987. -Skyler.

REF: I know you
are there, so pick
it up.

PRED: I need you
to pick up the phone.
(ROUGE=0.44)

Did they find evi-
dence to support ex-
tra dimensions or su-
persymmetry?

No, but they did find
evidence that you’ll
believe anything.

Why would you do
that?

You’re a string theo-
rist as well

REF: Incorrect. I
am a string prag-
matist.

PRED: I’m a
string theorist.
(ROUGE=0.22)

Figure 5: Examples of human evaluation. Each image indicates a short video clip, PRED denotes our predicted
response, REF denotes the reference human response.

increment of 15.1%. These improvements show
that segment information is important for dialogue
generation in our dataset.

Additionally, we investigate the contribution of
different visual backbones. Specifically, we use
different frame representations while keeping other
parts of our model unaltered. The results (rows
8-9) show similar performance between these fea-
ture representations and the ViT-based patch fea-
tures even perform slightly better than other offline-
extracted features with high computational over-
load. This phenomenon validates our hypothesis
that the current encoder-decoder model can not
make full use of the visual information for the
video-grounded dialogue generation task, which
yields future investigation on video-grounded dia-
logue modeling.

Human Evaluation We follow Sun et al. (2022)
to run human evaluation by comparing our gener-
ated responses with baseline methods. Specifically,
we select 20 highly educated students with pro-
ficient English skills as evaluators and randomly

Win Lose Tie Kappa
AVDT vs. OpenViDial 0.20 0.16 0.64 0.71
AVDT vs. Human 0.08 0.71 0.21 0.73

Table 7: Human evaluation result

sample 300 video-dialogue pairs with correspond-
ing responses as test cases. To each evaluator,
two responses from different models are presented,
which are shuffled to hide the sources. The evalu-
ators then judge which response is more coherent
to the current dialogue scene and topic. The agree-
ment among the annotators is measured by Fleiss’
Kappa (Fleiss, 1971). Table 7 shows the human
evaluation results and Figure 5 shows some qualita-
tive comparison. We additionally add a comparison
with human annotation as an upper bound.

6 Limitations and Ethics Concerns

We point out potential limitations and ethical con-
cerns of this work.
Limitation: Data and Modeling The dialogues
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in our dataset are made by playwright, which are
slightly different from daily chat. Second, the auto-
matic evaluation metrics for the response genera-
tion task can not perfectly reflect the interactiveness
of dialogue system. Lastly, Our autoregressive gen-
erative model simply add the segment embedding
to the inputs. Similar to the position encoding in
transformer, our coarse method does not make good
use of the segmentation, and lacks interpretability.
Ethics: Copyright and Licensing The data source
are publicly available TV series. Its collection
and annotation procedure is designed for video-
grouned dialogue understanding and generation
purpose, and does not involve privacy issues.
Following LSMDC (Rohrbach et al., 2016) and
MovieNet (Huang et al., 2020), we will polish an
agreement and release TV shows content under
very strict conditions but will open-source all the
scrawling code, pretrained features and sampled
images.

7 Conclusion

In this paper, we introduce VSTAR, a scene and
topic-aware video-grounded dialogue understand-
ing and generation dataset. The main purpose of
our dataset is to improve the situated multimodal
semantic perception capability of the dialogue sys-
tem, so that the dialogue system can generate the
response that are both semantically and logically
consistent with the dialogue scene in common situ-
ation. We introduce three challenging benchmarks
on different aspects of video-grounded dialogue un-
derstanding and generation, i.e., discovering scene
transition and topic transition on video-grounded
dialogue, and getting proper response. Further-
more, we propose three new baselines for corre-
sponding benchmarks. Experiment results shows
the multi-modal information can benefit dialogue
understanding. Besides, we find scene boundary
and topic scene boundary contribute to generate
more relevant and coherent responses. By intro-
ducing VSTAR, we hope to shed light on future re-
search towards building conversational agents that
can comprehend complicated realistic multimodal
signals.
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