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Abstract

Large pre-trained language models (PLMs)
have been shown to retain implicit knowledge
within their parameters. To enhance this im-
plicit knowledge, we propose Knowledge In-
jection into Language Models (KILM), a novel
approach that injects entity-related knowledge
into encoder-decoder PLMs, via a generative
knowledge infilling objective through contin-
ued pre-training. This is done without architec-
tural modifications to the PLMs or adding ad-
ditional parameters. Experimental results over
a suite of knowledge-intensive tasks spanning
numerous datasets show that KILM enables
models to retain more knowledge and halluci-
nate less while preserving their original perfor-
mance on general NLU and NLG tasks. KILM
also demonstrates improved zero-shot perfor-
mances on tasks such as entity disambiguation,
outperforming state-of-the-art models having
30x more parameters.1

1 Introduction

Large pre-trained language models (PLMs) (Rad-
ford et al., 2019; Lewis et al., 2020a; Raffel
et al., 2020) have achieved great success across
all NLP tasks. However, recent studies also reveal
that PLMs are susceptible to memorizing the pre-
training corpora rather than capturing the knowl-
edge within them (Niven and Kao, 2019; Talmor
et al., 2020; Yasunaga et al., 2022; Li et al., 2022).
Particularly for generation tasks, PLMs are notori-
ous for hallucinating text that is factually incorrect
or hard to verify (Logan et al., 2019; Sun et al.,
2020; Lin et al., 2020; Longpre et al., 2021). To
address these issues, one approach is to retrieve
relevant knowledge and integrate it explicitly with
PLMs (He et al., 2020; Liu et al., 2021b). Another
direction is incorporating the additional knowledge
sources into the pre-training step (Zhang et al.,

∗Work done in part while Yan was an intern at Amazon
Alexa AI.

1The code is available at https://github.com/alexa/kilm.

2019; Xiong et al., 2019; Liu et al., 2022; Wang
et al., 2021b). While the former suffers from the is-
sue of falling back on the models themselves with-
out retrieved information (Krishna et al., 2021),
knowledge-focused pre-training can be comple-
mentary to those methods (Longpre et al., 2021)
and shows its advantage on generalization.

In this paper, we propose an approach for inject-
ing knowledge into encoder-decoder PLMs, such
as BART, as a continued pre-training process. We
refer to it as Knowledge Injection into Language
Models (KILM). Instead of introducing additional
parameters to PLMs or modifying the model ar-
chitectures to incorporate additional knowledge,
KILM infills knowledge sentences by adopting a
novel knowledge infilling objective that includes
a knowledge reconstruction step in addition to the
original pre-training objectives of BART.

The aim of KILM is to teach PLMs additional
content about concepts and entities that they en-
counter in a given context, so that the models are
able to ground an entity mention with additional
information and “describe” what that entity is (see
Figure 1). It should be emphasized that in this pro-
cess, the context is especially important for cases
when an entity mention can refer to multiple en-
tities, e.g., Titanic which can refer to the British
ship or to the 1997 movie. We utilize the short
descriptions of entities in Wikipedia which com-
prise of entity definitions as the knowledge source
(§3.1). Although there are existing works leverag-
ing similar knowledge for PLM enhancement, they
ignore the relationship among entities, contexts,
and entity-centric knowledge, and restrict their ap-
plications to NLU tasks. In contrast, we propose a
distinct structure (§3.2) to augment Wikipedia arti-
cles with short descriptions of the entity mentions
in the context, thus model this essential relation-
ship, so as to force PLMs to learn the correlation
among entities and contexts, and differentiate be-
tween the entities with similar surface forms during
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The Joker is a comic book series published by DC Comics
starring the supervillain the Joker. It ran for nine issues from
May–June 1975, with a tenth previously unpublished ... 

The Joker (comic book)

{{Short description|Fictional character in the DC Universe}} 

{{Redirect|The Joker|other characters called Joker or ...

...

View source

The Joker is a comic book series published by DC Comics
starring the supervillain the <ent> Joker </ent><ent_desc>
<mask> </ent_desc>. It ran ... 

The Joker is a comic book series published by DC Comics
starring the supervillain the <ent> Joker </ent>
<ent_desc> Joker (character) <sep> Fictional character
throughout the DC Universe </ent_desc>. It ran ...

Knowledge
Infilling

Knowledge
Masking

Masked Knowledge
Reconstruction

KILM

PLMThe Joker is a supervillain appearing
in American comic books published
by DC Comics. The character was
created by ...

Joker (character)

Figure 1: The illustration of the proposed KILM technique for injecting knowledge into PLMs. In the given
example, the mention, Joker, is linked to the page of Wikipedia entity Joker (character). While the figure only
shows knowledge infilling, knowledge masking, and masked knowledge reconstruction steps, the proposed method
is combined with the original pre-training objectives of PLMs for continued pre-training.

continued pre-training. With recent work that high-
lights the need for explicit grounding for PLMs to
truly understand text (Merrill et al., 2021), we posit
that KILM takes a step in that direction.

The proposed structure for knowledge infilling
in KILM is further leveraged as a structured prompt
in downstream tasks (see §4.2). We demonstrate
better knowledge retention with KILM in zero-shot
for entity disambiguation and appositive generation
tasks, showing the effectiveness of the proposed
method. We also find that BART with KILM out-
performs BART on QA tasks and is less prone to
hallucination on tasks such as knowledge-grounded
response generation. As mentioned earlier, KILM
relies on continued pre-training of PLMs, which
presents the possibility of catastrophic forgetting
of original skills of the PLM. We mitigate this by
retaining the original training objectives of BART
during the continued pre-training stage. We empir-
ically verify that our proposed objective does not
degrade the general language modeling ability of
the PLM, nor affect the fluency of these models
for natural language generation (NLG) tasks. Al-
though we focus on short descriptions of entities
as the knowledge source for KILM, other forms of
knowledge can also be used, which we leave for
future exploration.

We summarize our contributions as follows:
(1) We propose a novel approach, KILM, to lever-
age Wikipedia annotations in pre-training of PLMs.
We inject knowledge into BART, solely through
continued pre-training, with no change in the archi-
tecture of the PLMs. KILM enables entity-based
knowledge injection with knowledge in natural-
language form. KILM’s distinct structure also of-
fers a direct way to probe the entity knowledge
retained in pre-trained models.

(2) We show that KILM enhances the performance
of BART on knowledge-intensive tasks while main-
taining its original performance on other down-
stream tasks. KILM demonstrates improved zero-
shot performance on entity disambiguation task,
outperforming state-of-the-art models having 30x
more parameters.

2 Related Work

Knowledge-Enhanced LMs To enhance PLMs’
use of knowledge, a number of work has at-
tempted to augment them with external knowledge
sources, such as knowledge graphs (KGs) (Yin
et al., 2022). Some recent work introduced ad-
ditional non-parametric memories into the mod-
els (Zhang et al., 2019; Rosset et al., 2020) to obtain
entity embeddings and modified the model struc-
tures to accommodate extra information (Yamada
et al., 2020; Wang et al., 2021a,b), while others
changed the masking schema with the additional
information (Sun et al., 2019; Wang et al., 2022), or
converted the external KGs into natural language
text as an additional pre-training corpus (Xiong
et al., 2019; Zhou et al., 2020; Liu et al., 2022;
Agarwal et al., 2021; Li et al., 2022).

Modeling with Text Linking and Enrichment
Our motivation bears similarity to text linking (Ya-
sunaga et al., 2022; Deng et al., 2021; Arora
et al., 2022) during pre-training and text enrich-
ment (Elazar et al., 2022). Modeling the links
between documents or metadata is motivated by
the fact that PLMs, pre-trained on plain text, are
not directly trained to capture inter-dependencies
between documents. The similarity between the
above tasks and ours lies in the ways humans im-
plicitly link information when reading or generat-
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ing language. However, the former tasks are re-
stricted to relationships within the text, while our
goal is to ground the concepts and entities to their
related descriptions in encyclopedic resources.

Pre-training with Hypertext Besides PLMs that
are pre-trained with natural language corpora,
HTLM (Aghajanyan et al., 2021) directly pre-trains
simplified crawled HTML data based on BART
models and CM3 (Aghajanyan et al., 2022) ex-
tends HTLM into a multimodal setting with causal
masked language modeling. The target of HTLM
and CM3 is to better leverage the enormous web-
scraped data source for pre-training. In contrast,
our work aims to leverage hypertext to explore how
to inject extra knowledge into PLMs with a custom-
designed structure to furnish advantages to PLMs
in performing knowledge-intensive tasks.

3 Methodology

Although KILM is model-agnostic and could be
used for any PLM (more on this in §5), in this
work, due to high computation costs, we focus on
applying KILM to BART (Lewis et al., 2020a).

3.1 Preliminaries
Wikipedia is a widely-used text corpus for LM
pre-training. It is often processed as a collection
of individual articles in the form of flat natural
language text. However, due to the existence of
hyperlinks in its text, Wikipedia is also a complex
web of connected Wikipedia topics, also known
as Wikipedia entities. These hyperlinks build con-
nections between different Wikipedia entities and
establish a rich source of information that is mostly
ignored in current pre-training approaches. More-
over, most Wikipedia articles come with a short
description of the entity (topic) discussed in the ar-
ticle. These short descriptions provide definitions
for Wikipedia entities. In this work, we take an ini-
tial step towards using these additional information
within Wikipedia articles and utilizing “short de-
scriptions” of entities for continued pre-training of
PLMs. Note that the proposed approach could be
expanded to other annotated text corpora.

3.2 KILM: Knowledge Injection into
Language Models

We propose KILM, which extends the text-infilling
objective to knowledge infilling objective through
continued pre-training. KILM, as shown in Fig-
ure 1, consists of three steps: (1) knowledge in-

filling, (2) knowledge masking, and (3) masked
knowledge reconstruction.

Knowledge Infilling As mentioned in §3.1, in
this work, we mainly focus on injecting PLMs with
hyperlinks and entity descriptions as the entity-
related knowledge into PLMs. Specifically, we
process Wikipedia data such that entity mentions
in Wikipedia articles (which are annotated by hy-
perlinks) are marked with a start-of-entity token
<ent> and an end-of-entity token </ent>. Also,
each entity mention is followed by an entity-related
knowledge sentence marked with <ent_desc> and
</ent_desc> as start- and end-of-description to-
kens. The inserted knowledge component (high-
lighted in blue in Figure 1) consists of the corre-
sponding hyperlinked entity (which might be dif-
ferent from the entity’s surface form in the text)
and the entity’s short description connected with
the <sep> token, where the short description is
obtained from a lookup table extracted from the
Wikipedia dump. We denote this knowledge infill-
ing transformation as KNINFILL.

Knowledge Masking The processed data is used
for the continued pre-training of a PLM. During
this step, we conduct knowledge masking trans-
formation (denoted as KNMASK) and the model
is trained to reconstruct the whole inserted knowl-
edge component from a single <mask> token with
respect to the context. More specifically, assum-
ing the ith token ti is a mention of an entity, the
masked input sequence X and the output sequence
Y can be denoted as:
X ={t1, ..., ti−1, <ent> , ti, </ent>, <ent_desc> ,

<mask> , </ent_desc> , ti+1 ..., tN},
Y ={t1, ..., ti−1, <ent> , ti, </ent>, <ent_desc> ,

k1, ..., kL , </ent_desc> , ti+1 ..., tN},
where tn represents the nth token of the original
target sequence and kl represents the lth token in
the knowledge sequence of length L.

Masked Knowledge Reconstruction The pa-
rameters θ of the PLM are optimized by a masked
knowledge reconstruction loss:

Lkn = E

(
L∑

l=1

− log
(
p
(
kl|t1:(i+l+2),X, θ

))
)
.

Since our goal is to inject entity-related knowl-
edge without disrupting the function of the original
BART as a general PLM, the masked knowledge
reconstruction loss is combined with the original

5015



Task Knowledge
type

Task
adapation Input/Prompt Target

Entity
Disambigua-
tion

entity ✗

Context D: The Big Blue River is ... Driftwood White,
<ent> Wabash </ent><ent_desc> <mask>

</ent_desc> , and ...
Candidate S1: Wabash River<sep>Tributary of the Ohio ...
Candidate S2: Wabash, Indiana<sep>Wabash is a city in ...

Wabash River

Appositive
Generation

entity ✗

The game achieved the highest ... matchup between Larry
Bird and Spartans’ point guard <ent> Magic Johnson
</ent><ent_desc> <mask> </ent_desc> .

a rivalry that lasted
throughout their
professional careers

In-Context
Few-Shot QA

factoid ✗
Question: What jobs did Ben Franklin do? Answer: Diplomat
Question: What did Ben Franklin invent? Answer: <mask>

Lightning rod

KGRG encyclopedia ✓

<speaker2>Ross was an American painter and television host.
<speaker1>That’s cool. What else?
<speaker2>

He created the show
"The Joy of Painting"

Table 1: A summary of the knowledge-intensive tasks that are studied in this work. KGRG is short for Knowledge
Grounded Response Generation task. Examples of input and target formats are provided above along with the task
information. The definitions of the knowledge types are discussed in the corresponding sections in §4.2.

text infilling objective of BART during continued
pre-training.2 At training time, the model is opti-
mized by minimizing the reconstruction loss over
the whole target sequence instead of only the re-
covered masked spans. As a result, the training ob-
jectives force the model to learn to copy the tokens
from the input sequences when the token is not a
mask token during the pre-training process. This is
to help the model recognize the inserted knowledge
components in the training sequences and ensure
the fluency of the PLM on NLG tasks. The weights
of different objectives for loss are calculated based
on the proportion of the corresponding spans across
the entire sequence. We summarize the proposed
KILM algorithm in Appendix B.

The advantages of leveraging this structure for
training are two-fold. First, this structure builds
an alignment between the entity-related knowledge
and the corresponding mention in the paragraphs.
Second, the injected knowledge can be easily in-
duced by probing the PLM with the structured
prompts proposed for KILM (§4.2).

4 Experiments

We start by exploring the performance of
BART+KILM on knowledge-intensive tasks (§4.2).
Later, we also demonstrate that KILM does not
degrade the original language modeling skills of
BART in both NLU and NLG benchmarks (§4.3).

2The comparison between the text infilling and sentence
permutation objectives shows the advantage of the former
objective over the latter (Lewis et al., 2020a), so we only
preserve the text infilling objective for KILM to simplify the
continued pre-training task.

4.1 Pre-training Details

Data To extract the short descriptions and the
hyperlinks from Wikipedia articles, we process a
Wikipedia dump from scratch.3 We assign the first
sentence of the Wikipedia page as the short descrip-
tion if the “short description” attribute is missing
in the raw data. We use the processed data by
only leveraging the paragraphs from the summary
sections of Wikipedia as our primary training cor-
pus (denoted as primary setting), while we also
explore a data upscaling setting where we use the
entire Wikipedia articles. We split the articles with
document strides of 512 and consider one snippet
as a data sample. We randomly select one entity
from the paragraphs in each iteration for dynamic
entity-centric knowledge injection.4 After data pre-
processing, we obtain a collection of 5.70 million
data samples for the primary setting and 7.85 mil-
lion data samples for the data upscaling setting
from Wikipedia. We split the corpus into a training
set and a validation set with around 10k samples,
for evaluation. In the following sections, KILM
without a subscript indicates that it is conducted un-
der the default primary setting, while KILM under
data upscaling setting will be denoted as KILMDU.
For pre-training in the primary setting, the model is
continually trained for 7,000 steps, and for the data
upscaling setting, the model is trained for 50,000
steps.5 Refer to Appendix C.1 for details.

3The Wikipedia dump is downloaded from https://
dumps.wikimedia.org/enwiki/.

4We select different entities in each iteration.
5Most of our results are based on KILM in the primary

setting, and due to the computational resource cost, only for a
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Models AIDA MSNBC AQUAINT ACE2004 CWEB WIKI Avg Parameters

CM3-medium (Aghajanyan et al., 2022)‡ 78.0 80.1 75.4 81.4 68.5 76.2 76.6 2,700M
CM3-large (Aghajanyan et al., 2022)‡ 80.1 80.8 77.7 82.8 72.4 80.2 79.0 13,000M

BART-base 33.8 57.6 44.6 37.8 36.4 46.1 42.7 139M
BART-base+Merge 28.2 43.3 27.1 19.5 27.3 39.9 30.9 139M
BART-base+KILM (ours) 80.0 83.7 74.7 78.2 63.7 71.3 75.3 139M

BART-large 34.4 58.8 42.3 38.9 36.9 46.5 43.0 406M
BART-large+KILM (ours) 84.6 86.4 79.8 80.9 66.1 75.4 78.9 406M
BART-large+KILMDU (ours) 86.2 87.8 84.3 83.7 68.4 79.9 81.7 406M

Table 2: InKB Micro F1 on zero-shot entity disambiguation tasks with candidates from Le and Titov (2018). ‡The
results are from CM3 under the zero-shot setting.

Baselines Besides the original BART, we also
report on another BART-base baseline that is con-
tinue pre-trained on a merge of Wikipedia corpus
and short descriptions for 7,000 steps (same num-
ber of steps as KILM) with only text infilling ob-
jective. The short descriptions are converted to
general text based on the format: “<Entity> is
<Short Desc>”. This model is denoted as BART-
base+Merge. We demonstrate input and output
formats of pre-training in Table C6. This baseline
is introduced to separately evaluate the role of the
distinct structure that is introduced in this work, as
well as the additional training steps and data.

4.2 Knowledge-Intensive Tasks
First, we study the effectiveness of KILM on
knowledge-intensive tasks (Petroni et al., 2019;
Roberts et al., 2020; Petroni et al., 2021). As shown
in Table 1, we evaluate BART+KILM on entity
disambiguation and appositive generation tasks,
which have similar objectives to the continued
pre-training of KILM. We also evaluate if KILM
can contribute to downstream tasks where the pre-
training objective of KILM is not fully aligned with
those of the downstream tasks. Specifically, We
include question answering (QA) and knowledge
grounded response generation (KGRG) tasks.

Zero-shot Entity Disambiguation The entity
disambiguation task requires the model to link a
mention q to the correct entity, given a context D
and several candidate entities. Without fine-tuning,
we evaluate BART+KILM by picking the candidate
with the lowest perplexity of generating short de-
scriptions {Si}Ni=1 using structured prompts among
the candidate entities {Ei}Ni=1 in entity disambigua-
tion datasets.6 It can be expressed as:
subset of knowledge intensive tasks we also report the results
for data upscaling setting too.

6Note that the reference entities in this task come from
Wikipedia, hence we can use the associated entity description

Xi = KNMASK(KNINFILL(D, q,Si)) (1)

Ei∗ = argmax
i

∑

t

log p(sit|Xi, θ). (2)

We use the same datasets and candidate sets as
those in Le and Titov (2018). InKB micro-F1 re-
sults are shown in Table 2, where CM3, a series
of huge PLMs trained with multimodal hypertext
(see §2), are tested in a zero-shot setting. We also
included the performances of BART and BART-
base+Merge for reference.7 BART+KILM outper-
forms CM3-large, which has over 30x more pa-
rameters, for half of the datasets. BART+KILMDU
outperforms CM3-large in four out of six datasets.
CM3 as a PLM has an impressive performance on
entity disambiguation task with no additional train-
ing, and this comparison shows that BART+KILM
can outperform CM3 with much less parameters.
We also present results comparing BART+KILM
with BLINK (Wu et al., 2020) in Table C1, where
we see that it performs competitively compared
to BLINK (which is fine-tuned for entity disam-
biguation). Moreover, the large gap between the
performance of BART+KILM and BART+Merge
shows that the proposed distinct structure (and not
necessarily the data) plays a key role in the perfor-
mance of BART+KILM in this task.

Appositive Generation Appositive generation
is the task of adding background information for
named entities in a sentence in the form of an ap-
positive phrase. As shown in Table 1, we construct
structured prompts to probe PLMs without fine-
tuning on ApposCorpus (Kementchedjhieva et al.,
2020). We consider the generated texts recovered
from the mask tokens in the short description field
as the generated appositives.8

for each reference entity.
7More details are included in Appendix C.3.
8Since the pre-training corpus of BART includes

Wikipedia articles, BART can also recover appositives from
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Model News ORG News PER

Ap. Pref. NH. Ap. Pref. NH.

BART-base 26.0 17.8 41.7 48.0 14.3 28.3
+KILM 97.0 51.5 56.8 94.0 36.0 42.0

Model Wiki ORG Wiki PER

Ap. Pref. NH. Ap. Pref. NH.

BART-base 48.5 26.7 49.7 30.8 7.3 32.7
+KILM 98.0 48.0 61.0 89.9 40.3 50.3

Table 3: Human evaluation results on Appositive Gen-
eration in News and Wikipedia domains on org- and
person-type entities (see Appendix C.7). Ap., Pref., and
NH. mean Is Appositive, Preference, and Not Halluci-
nated. Numbers in bold are significantly better than
those from BART at p-value of 0.05 in a pairwise t-test.

Since automatic metrics only assess the text over-
lap based performance (Table C3 in Appendix C.4
with comparisons with SOTA), we conduct human
evaluation for a more comprehensive evaluation
from three aspects: Is Appositive (Ap.), Preference
(Pref.), and Not Hallucinated (NH.). Ap. evalu-
ates whether the generation is an appositive or not,
while Pref. evaluates the suitability of the generated
appositives to the context. NH. evaluates whether
the model generates a hallucinated appositive or
not, verifying whether the generated appositive is
factually correct. Pairwise A/B testing is utilized to
compare the performances of BART before and af-
ter KILM (in the primary setting) on all four subsets
of ApposCorpus. For each comparison, the same
context and two options generated by models for
comparison are first randomly shuffled and then are
shown to the annotators. Each comparison requires
three judgments. 50 data samples are randomly
selected from each subset. More details of human
evaluation are included in Appendix C.7. Table 3
lists the human evaluation results in terms of the
winning rate (ties are counted as wins for both),
where we observe that BART+KILM generates bet-
ter appositives and hallucinates less in all four sub-
sets. These results indicate that BART+KILM pos-
sesses more entity-related knowledge than BART.

In-Context Few-Shot QA The implicit knowl-
edge embedded in the parameters can support
large PLMs to obtain competitive results on open-
domain QA tasks without accessing external knowl-
edge (Roberts et al., 2020; Radford et al., 2019;
Brown et al., 2020). We conduct in-context few-
shot experiments, in the primary setting of KILM,

mask tokens without further task adaptation.

0 1 2 5 8 10
0

5

10

15

20

EM

TriviaQA

0 1 2 5 8 10
X-shot

Natural Questions
BART-base
BAb+KILM
BART-large
BAl+KILM
BAl+KILMDU

0 1 2 5 8 10

Web Questions
KALM-base
KALM-large
BAb+Merge

Figure 2: Results on QA datasets with different
shots. BART results are in blue, while the results of
BART+KILM are in orange and green. We use dashed
and solid lines to denote the base- and large-size mod-
els, respectively. Also “BAb” and “BAl” correspond
to BART-base and BART-large, respectively. KILMDU

is KILM with data upscaling where entire Wikipedia
articles are used instead of only their first paragraphs.

on TriviaQA (Joshi et al., 2017), Natural Questions
(NQ) (Kwiatkowski et al., 2019), and Web Ques-
tions (WQ) (Berant et al., 2013) datasets. Similar to
the settings of GPT-3 (Brown et al., 2020), we put
several example QA pairs into the input sequences
of both the encoder and decoder. The format of
prompting is shown in Table 1, while the example
QA pairs are retrieved with a TF-IDF retriever9

from the corresponding training set. The tokens
recovered from the mask tokens from the decoder
will be considered as the generated answers.

We illustrate learning trends with different
“shots” in Figure 2 on all three datasets. Inter-
estingly, BART+KILM mostly performs worse
than the original BART under the zero-shot setting.
However, appending demonstrations into the con-
texts enables BART+KILM to outperform the orig-
inal BART by a large margin. With the data upscal-
ing setting, KILMDU provides comparable (or even
larger) improvements to BART under the few-shot
setting while slightly improving the zero-shot per-
formances of BART. Though far from perfect, these
results suggest that KILM significantly improves
the in-context learning ability of BART on all three
QA datasets. KILM also enables BART to pack
factoid knowledge more effectively within its pa-
rameters, which supports QA. BART-base+KILM
outperforms BART-large under the in-context few-
shot setting for the NQ and WQ datasets. The
performance of the baseline model, BART+Merge,
shows a similar trend to BART+KILM with little
advantage on NQ and WQ datasets. This indicates
that pre-training with data in “<Entity> is <Short

9The implementation is based on https://github.com/
efficientqa/retrieval-based-baselines.
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Model
Seen Test Unseen Test

PPL R1 R2 PPL R1 R2

SKT 52.0 19.3 6.8 81.4 16.1 4.2
KAT-TSLF 14.4 21.7 7.6 15.8 20.7 7.2

BART-base 17.1∗ 18.7 4.9 20.9∗ 17.5 4.0
+Merge 21.4 19.3 5.2 26.8 18.0 4.2
+KILM 21.5 19.3∗ 5.2 26.9 17.9∗ 4.2∗

BART-large 14.2∗ 20.6 5.8 18.7 18.5 4.3
+KILM 18.9 20.8∗ 5.9 24.9 18.8∗ 4.5∗

Table 4: WoW test set results. PPL denotes perplex-
ity, while R1/2 denotes ROUGE-1/2 metrics. While
both SKT (Kim et al., 2019) and KAT-TSLF (Liu et al.,
2021a) use external knowledge as inputs, BART and
BART+KILM are evaluated without knowledge to bet-
ter demonstrate the impact of KILM. ∗p < 0.05 in a
pairwise t-test for comparison between ours and BART.

Model
Seen Test Unseen Test

Flu. Info. NH. Flu. Info. NH.

BART-base 59.7 64.0 48.4 65.8 70.3 46.6
+KILM 66.7 63.0 60.3∗ 69.2 69.3 58.8†

Table 5: Human evaluation results on WoW test sets
without external knowledge inputs. Flu., Info., and
NH. are Fluency, Informativeness and Not Hallucinated
respectively. ∗Model performs significantly better than
the baseline (p < 0.05); †Pairwise t-test (p < 0.07).

Desc>” format is more suitable for QA tasks. Nev-
ertheless, the proposed distinct structure does not
bring much obstacle to BART+KILM on QA tasks.

Knowledge Grounded Response Generation
(KGRG) The KGRG task requires topical and
factual knowledge (Petroni et al., 2021) for a chat-
bot to make engaging conversations with users on
various topics (Ghazvininejad et al., 2018). We fine-
tune BART before and after KILM on the Wizard of
Wikipedia (WoW) (Dinan et al., 2018) dataset with-
out using knowledge as input, to better study the im-
pact of the injected knowledge under a knowledge-
unavailable setting. The generated responses are
evaluated with PPL, ROUGE-1 and ROUGE-2
metrics. In Table 4, BART+KILM offers a con-
sistent and significant advantage over BART on
ROUGE scores, whereas it underperforms BART
on PPL. The performance gap on PPL can be at-
tributed to the fact that many of the responses in
WoW contain hallucination (Dziri et al., 2022),
which is somewhat mitigated by KILM. Compared
to the strong baseline with external knowledge
inputs, BART+KILM even performs comparably

Model
GLUE CNN XSUM
Avg. R1 R1

BART-base 83.3 42.79 40.83∗
+KILM 83.8 42.86 40.76

BART-large 87.1 44.14∗ 45.17
+KILM 87.7 43.15 45.07

Table 6: Results on the GLUE and summarization test
sets. We report average score of Matthews correla-
tion for CoLA and accuracy scores for other tasks in
GLUE benchmark; and ROUGE-1 for summarization.
∗pairwise t-test p < 0.05.

with SKT (Kim et al., 2019). Note that the perfor-
mance of BART+Merge shows no difference from
BART+KILM, which suggests that the introduced
distinct structure does not affect BART’s applica-
tion of injected knowledge on WoW.

While automatic metrics are important in KGRG
evaluation, they do not always tell the whole
story (Hazarika et al., 2022), therefore we also con-
duct human evaluation on WoW test sets from three
aspects, namely Fluency (Flu.), Informativeness
(Info.), and Not Hallucinated (NH.). Flu. focuses
on whether the responses are fluent and consis-
tent with respect to the conversation so far, while
Info. evaluates whether the responses contain veri-
fiable factual information. The evaluation on NH.
is only valid when a response is informative. The
settings of human evaluation are the same as those
for appositive generation (see Appendix C.7). The
results in Table 5 demonstrate that BART+KILM
performs comparably with BART in terms of flu-
ency and informativeness, while it tends to hallu-
cinate less when generating factual information in
the responses, especially in unseen domains.

4.3 General Tasks

We now evaluate the impact of KILM on models’
performance on general NLU and NLG tasks us-
ing the GLUE benchmark (Wang et al., 2018) and
summarization datasets, CNN/Dailymail (Hermann
et al., 2015) and XSUM (Narayan et al., 2018),
by fine-tuning both BART and BART+KILM for
comparison. The summary of the results is shown
in Table 6, and the detailed results shown in Ta-
ble C4 and Table C5. BART+KILM outperforms
BART marginally on GLUE and the differences
for summarization datasets are small. These results
suggest that KILM preserves the performance of
the original BART on downstream NLU and NLG
tasks, and even in some cases it improves it. They
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also verify that KILM does not cause catastrophic
forgetting of the original learnings in BART, thus
making BART+KILM a reliable PLM.

5 Discussions

Roles of Introduced Special Tokens The intro-
duced special tokens to mark beginning and end
of entities (<ent>, </ent>) and entity descriptions
(<ent_desc>, </ent_desc>) form a distinct struc-
ture in pre-training samples, which inserts entity-
centric knowledge into pre-training corpora, thus
injects knowledge in PLMs. We discuss the roles
of these special tokens from the following aspects:

Entity Knowledge Probing: This distinct struc-
ture in KILM provides a tool for probing the entity-
related knowledge retained in PLMs. To demon-
strate this, we probe BART+KILM by prompting it
to generate short descriptions for entities in valida-
tion set10 of the pre-training corpus. The probing
format and the corresponding results are shown
in Appendix A.1 and Table A1. BART+KILM
achieve around 60 unigram F1 scores with no per-
formance gap with the data samples from a subset
of the training set. These results indicate that we
can easily recall the entity description knowledge
in different contexts without sensitivity to prompt
designs. It is shown that the proposed pre-training
structure is the main contributor of the improve-
ments on entity-related datasets, especially in zero-
shot manner. By leveraging the introduced special
tokens, the knowledge retained in PLMs can be
more efficiently leveraged on downstream tasks.

Structured Prompt: The special tokens also pro-
vide convenient knowledge probing for zero-shot
entity-centric tasks, such as entity disambiguation
and appositive generation (§4.2).

Are New Special Tokens Needed? There are a
few reasons for introducing new special tokens in
KILM for marking entities and their descriptions
instead of reusing existing tokens, such as commas
or parentheses. First, many entities have commas
and parentheses in their names, making the entity
descriptions indistinguishable from the contexts.
For instance, there are 378,093 entities in English
Wikipedia with a comma in their names, such as
the entity “Mars, Aurgazinsky District, Republic of
Bashkortostan”. Second, using commas or paren-
theses could break the fluency of the text. In a
context like “The Baltic states [...] is used to group

10The articles in validation set are not included in the pre-
training process, whereas the involved entities mostly are.

three countries: Estonia, Latvia, and Lithuania”,
adding a short description for the entity “Estonia”
using a comma would break the fluency of the sen-
tence. Finally, using commas or parenthesis will
overload their meanings, and during prompting of
the model for knowledge probing it will result in a
lack of clarity for the model as to how the comma
or parenthesis should be interpreted.

Is KILM’s impact equal on different domains
and tasks? Despite the above-mentioned gains,
BART+KILM appears to be less knowledgeable
than BART on person-type entities, as manifested
in the performance gap between organization- and
person-type entities in appositive generation (Ta-
ble 3). That may be due to the type of knowledge
content injected by KILM. The entity knowledge
required for generating appositives varies vastly
from biographies to relationships with other peo-
ple. However, short descriptions in Wikipedia for
person-type entities focus mostly on their national-
ity and occupation. Also, many of them are simi-
lar 11. This problem also affects the performance
in Table A2 on G-RE datasets in LAMA bench-
mark. More analyses are in Appendix A.2. We
leave the study of enriching the knowledge content
for pre-training as future work.

The proposed pre-training structure shows its
strength in entity-related tasks. Nevertheless,
KILM may downgrade to conventional knowledge-
augmented pre-training (BART+Merge) when the
pre-training objective of KILM is not fully aligned
with those of the downstream tasks.

Placement of Knowledge Component An abla-
tion study on the knowledge component placement
in KILM is presented in Appendix A.3, where we
show that putting short descriptions right after en-
tity mentions results in better performance com-
pared to placing them at the end of sentences.

Extending KILM for Other PLM Architectures
In this paper, we choose BART as the default PLM;
however, KILM can also be applied to other PLMs
by adjusting their training objectives for knowledge
infilling. For decoder-only PLMs, such as GPT-2,
the knowledge component, i.e., short descriptions,
can be moved to the end of the target sequence (sim-
ilar to CM3) instead of being adjoined the surface
form of the entity. As for encoder-only PLMs, such
as BERT, contrastive training strategy introduced in

11For example short descriptions for both Columbus Short
and Drew Fuller are “American actor”
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LinkBERT (Yasunaga et al., 2022) is one option for
the training objective of KILM. Due to the substan-
tial computational cost of training these models,
we leave these explorations for future works.

Justifications on the additional cost during pre-
training Injecting additional knowledge text into
pre-training corpora may introduce additional costs
during the pre-training process. While entity de-
scriptions used in the paper are usually a one-
sentence definition of an entity, the average length
of short descriptions is 13.81 words. Considering
that we split the Wikipedia articles with document
strides of 512, the inserted tokens for short descrip-
tions only take 2.6% of the length of the whole
sequence, which does not bring much more train-
ing cost.

6 Conclusion

In this paper, we propose a novel method, KILM,
to inject entity-related knowledge into large PLMs
through continued pre-training. Our approach en-
hances the performance of the original PLMs on
knowledge-intensive tasks, especially in zero- and
few-shot settings, while not causing catastrophic
forgetting of the knowledge in the origianl PLMs.
The proposed distinct structure for entity knowl-
edge shows its effectiveness on flexibly probing the
injected knowledge in different contexts.

Limitations

In this paper, we propose a continued pre-training
method to inject knowledge into large pre-trained
language models. There are eight V100 GPUs
involved in each pre-training experiment and the
whole pre-training process takes 5 days for the
base-size model and 13 days for the large-size
model, in primary settings. These numbers in
data upscaling settings are significantly greater (30
days for the large-size model). Despite its advan-
tage in reducing resource need in inference time,
KILM is both time-consuming and computationally
resource-consuming during training time.

Similar to any model-based generation system,
KILM could be prone to generating factually in-
correct statements with regard to entities. These
statements might also be prone to be biased based
on ethnicity, race, and sexual orientation.
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A Analysis

A.1 Entity Description Probing
We analyze the quality of the knowledge injection
process by evaluating the model’s performance on
entity description probing with structured prompts.
This task is aligned with our proposed pre-training
objective and reflects the effect of the continued
pre-training. This can be considered as a plug-and-
play process for knowledge induction by simply
inserting the proposed distinct structure. We con-
duct evaluation on the validation set and a subset
of the training set with around 10k data samples of
our pre-training corpus. The data samples in the
training subset are randomly selected, whereas the
data samples in the validation set are not included
in the training process. More specifically, the enti-
ties in the validation set may appear in the training
set. However, the contexts of the entities in the
paragraphs do not. We demonstrate the structured
prompts for entity description probing as follows:

Input/Prompt: The Joker is a
comic book series published by DC
Comics starring the supervillain

the <ent> Joker </ent><ent_desc>

<mask> </ent_desc> .
Target: Joker (character) <sep>
Fictional character throughout
the DC Universe

The example illustrates the input sequence of
the encoder, while the prompt to the decoder is

Model Train subset Valid

EM F1 EM F1

BART-base + KILM 37.75 58.08 37.60 58.48
BART-large + KILM 42.58 61.96 42.84 62.69

BART-large + KILM†
End 38.64 57.97 38.59 57.71

Table A1: Results of short description generation on a
subset of the training set and the validation set of the
pre-training corpus. †KILMEnd is a variant of KILM for
ablation study (Appendix A.3).

Model G-RE T-REx C-Net SQuAD

BERT-base 9.12 30.83 14.29 15.88
ERNIE 6.62 27.58 13.62 14.83
LM-CORE 23.13 55.32 17.28 16.15
KALM-base 3.27 25.96 8.61 6.64
KALM-large 5.41 28.12 10.70 11.89

BART-base 5.70 22.14 13.88 6.29
+Merge 5.50 24.98 13.03 7.69
+KILM 4.02 23.41 12.80 8.39

BART-large 7.76 26.00 16.07 11.19
+KILM 6.83 26.14 16.96 11.19
+KILMDU 3.10 24.99 16.22 12.94

Table A2: Accuracy on the LAMA benchmark. The best
results are marked with underline, while Bold indicates
the better result of comparison between BART before
and after KILM. The results of previous models except
BART are taken from (Zhang et al., 2019; Rosset et al.,
2020; Kaur et al., 2022).

the same until the <ent_desc> token (marked with
underline). Similar to the decoder-only models,
the model is expected to continue generating en-
tity descriptions following the prompt, until the
</ent_desc> token is generated.

The generated entity descriptions are evaluated
with exact match (EM) and unigram F1 scores. As
the results are shown in Table A1, for KILM in the
primary setting, BART models with KILM achieve
around 40 EM and 60 F1 scores. Interestingly,
there is a marginal performance gap between the
seen and unseen validation sets. The results in-
dicate our model not only embed the knowledge
with its parameters, but also can recall the injected
knowledge under unseen contexts without much
performance loss.

A.2 LAMA Knowledge Probing

Petroni et al. (2019) proposed the LAMA bench-
mark to provide an in-depth study of relational
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knowledge in PLMs by probing the answers to
“fill-in-the-blank” cloze statements. Different types
of relational knowledge are evaluated with state-
ments semi-manually constructed from different
knowledge sources, including Google-RE (G-RE),
T-REx (Elsahar et al., 2018), ConceptNet (C-
Net) (Speer et al., 2012) and SQuAD (Rajpurkar
et al., 2016). We follow the original LAMA
settings, while only keeping the data samples
whose answer length is 1 after tokenization. The
probing input and output format of BART and
BART+KILM is shown as followings:

Input/Prompt: The Teatr Wielki
is a <MASK> .
Target: theatre

Similar to entity description probing in Ap-
pendix A.1, “Input” and “Prompt” (with under-
line) are inputs to BART encoder and decoder, re-
spectively. The generation is considered to be cor-
rect only if it is exactly the same with “Target”. We
present the probing results in Table A2. We also
include the results of BERT (Devlin et al., 2019),
BERT-based ERNIE (Zhang et al., 2019), BERT-
based LM-CORE (Kaur et al., 2022), and GPT-
2-style KALM (Rosset et al., 2020) for reference.
However, because of the differences on the tok-
enization and pre-training process, different PLMs
are not comparable on LAMA benchmark (Jiang
et al., 2020). Even though KILM does not inject re-
lational knowledge into PLMs, we still observe im-
provements after KILM on all the datasets except
G-RE. As it’s discussed in §5, the injected knowl-
edge of person-type entities is not aligned with the
knowledge required by G-RE, since the samples
from G-RE are focused on date_of_birth and
place_of_birth relations in the person domain.
Under the data upscaling setting, KILMDU fur-
ther enhances the rational knowledge required for
SQuAD, while LAMA performance is negatively
impacted for other datasets. The results indicate
that injecting the entity description knowledge also
helps models better understand the relationships
between specific entities. Moreover, the results
of KILMDU suggest that the injected knowledge
has closer relevance to the knowledge for SQuAD,
whereas far from that of G-RE and T-REx.

A.3 Ablation Study

We conduct an ablation study on the knowledge
component position in KILM. We compare our

method with KILM variant that moves the knowl-
edge component (highlighted in blue in Figure 1)
including <ent_desc> and </ent_desc> to the
end of the target sequence. The variant of the target
sequence in Figure 1 is as follows:

The Joker is a comic book series
published by DC Comics starring
the supervillain the <ent>
Joker </ent> . It ran for

nine ... </s></s> <ent_desc>

Joker (character)<sep>Fictional

character throughout the DC

Universe </ent_desc>

We denote this KILM variant as KILMEnd. We
evaluate these two models on entity description
probing and zero-shot entity disambiguation tasks.
As shown in Table A1 and Table C1, BART
with KILM consistently outperforms BART with
KILMEnd on both tasks. Despite the performance
gap, the advantage of KILMEnd is that KILMEnd
can also be applied to decoder-only models, such
as GPT-2, for entity knowledge injection.

A.4 Data Scaling Laws
As mentioned in §4.1, we conduct continued pre-
training under two settings: the primary setting
and the data upscaling setting. While the primary
setting only uses the paragraphs in Wikipedia sum-
mary sections, the data upscaling setting extends
the training corpus to the whole Wikipedia corpus,
which enlarges the training set by more than two
million data samples and double the pre-training
time. To study the effect of data scaling, we com-
pare the performances of BART-large+KILM under
primary and data upscaling settings on knowledge-
intensive tasks, including entity disambiguation,
LAMA, and closed-book QA tasks. The evalua-
tion on entity disambiguation tasks involves six
datasets and we only compare the average InKB F1
scores, since during data scaling, the performances
are consistently improved across all the datasets.

In Figure A1, we show the performance differ-
ence between BART-large+KILM ( or KILMDU)
and the corresponding baseline models on entity
disambiguation, LAMA (in the first row) and QA
(including three datasets under 0/5-shot in the
second row) tasks. We also display the perfor-
mance differences along with each bar, where
a positive number denote a better performance
of BART+KILM. According to the comparison,
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Figure A1: The performance difference between BART-large+KILM (or KILMDU) and the corresponding baseline
models on entity disambiguation, LAMA and QA (TriviaQA, NQ, and WB) tasks. More specifically, the baseline
models of entity disambiguation tasks are CM3-large and BLINK with GENRE and BLINK candidates, while
the baseline model of both LAMA and QA tasks is the original BART-large. We also display the performance
differences along with each bar, where a positive number denotes a better performance of BART+KILM vs the
baseline.

KILM in both settings shows little benefit for
Google-RE and T-REx datasets in LAMA bench-
mark and makes it harder for the model to recall
the relational knowledge in specific domains. On
the other hand, for the entitiy-based tasks, such
as entity disambiguation, the injected knowledge
through KILM equip BART with great zero-shot
ability, comparing to the strong baseline models,
which we’ve discussed in §4.2. For QA tasks,
BART+KILM in the primary setting performs
worse than the original BART model in a zero-
shot manner, however, BART+KILM in data up-
scaling setting works comparably with the origi-
nal BART in this case. Together all these compar-
isons, we conclude that KILM, as a proposed novel
technique for entity-related knowledge injection, is
able to largely benefit the model in terms of zero-
shot ability on entity-based knowledge-intensive
tasks. However, even though we jointly pre-train
the model with the original text infilling objective
of BART, catastrophic forgetting of some specific
knowledge is unavoidable, especially in the data
upscaling setting.

A.5 Case Study

Some selected data sample from ApposCorpus and
WoW are shown in Table A3 and Table A4. For
zero-shot appositive generation task, while the orig-
inal BART-base model tends to generate apposi-
tives with similar surface forms to the gold ones or
a piece of text that fit the context, it hallucinates
a lot. BART-base+KILM is more knowledgeable
on the actual meaning of the entities, however, it

still make mistakes in terms of the date and spe-
cific occupation. For KGRG task with task-specific
training, both models are able to generate fluent re-
sponses. At the same time, BART+KILM tends to
hallucinate less by including a bit less information
in some cases.

B KILM Algorithm

We denote the data transformations of the text
infilling and sentence permutation objectives for
BART as TEXTMASK and SENTPERM. In the
original pre-training process of BART, given a tar-
get sequence with M tokens Y = {t1, t2, ..., tM},
and the corresponding corrupted input sequence
X = {t′1, t′2, ..., t′N} with N tokens, the model, pa-
rameterized by θ, is optimized by minimizing the
reconstruction loss over the whole sequence Y:

X = SENTPERM(TEXTMASK(Y)) (3)

L = E(
M∑

m=1

− log p(tm|t1:m−1,X, θ)). (4)

For the proposed KILM continued pre-training,
the original document, the selected entity, and
the corresponding injected knowledge are repre-
sented as S = {t1, t2, ..., tN}, E, and K =
{k1, k2, ..., kL}, respectively. The data transfor-
mation procedure can be represented as

Y = KNINFILL(S, E,K), (5)

X = KNMASK(Y). (6)
The final loss can be denoted as:
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Algorithm 1: KILM Pre-training Process
Input: Model Mθ, Number of Epochs T ,

Wikipedia Corpus S, Knowledge
Corpus K.

for i = 1 to T do
for each Sj ∈ S do

Sample one entity Ei
j from Sj ;

Retrieve entity knowledge:
K = LOOKUP(K, Ei

j);
Construct training samples:
Yi

j = KNINFILL(Sj, E
i
j ,K),

Xi
j =

TEXTMASK(KNMASK(Yi
j));

Optimize Mθ with Eq. 7.
end

end
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Figure C1: Results of entity disambiguation tasks with
the top five candidates and different minimum frequen-
cies at which the target entity is sampled during the
continued pre-training. BAb and BAl denote BART mod-
els in base and large sizes. The primary Y-axis shows
the performances of the models after KILM and the
BLINK baseline on accuracy, while the Y-axis on the
right shows the number of data samples that satisfy each
setting.

L = (1− α− β)Lcopy + αLinfill + βLkn, (7)
where α and β are calculated based on the propor-
tion of the corresponding spans across the entire
sequence. The resulting KILM algorithm for con-
tinual pre-training is summarized in Algorithm 1.

C Additional Details for Experiments

C.1 Pre-training Settings

We initialize the model with the original BART
weights and it is continually trained on eight V100
GPUs with a batch size of 8,192. The models are
optimized by the Adam optimizer with a linear
scheduler and weight decay as 0.01. The peak
learning rate is 5e − 5. Moreover, the maximum
text length of the sequences with a knowledge com-
ponent is set as 640. The mask probability and
the hyper-parameter λ for Poisson distribution are
the same as those of BART. The implementation is
mainly based on HuggingFace Transformers (Wolf
et al., 2020) and Datasets (Lhoest et al., 2021) pack-
ages.

It is worth mentioning that more than 2.3 million
entities with short descriptions are involved in the
pre-training, and, needless to say, the occurrence
of entities in Wikipedia articles is not equally dis-
tributed. For instance, while only 2,526 entities
appear more than 1,000 times in the primary set-
ting, 40.5% of the entities only appear once in the
training corpus.

C.2 Pre-training Format

We use a piece of Wikipedia article to demonstrate
the input and output formats of the involved pre-
trained models involved in Table C6.

C.3 Zero-shot Entity Disambiguation

As shown in §4.2, we include the performance
of BART and BART+Merge for reference. Due
to the lack of conventional methods for evaluat-
ing BART models on zero-shot entity disambigua-
tion tasks, we are inspired by the entity disam-
biguation model BLINK (Wu et al., 2020). We
evaluate BART and BART+Merge by selecting the
lowest perplexity candidate that generates the cor-
responding Wikipedia summary/short description
from a given context. In addition, we also use the
same datasets and the candidate sets as those in
BLINK for more experiments. The InKB micro-F1
results are shown in Table C1, where BLINK is
an entity linking model trained on TACKBP-2010
dataset. BLINK outperforms BART+KILM in the
primary setting in all but one of the datasets, but
BART+KILMDU in data upscaling setting largely
closes the performance gap between BLINK. It
should be noted that both BART+KILM is a gen-
eral PLM, while BLINK is not.
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Models AIDA MSNBC AQUAINT ACE2004 CWEB WIKI Avg #Params

BLINK† 79.6 80.0 80.3 82.5 64.2 75.5 77.0 336M
BART-base 18.3 30.8 8.7 20.3 23.7 20.5 20.4 139M
BART-base+Merge 19.5 24.1 12.2 18.4 21.9 19.8 19.3 139M
BART-base+KILM 75.1 69.3 67.8 77.4 57.4 62.2 68.2 139M
BART-large 17.4 39.1 9.6 27.4 26.6 21.5 23.6 406M
BART-large+KILM 80.1 75.2 71.0 82.4 60.0 66.5 72.5 406M
BART-large+KILMDU 82.1 76.4 77.8 86.4 62.4 72.3 76.2 406M

BART-large+KILM‡
End 79.6 74.5 69.6 82.1 59.2 64.2 71.5 406M

Table C1: InKB Micro F1 on zero-shot entity disambiguation tasks with BLINK candidates. †The results are taken
from https://github.com/facebookresearch/BLINK and normalized over the whole dataset. ‡KILMEnd is a
variant of KILM for ablation study (Appendix A.3). #Params denotes the number of parameters of the models.

Model TriviaQA NQ WQ

Finetuned settings
RAG (Open-domain) 68.0 44.5 45.5
T5-base (Closed-Book) 29.1 25.9 27.9

One/Few-shot settings
KALM-base 5.87 1.75 3.53
BART-base 9.61 2.19 3.94

+KILM 12.55 6.95 10.38

KALM-large 11.68 4.34 6.56
BART-large 15.74 3.80 9.25

+KILM 16.42 7.83 12.65

Table C2: Results on open-domain QA datasets. The
best results are marked in bold. The results of the previ-
ous models except BART are taken from (Lewis et al.,
2020b; Roberts et al., 2020).

Entity Frequency in Pre-training Data To
study how the frequency of entities appearing in the
pre-training text affects the entity linking perfor-
mance, Figure C1 also shows the results of experi-
menting with data samples with different minimum
frequencies of sampling the target entity during
KILM pre-training in the primary setting. As the
minimum frequency increases, the gap between
BART+KILM and BLINK reduces.

C.4 Appositive Generation

We conduct zero-shot probing on ApposCor-
pus (Kementchedjhieva et al., 2020). We display
the structured prompts of BART with KILM in
Table 1. Following ApposCorpus, we use uni-
gram F1 and METEOR (Banerjee and Lavie, 2005)
for evaluation. The results under constrained and
non-empty settings are listed in Table C3. Base-
line results for Person-type entities in News do-
main come with the original ApposCorpus pa-

per, while ApposCorpusconstrained denotes that the
model is trained only with constrained data samples
and ApposCorpusend2end denotes that the model
is trained with all the data samples in a specific
domain. BART+KILM shows its advantage over
BART for the Organization-type entities, while
BART outperforms BART+KILM on all other en-
tity types. However, as seen in Table 3, the dis-
tinction in results between human evaluation and
automatic metrics demonstrate how the latter do
not capture important dimensions such as halluci-
nations.

C.5 In-Context Few-Shot QA
In Table C2, we list the QA results when provid-
ing one example QA pairs into the inputs (1-shot)
to BART models with and without KILM. Align-
ing with the QA example in Table 1, the general
evaluation format is as follows:

Question: Example Q Answer: Example A\n

Question: Test Q Answer: <mask> .

Besides BART, we also compare our perfor-
mances with KALM (Rosset et al., 2020) under
an 8-shot setting, for which the eight examples are
human-written, and two finetuned models with sim-
ilar model sizes. Despite the performance gap with
finetuned models, BART+KILM shows a signifi-
cant advantage over the original model and KALM
on all the datasets, especially for large-size models.
The 1-shot results of BART-base+KILM are even
higher than those of KALM-large, which has many
more trainable parameters.

C.6 Fine-tuning Experiments
For fine-tuning experiments, including GLUE, sum-
marization, and KGRG tasks, we conduct each ex-
periment with random seeds 0, 42, and 852. The
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Method
News ORG News PER Wiki ORG Wiki PER

F1 METEOR F1 METEOR F1 METEOR F1 METEOR

Constrained setting
ApposCorpus†constrained - - 19.6 7.9 - - - -
ApposCorpus†end2end - - 10.8 3.4 - - - -

BART-base 8.4 2.4 12.1 5.6 5.2 1.9 9.2 4.3
+KILM 17.6 8.1 9.7 3.7 9.7 4.4 8.8 3.7

BART-large 10.8 4.7 15.9 8.3 8.1 3.9 13.1 7.2
+KILM 18.0 7.8 13.9 5.9 9.5 4.5 9.9 4.4

Non-empty setting
BART-base 6.6 2.1 11.7 4.8 4.4 1.6 7.5 3.5

+KILM 14.1 6.7 7.2 2.7 6.7 3.1 5.8 2.5

BART-large 8.7 4.0 14.9 6.7 6.8 3.2 10.6 6.0
+KILM 14.8 6.6 9.7 4.1 6.6 3.2 6.5 3.0

Table C3: Results on zero-shot Appositive Generation under the constrained and non-empty settings. ORG and PER
represent that the data samples are Person- and Organization-type entities. Bold results denote better performances
of one over another with the same settings between BART and BART+KILM. †The results are taken from the
original ApposCorpus paper, where ApposCorpusconstrained denotes that the model is trained only with constrained
data samples and ApposCorpusend2end denotes that the model is trained with all the data samples in a specific domain.
The result hightlighted with underline denotes that it outperforms both BART and BART+KILM.

Model MNLI SST QQP QNLI STS-B RTE MRPC CoLA Avg
m/mm Acc Acc Acc Acc Acc Acc Mcc -

BART-base† 85.7/85.8 93.7 91.3 91.6 89.9 74.3 86.4 51.3 83.3
+KILM 85.7/85.6 93.0 91.4 91.6 89.8 74.9 87.8 54.2 83.8

BART-large† 90.0∗/90.0 96.4 92.2 94.8 91.7∗ 82.3 89.5 57.1 87.1
+KILM 89.5/89.8 96.2 92.3∗ 94.7 91.3 87.0∗ 89.6 58.7 87.7

Table C4: Results on the GLUE benchmark. We report accuracy for the first seven tasks, the Matthews correlation
for the CoLA dataset, and the average score (Avg) over all the tasks. ∗p < 0.05 with pairwise t-test.

Model
CNN Dailymail XSUM

R1 R2 RL R1 R2 RL

BART-base† 42.79 20.31 39.93 40.83∗ 18.18∗ 33.12∗
+KILM 42.86 20.24 39.94 40.76 18.15 33.09

BART-large† 44.14∗ 21.43∗ 41.24∗ 45.17 22.10 37.06
+KILM 43.15 20.86 40.36 45.07 21.93 36.95

Table C5: Results on summarization datasets, evaluating
with ROUGE metrics. †The results of the BART models
are re-run with the original settings except maximum
sequence length to be 1024. ∗p < 0.05 with pairwise
t-test.

numbers reported in Table 6, Table C4, Table C5
and Table 4 above are the averages of the results
with three random seeds. The results of BART
are re-run with the original settings except maxi-
mum sequence length to be 1024 for summarization
tasks. Pairwise t-tests are conducted to verify the
significance level of the results of BART+KILM
over the baseline model.

C.7 Human Evaluation

For both appositive generation and KGRG task,
we conduct human evaluation for a comprehensive
study. Pairwise A/B testing is utilized to compare
the performances of BART before and after KILM
(in the primary setting). For each comparison, the
same context and two options generated by the
models for comparison are first randomly shuffled
and then are shown to the annotators. Both tasks
evaluate the performances on whether the gener-
ations are hallucinated or not, named Not Hallu-
cinated (NH.). We also include two more factors
for each task. For ApposCorpus, we also evaluate
the generated appositives from Is Appositive (Ap.)
and Preference (Pref.), while we evaluate Fluency
(Flu.) and Informativeness (Info.) for WoW. Be-
cause the dialogue task feature, we only consider
the NH. factor when the generated response is in-
formative for WoW task. Pairwise A/B testing is
utilized to compare the performances of BART be-
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fore and after KILM on both ApposCorpus and
WoW. Human evaluation is done among a group
of experts fluent in English coming from countries
across Asia. For each comparison, the same context
and the generations from both models for compari-
son are shown to the annotators. The annotators are
supposed to choose among “generation A”, “gener-
ation B”, “both”, and “neither”. Especially for the
factor NH., the annotators are asked to search on
the Internet for hallucination validation. Each com-
parison requires three judgments. We randomly
sample 50 data samples from each subsets of Ap-
posCorpus and 100 data samples from each WoW
test set. Finally, 600 annotations are collected in
total for both tasks.

D Datasets

A number of datasets for downstream task evalua-
tion are involved in this work:

GLUE Benchmark GLUE benchmark is a col-
lection of text classification datasets, which is
widely used to evaluate the language modeling abil-
ity of large PLMs. In this benchmark, nine datasets
are involved, including binary QA and NLI tasks.
In this paper, we exclude WNLI (Morgenstern and
Ortiz, 2015) task during evaluation because there
are label conflicts in the dataset.12

Summarization Datasets Text summarization
is considered an essential NLG task, which re-
quires the model to generate short summaries of
long texts. In this paper, we test our models on
two summarization datasets, CNN/DailyMail and
XSUM. Summaries in the CNN/DailyMail tend to
be more extractive, whereas XSUM contains highly
abstractive summaries.

Entity Disambiguation Datasets The entity dis-
ambiguation task is a subtask of entity linking.
Given an entity mention in the context, the model
is expected to select the correct entity among a
set of similar candidates. Following BLINK (Wu
et al., 2020) and GENRE (De Cao et al., 2020),
we test our models on six entity disambiguation
datasets, including AIDA-CoNLL dataset (Hof-
fart et al., 2011), MSNBC, AQUAINT, ACE2004,
WNED-CWEB (CWEB) (Gabrilovich et al., 2013)
and WNED-WIKI (WIKI) (Guo and Barbosa,
2018). We use the candidate sets from BLINK

12https://gluebenchmark.com/faq

and GENRE respectively, where those of GENRE
are originally from Le and Titov (2018).

ApposCorpus Appositives are phrases that ap-
pear next to a named entity to provide background
information (Bauer, 2017; Kang et al., 2019). They
help the readers understand the semantics of the
named entities in the context. ApposCorpus (Ke-
mentchedjhieva et al., 2020) is constructed as the
first end-to-end dataset for the appositive genera-
tion task. The selected entities are Person and Or-
ganization entities from Wikipedia (Wiki) and News
articles. Three types of appositives are included:
constrained, empty, and a third type denoted as non-
empty in this paper. Constrained appositive sam-
ples leverage WikiData for appositive generation,
while empty appositive samples do not require the
model to generate any appositives and non-empty
samples require more general knowledge for the ap-
positive generation. In this paper, since we do not
conduct task-related training, we only evaluate our
models on constrained and non-empty appositive
samples.

Open-domain Question Answering Datasets
We further evaluate our models on three open-
domain QA datasets to test the knowledge capacity:
TriviaQA (Joshi et al., 2017), Natural Questions
(NQ) (Kwiatkowski et al., 2019), and Web Ques-
tions (WQ) (Berant et al., 2013). TriviaQA collects
the question-answer pairs from 14 trivia and quiz-
league websites, where web pages and Wikipedia
articles are matched to each question. NQ is a
dataset of questions from web queries that can be
answered with a span of Wikipedia articles. While
NQ has two types of gold answers, we only eval-
uate the generations with the short gold answers.
WQ consists of questions constructed with web
queries and FreeBase (Bollacker et al., 2008)

Wizard of Wikipedia (WoW) dataset WoW is a
common crowd-sourcing KGRG dataset that relies
on Wikipedia knowledge to augment the dialogue
responses when discussing various topics. Two
speakers are provided with an initial topic during
the data collection to start the conversation. There
are two test sets, seen test and unseen test set, split
for evaluation, where the initial topics of the dia-
logue samples in seen test set appear in the training
set and vice versa.
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Model Source Input/Output Format

BART+KILM
(ours)

Article with Entities:
The Joker is a comic book series published
by [[DC Comics]] starring the supervillain
the [[Joker]]. It ran for nine issues from
May–June 1975 to Sep.–Oct. 1976.

Entities & Short Descriptions:
DC Comics, Inc.: American comic book
publisher and the flagship unit of DC
Entertainment, a subsidiary of Warner Bros.
Discovery.
Joker (character): fictional character
throughout the DC Universe.

Sample 1
Input: The Joker <mask>book series published by </ent>
DC Comics </ent><ent_desc><mask></ent_desc>starring
the <mask>the Joker. It ran for nine issues from May–June
1975 to Sep <mask>.
Output: The Joker is a comic book series published by DC
Comics</ent><ent_desc>DC Comics, Inc. <sep>
American comic book publisher and the flagship unit of DC
Entertainment, a subsidiary of Warner Bros. Discovery.
</ent_desc>. starring the supervillain the Joker It ran for
nine issues from May–June 1975 to Sep.–Oct. 1976.

Sample 2
Input: The Joker is a comic <mask>by DC Comics starring
<mask>supervillain the <ent>Joker </ent><ent_desc>
<mask></ent_desc>. It ran for nine issues from May <mask>
Sep. – Oct. 1976.
Output: The Joker is a comic book series published by DC
Comics starring the supervillain the <ent>Joker </ent>
<ent_desc>Joker (character) <sep>fictional character
throughout the DC Universe </ent_desc>. It ran for nine
issues from May–June 1975 to Sep.–Oct. 1976.

BART+Merge
(baseline)

Sample 1
Input: The Joker <mask>book series published by DC
Comics starring the <mask>the Joker. It ran for nine issues
from May–June 1975 to Sep <mask>.
Output: The Joker is a comic book series published by DC
Comics. starring the supervillain the Joker. It ran for nine
issues from May–June 1975 to Sep.–Oct. 1976.

Sample 2
Input: DC Comics, Inc. is American <mask>and the flag-
ship unit of DC <mask>, a subsidiary of <mask>Discovery.
Output: DC Comics, Inc. is American comic book publisher
and the flagship unit of DC Entertainment, a subsidiary of
Warner Bros. Discovery.

Sample 3
Input: Joker <mask>fictional character <mask>Universe.
Output: Joker (character) is fictional character throughout
the DC Universe.

Original BART

Input: It ran for nine issues from May <mask>Sep. –
Oct. 1976. The Joker is a comic <mask>by DC Comics
starring <mask>supervillain the Joker.
Output: The Joker is a comic book series published by DC
Comics starring the supervillain the Joker. It ran for nine
issues from May–June 1975 to Sep.–Oct. 1976.

Table C6: Demonstrations of input and output formats of the pre-trained models involved in this work.
“BART+KILM” denotes the models that are continued pre-trained with our proposed method; “BART+Merge”
denotes the situation when BART model is continued pre-trained on a merge of Wikipedia corpus and the entity
short descriptions; “BART” row shows the input and output formats of the original pre-training process of BART
models.
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Target Entity: Burma Socialist Programme Party

Context:

He related the quality decline to the socialist
system being practiced by Burma Socialist
Programme Party <appos> at the time. As
cassette players became popular, people were
selling their old gramophones to dealers.

Appostive:
Gold BSPP
BART-base PSP

BART-base+KILM
founded in 1948 by Ne Win, was one of the
two major political parties in Burma during
the 1980–1990s

Target Entity: Sultana Kamal

Context:

On April 27 , 2013 an alliance of 68
non-governmental organisations working for
women ’s rights held a rally in Dhaka to
speak out against the proposed subjugation
of women. Sultana Kamal <appos> told
reporters there: The people are non-communal
and religious tolerant.

Appostive:
Gold a human rights activist
BART-base the head of the alliance
BART-base+KILM Bangladesh politician

Table A3: Selected data samples from ApposCorpus, along with generated appositives from both BART-base and
BART-base+KILM. <appos> marks the position where an appositive is needed to enhance the target entity. In the
above two tables, text in orange is not factual correct, while text in blue is not fully accurate.

Dialogue
History:

B: Skiers used to only use one pole or spear
instead of two. Have you every gone skiing?
A: I haven’t ever gone skiing, but my kids
do and love it. Maybe one of these days I’ll
try it out. Do you ski?

Response:

BART-base
B: I do, but I don’t know if I can do it. I do
know that skiing is the most popular sport
in the world .

BART-base+KILM
B: I do, but I don’t ski much. I’m not a big
fan of snow skiing.

Dialogue
History:

A: Nice, I walk my dog at least once a day.
B: I like watching the dog on "The Simpsons".
He is funny along with the family and friends.
A: I love The Simpsons.

Response:

BART-base
B: The Simpsons is a great show. It was
created by Homer Simpson and Matt Groening.

BART-base+KILM
B: I love the Simpsons too. It was created by
Matt Groening.

Table A4: Selected data samples from WoW, along with generated responses from both BART-base and BART-
base+KILM. The highlighted generations in pink is annotated to contain verifiable information.
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