Solving Math Word Problems via Cooperative Reasoning induced

Language Models
Xinyu Zhu®* Junjie Wang®* Lin Zhang®” Yuxiang Zhang®
Yongfeng Huang® Ruyi Gan” Jiaxing Zhang" Yujiu Yang®f
OTsinghua University ~*Waseda University

“IDEA *The Chinese University of Hong Kong

zhuxy21@mails.tsinghua.edu.cn

wjj1020181822@toki.waseda. jp

yang.yujiu@sz.tsinghua.edu.cn

joel@495@asagi.waseda. jp

{zhanglin, ganruyi, zhangjiaxing}@idea.edu.cn

Abstract

Large-scale pre-trained language models
(PLMs) bring new opportunities to challeng-
ing problems, especially those that need
high-level intelligence, such as the math
word problem (MWPs). However, directly
applying existing PLMs to MWPs can fail
as the generation process lacks sufficient
supervision and thus lacks fast adaptivity as
humans. We notice that human reasoning
has a dual reasoning framework that consists
of an immediate reaction system (system 1)
and a delicate reasoning system (system 2),
where the entire reasoning is determined by
their interaction. This inspires us to develop
a cooperative reasoning-induced PLM for
solving MWPs, called Cooperative Reasoning
(CoRe), resulting in a human-like reasoning
architecture with system 1 as the generator
and system 2 as the verifier. In our approach,
the generator is responsible for generating
reasoning paths, and the verifiers are used to
supervise the evaluation in order to obtain re-
liable feedback for the generator. We evaluate
our CoRe framework on several mathematical
reasoning datasets and achieve decent im-
provement over state-of-the-art methods, up
to 9.6% increase over best baselines.!

1 Introduction

Addressing math problems is a hallmark of human
intelligence, which allows reasoning and adapting
from limited data. We want neural models to be
able to do the same, however, quick and flexible
reasoning is challenging to current neural models
as they must possess a certain level of prior expe-
rience from a limited amount of new data while
avoiding overfitting. The rapid growth of large-
scale Pre-trained Language Models (PLMs) offers

“Equal contribution.

fCorresponding Author.

'Our codes are available at https: //github.com/
TianHongZXY/CoRe

(a) Prompt-based Methods (zero-shot/few-shot)

Reasoning Path

o G

Reasoning Path

Answer

Chain-of-Thought: 1 path;
Self-consistency: multiple paths.

(b) Dual Process Theory (System 1&2) (few-shot/finetuning)

If few-shot: |

1| Large-scale
e
(c) CoRe (ours) (zero-shot)

N

Cooperative Training
Data Cooperative Inference

Reasoning Path

Rules /

Answer

Reasoning Path

Generators

Verifiers
Unseen
Self-Thinking datasets
U Verifiers

Figure 1: Comparing our CoRe with popular methods
in mathematical logic reasoning tasks.

unprecedented potential for this issue, often rely-
ing on well-designed trigger prompts (Wei et al.,
2022¢; Li et al., 2022; Brown et al., 2020). Al-
though appealing in terms of efficiency, its success
relies on memorizing patterns with a sufficiently
large number of parameters (> 100 billion) (Wei
et al., 2022b), differentiating it from the fast adap-
tivity in the human reasoning process.

Active disciplines like neuroscience and cogni-
tive science attempt to uncover the mechanism of
human reasoning, and agree that our learning pro-
cess is governed by an interaction mechanism, of-
ten referred to as System 1 and System 2 (Evans,
2003; Kahneman, 2011). In particular, System 1
offers fast responses like human instinct, and Sys-
tem 2 performs deliberate reasoning. Interactions
between them are important for adapting to a con-
tinuously changing environment. PLMs behave
more like System 1, according to the above theory,
and thus lack the generalization ability in reason-
ing (Nye et al., 2021).

4471

Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics
Volume 1: Long Papers, pages 4471-4485
July 9-14, 2023 ©2023 Association for Computational Linguistics

https://github.com/TianHongZXY/CoRe
https://github.com/TianHongZXY/CoRe

In this work, we explore a new line of zero-shot
math problem reasoning, using a human reasoning-
alike framework with feedback in the solution gen-
eration loop as opposed to pure PLM-based meth-
ods, called Cooperative Reasoning (CoRe). In-
tuitively, System 1 and System 2 are embodied
as generators and verifiers, respectively, and they
are defined as follows: generators for generating
reasoning paths, and verifiers for supervising the
paths’ evaluation. Specifically, we train a LM be-
yond the question-answer paradigm by integrat-
ing in-the-loop reasoning, i.e., we let the LM out-
put both the answer and the corresponding reason-
ing process for a given question. Meanwhile, we
introduce two types of verifiers, including token-
level and sentence-level, allowing us to provide
feedback in the whole solution generation life-
cycle. Notice that the solution path is generated
by selecting candidate tokens with some proba-
bility so that it is tree-alike and much coincides
with the tree search process of Monte Carlo Tree
Search (MCTS) (Kocsis and Szepesvari, 2006).
With this in mind, the verifiers can score tokens
along the solution generation process from start to
end when using the MCTS. Therefore, we can use
the score to evaluate the quality of the generation
process during inferring before finalizing the solu-
tion, making timely feedback available for super-
vising the generation process. With this, the evalu-
ation goes beyond the quality of the final result at
the granularity of each reasoning step, extending
the supervision from the solution level to the path
level. We combine the solution score and the per-
plexity of its corresponding reasoning path to en-
courage the overall training towards high-quality
augmented solutions while aligning with the reli-
able reasoning process, aiming to improve gener-
alization ability.

Our experimentally evaluate CoRe on multi-
ple mathematical reasoning datasets in both zero-
shot and fine-tuning settings. CoRe consistently
achieves better performance than competing base-
lines. Notably, CoRe has up to 9.6% improve-
ments on MultiArith over SoTA baselines, which
are dozens of times larger than our model.

In summary, our contributions are as follows.

* We propose a novel reasoning method
for mathematical problem solving, called
Cooperative Reasoning (CoRe), that intro-
duces feedback in the loop during solution
generation as opposed to the sequential learn-

ing process in the previous ones, resulting in
the first method for this task that builds on
top of the learning mechanism in the human
brain.

* We develop a self-thinking strategy for fur-
ther boosting reasoning ability with gener-
ated data from the cooperation between Sys-
tem 1 and System 2.

* We demonstrate the superiority of CoRe com-
paring to other zero-shot and fine-tuning
methods, which has 9.6% improvements on
MultiArith over SoTA baselines.

2 Related Work

2.1 Dual Process System

Dual-process theory (Evans, 2003; Kahneman,
2011) argues there are two cognitive systems un-
derpinning human reasoning: System 1 and Sys-
tem 2. The purpose of clarifying these systems is
that they have the potential to help us construct
artificial intelligence systems that benefit from hu-
man flexibility and methodical generalization.

Dual process system model guidance is not new.
Nye et al. (2021) simulated Systems 1 and 2 to
improve consistency and coherence of neural net-
works. Similar to several studies Cobbe et al.
(2021); Li et al. (2022); Scialom et al. (2021), in
addition to System 1 for the generation, we de-
velop a distinct model as System 2, called Veri-
fier. The Verifier checks the feasibility and correct-
ness of the generator’s content and collaboratively
solves the reasoning task together.

2.2 Multi-step Reasoning

Many works exploit the multi-step reasoning abil-
ity of language models. Cobbe et al. (2021)
showed that training a verifier to score the solu-
tions generated by a fine-tuned GPT-3 could im-
prove the performance compared to solely fine-
tuning a GPT-3. Nye et al. (2022) discovered that
asking the language model to write the intermedi-
ate process could achieve better results on various
NLP tasks. Likewise, Chain-of-Thought (CoT)
prompts (Wei et al., 2022¢) prepended exemplars
with intermediate reasoning steps as prompts and
achieved SoTA on several reasoning benchmarks
by using large-scale PLMs. Wang et al. (2022) fur-
ther boosted CoT’s performance by sampling a
bunch of possible solutions and then obtained the
final answer by majority voting. DIVERSE (Li
et al., 2022) proved diverse CoT prompts and an

4472

extra verifier were both helpful for PLMs to solve
reasoning problems. Kojima et al. (2022) found
that by simply adding “Let’s think step by step’
after the question. PLMs could successfully step
by step solve the problems, called Zero-shot-CoT.

>

These above methods rely on extremely large
language models, resulting in high computa-
tional cost and time-consuming. Moreover, sev-
eral works (Wei et al., 2022c; Kojima et al., 2022)
point out that neither CoT nor Zero-shot-CoT is
helpful to smaller models. While our method does
not necessarily require extremely large PLMs and
can work with models with different size scales,
thus reducing computational cost and inference
time. Our approach has competitive zero-shot per-
formance thanks to the efficient and collaborative
application of a dual-process system.

3 Cooperative Reasoning

In this section, we will present the proposed co-
operative reasoning framework, CoRe, that en-
forces System 1 and System 2 mutually cooperat-
ing, which includes 3 sequential steps: cooperative
training, cooperative inference, and self-thinking.

3.1 Preparation

As discussed in Sec. 1, we expect a PLM (G) to
fast generate multiple reasoning paths like System
1. Then, considering that System 2 is responsible
for deliberate evaluations of the reasoning paths,
we employ two modules: a step verifier (V) for
reasoning steps, and a path verifier (V},q4) for rea-
soning paths.

3.2 Cooperative Training

Before applying System 1&2 to inference, a crit-
ical issue for them is learn how to generate rea-
soning paths and evaluate reasoning steps/paths.
Inspired by a widely-used training strategy for rea-
soners (Cobbe et al., 2021), we present a cooper-
ative training method as shown in Fig. 2 Step 1.
Moreover, we discuss hyper-parameter configura-
tions and extra training details in Appendix B.1
and Appendix B.2.

Step 1.1: We first fine-tune G on a dataset D =
{(qi,pi, gti)})X, consisting of N samples. Each
sample = is composed of a question ¢, a reason-
ing path p and a ground truth answer gt. We fine-
tuen GG with standard language modeling objective

L as Eq. (1).

Ipl+|gt|
Ly =— Z log P (i | x<:) (H
=1
Step 1.2: Once G has learned how to generate
solutions, we employ it on questions ¢ from D.

As a result, we }oll)tain a new dataset Dt =

=1,...,

{(qi, TDi i ai,j) };:1]]\\; with M generated rea-
soning paths (rp) and answers (a) for each q.

Step 1.3: Different from the popular methods, we
train two verifiers to model human reasoning pro-
cedure with deliberate analysis for each step and
the whole path. To evaluate several reasoning steps
in a path, we desire a token-level scorer, which
is named step verifier Vy,. Therefore, we fine-
tune a PLM with two tasks jointly: 1) the language
modeling task mentioned before; 2) the verifica-
tion task to predict a score for each token in the
solution. The verification loss Ly g is calculated
as the Mean Squared Error (MSE) of the predicted
score with respect to the label as follows:

Irp|+|al
Lys = Z (score; —I(a == gt))?, (2)
=1
where, (rp,a) from D and gt with same ¢ from
D.

On the other hand, we need a path-level scorer
for reasoning paths. Different from step verifier,
we simply extract an overall presentation of the
reasoning path for prediction. Specifically, we em-
ploy a BERT-like model and take the [CLS] token
to calculate MSE loss Ly p similar to Ly g.

In summary, the overall training objective for
verifiers is given by:

Ly =Lvs+ Ly + Lyvp. 3)

3.3 Cooperative Inference

After obtaining a generator and two verifiers, we
propose cooperative inference to generate solu-
tions for unseen questions. Instead of treating veri-
fiers as voters, we argue that verifiers should offer
appropriate guidance and feedback during the rea-
soning process. Therefore, we integrate a cooper-
ative search algorithm. In particular, we adopt the
popular Monte Carlo Tree Search (MCTS) (Kocsis
and Szepesvari, 2006) to enable controlled reason-
ing. The cooperative inference starts from the root
node, which preserves question tokens. We detail
the cooperative inference process as follows.

Selection. If the current node has children, with
50% probability, we select a node from its children

4473

Step 1: Cooperative Training
System 1&2

D:{Q, P, GT} Step 1.1 Fine-tuning

N ({QPRGTH) -
& = System 1
_____ — | (Generator)
Step 1.2 Generating

Reasoning Paths ({Q) __. —
~— Generated

Step 2: Cooperative inference by Trained System 1&2

BB .
_____ —_ = System 1
Generating (Generator)
Reasoning Steps ({Q})

O RP with scores

Reasoning Step

¢ System2
(Vpatn)

Scoring
Reasoning Paths

& System2
(Vstep)

Scoring
Reasoning Steps

D*:{Q, RP, A} {Q RP, A}
‘ ¢ System2 (\
Step 1.3 Fine-tuning (VStEP & Vpath) D:{Q, P, GT}
({Q RP A}

GT: Ground Truth
P: GT Reasoning Path
RP: Generated Reasoning Path

S: Scores

Dnew:{Q, RP, A, S}

J ﬁ Step 2
A: Generated Answers

| Step 3: Self-Thinking

%SDzﬁfﬁw

Dpew:{Q, RP, A}

Merge (Dpey
Filtering 9¢ (One

Figure 2: Cooperative reasoning framework.

with the modified PUCT formula (Czech et al.,

2021) as Eq. (4),
n* = arg max(R(n)+cpuctm(n|s)

necC 1+N(37n))7 (4)

where the state s represents the sequence consist-
ing of all tokens in the current search path. And,
N(s,n) means the times that node n has been
selected in state s. Reward R(n) records all the
scores received from the backup. We perform se-
lection again with the selected node as the current
node. Otherwise, we perform expansion once and
choose the returned new node as current node.
Expansion. During expansion, the generator is re-
quired to generate a sequence of tokens based on
the current state. A new node is created to store the
generated tokens and added to the current node’s
children. Then, V., evaluates the current reason-
ing path and predict a score scoregiep. Finally, the
new node is returned.

Roll-Out. After selection and expansion, we start
from the current node and let the generator com-
plete the reasoning path until it meets [EOS] to-
ken or reaches the max token length limit. Next,
Vpatn evaluates the whole reasoning path and pro-
duces a score scorep,t,. Remember that Ve, also
provides a score scoregqe, during the expansion.
Therefore to leverage both scores, we introduce a
hyper-parameter « to adjust their contributions to
the node’s reward,

S = SCOT€path + O X SCOT€step 5)

where s is the final score that each node receives
by the backup.

Backup. We update the rewards back from the cur-
rent node to the root node. The scores produced

Algorithm 1 Self-Thinking

Input: Generator G; Step verifier Vycp; Path ver-
ifier Vjyqsp; Dataset D.
1: Combine generator and verifiers with a coop-
erative search algorithm.
2: repeat
Generate a new dataset D, from input
questions.
Filter D,,cq.
Merge Dy with D in Step 1.
Do Step 1.
Do Step 2.
until performance is saturated.

15

AN

by verifiers are added to R(n) and the visited time
N(s,n) is increased by 1.

3.4 Self-Thinking

It is challenging to fine-tune models on the data
synthesized by themselves, which indicates they
have to be very confident in the content they gen-
erate. A proper self-training method can enhance
the robustness of the whole system and allow deep
data mining. Therefore, we introduce self-thinking
as described in Fig. 2 Step 3 and Algorithm 1. Con-
sidering the noise contained in generated data, we
build a filter by using scores from verifiers and per-
plexity (PPL) from the generator. In detail, we se-
lect high-quality reasoning paths by setting a score
threshold. Moreover, we only keep the reasoning
paths with no higher PPL than the ground truth
solutions. After filtering, we merge D,,c,, with D
and send it to Step 1. Once the several iterations
are completed, we obtain a powerful System 1&2.
More details can be found in Appendix B.3.

4474

3.5 Zero-shot Inference

We simply perform cooperative inference as Fig. 2
Step 2 with trained System 1&2 on unseen
datasets. After obtaining several reasoning paths
with scores, we arrive at the final answer by
weighted voting based on scores following (Li
et al., 2022).

4 Experiments

4.1 Experimental Setup
4.1.1 Datasets

We consider several widely-used math word prob-
lem datasets: GSM8K (Cobbe et al.,, 2021),
ASDiv-A (Miao et al., 2020), SingleOp (Roy et al.,
2015), SinlgeEq (Koncel-Kedziorski et al., 2015)
and MultiArith (Roy and Roth, 2015). (Details
in Appendix A). Following the general setting as
in (Kojima et al., 2022; Wei et al., 2022c), we
employ accuracy as the evaluation metric for all
datasets.

4.1.2 Baselines

For comparison under the zero-shot setting, the re-
sults of Instruct GPT-3 (175B) and PaLM (540B)
with their various methods are from Kojima et al.
(2022). The zero-shot* and zero-shot-CoT* im-
ply not the standard prompt (see details in Ap-
pendix B.4). We also provide our generator as a
baseline when compared to previous fine-tuning
methods. Regarding to sampling multiple solu-
tions, we search 40 paths with the same setting as
Self-Consistency (Wang et al., 2022).

For GSM8K, we select various powerful PLMs
enhanced by the chain of thought prompt as base-
lines, including LaMDA (137B) (Thoppilan et al.,
2022), GPT-3 (175B) (Brown et al., 2020) and
PalLM (540B) (Chowdhery et al., 2022). Except
for the few-shot methods, we also include a fine-
tuned baseline that applies two GPT-3 (175B), one
as the generator and the other as verifier (Cobbe
etal., 2021).

4.1.3 Implementation Details

Since cooperative training requires a high-
quality dataset with reasoning paths, we treat
GSMSK (Cobbe et al., 2021) as the seed dataset
D in Sec. 3.2. Unless otherwise, we employ GPT-
J (Wang and Komatsuzaki, 2021) as the generator
and the step verifier, DeBERTa-large (He et al.,
2021) as the path verifier. Since the default set-
ting consists of two GPT-J (6B) and a DeBERTa-

Backbone Method SingleEq MultiArith
Instruct GPT-3 175B zero-shot 74.6 17.7
zero-shot™ 78.7 22.7
zero-shot-CoT 78.0 78.7
zero-shot-CoT* 78.7 79.3
PalLM 540B zero-shot - 25.5
zero-shot-CoT - 66.1
+ Self-Consistency - 89.0
GPT-J 12B CoRe (ours) ‘ 79.5 97.5

Table 1: Zero-shot results on SingleEq and MultiArith.

large (0.4B), we note our backbone as “GPT-J
12B”, which implies around 12.4 billion parame-
ters in total. During generation, we apply calcula-
tor as assistant following Cobbe et al. (2021). We
run all the experiments for 3 times and report the
best result, detailed hyper-parameters setting can
be found in Appendix B.1. Our zero-shot setting
is similar to the transferring setting in TO (Sanh
et al., 2022) and FLAN (Wei et al., 2022a). All the
training and testing procedures are done on a DGX
station with 8 A100 GPUs.

4.2 Main Results
4.2.1 Zero-shot Results

Table 1 presents main results on two mathemat-
ical reasoning datasets, demonstrating the zero-
shot generalization ability. CoRe achieves supe-
rior performance on both datasets, demonstrating
its capability of mathematical reasoning on unseen
datasets. Note that the baselines are several dozen
times larger than ours and still underperform our
model. The improvement might be explained by
two potential reasons. One is that applying the
CoRe framework on PLMs can activate their rea-
soning ability, even though their scales are small
(< 100B). Another one is that self-thinking can
provide valuable self-produced data to teach Sys-
tems 1&2. Therefore, the results present the effec-
tiveness of cooperative working with System 1&2
and self-thinking.

4.2.2 Zero-shot v.s. Fine-tuning

We compare CoRe with previous fine-tuned SoTA
baselines on four datasets, and results are pre-
sented in Table 2. To show the importance of co-
operative reasoning, we apply our generator as a
baseline. The results demonstrate that without any
guidance generator underperforms previous meth-
ods on most datasets. Despite the gain from self-
consistency, it still lags behind other fine-tuned So-
TAs. While after applying our method CoRe, it sur-

4475

Backbone = Method | ASDiv-A SingleOp SingleEq MultiArith
Fine-tune

Previous SoTA 75.3¢ 80.1° 72.3¢ 60.5¢
Zero-shot
GPT-J 6B Generator only 51.7 532 49.2 71.3

+ Self-Consistency 63.7 59.6 60.2 92.3
GPT-J 12B CoRe (ours) 90.5 85.2 79.5 97.5

Table 2: Zero-shot results v.s. previous fine-tuned SoTA results on math reasoning tasks. The previous SoTA
baselines are obtained from:a: (Lan et al., 2022), b: LogicForm (Liang et al., 2016), c: UNITDEP (Roy and Roth,
2017), d: Relevance and LCA operation classifier (Roy and Roth, 2015). The best scores are in bold.

Backbone Method | GSMSK

few-shot

LaMDA 137B CoT 17.1
+ Self-Consistency 27.7

GPT-3 175B CoT 49.6
+ Self-Consistency -

PalLM 540B CoT 56.5
+ Self-Consistency 74.4

fine-tune

GPT-3 350B - 57.0

GPT-J 12B CoRe (ours) 63.2

Table 3: Fine-tuning v.s. Few-shot results on GSM8K
with various PLMs. Results are reported from Cobbe
et al. (2021); Wei et al. (2022c); Wang et al. (2022).
The best score is in bold and the second is underlined.

passes previous fine-tuned SoTAs on all datasets in
a zero-shot setting. The results clearly demonstrate
the capability of CoRe to greatly boost PLMs’ rea-
soning ability.

4.2.3 GSMSK Results

Beyond improvements on zero-shot results, we ob-
serve that the fine-tuning setting can benefit a lot
from our CoRe framework, as shown in Table 3.
Compared to previous fine-tuned SoTA (Cobbe
et al., 2021) (GPT-3 350B), CoRe outperforms it
with much fewer parameters, computation and in-
ference time. Note that it samples 100 solutions
for each question while we only search 40 paths.

For a comprehensive comparison, we include
few-shot results with large-scale PLMs due to a
limited number of “fine-tune” competitors. With
regard to few-shot methods applied on large-scale
PLMs (> 100B parameters), CoRe only under-
performs Pal.M-540B strengthened by chain of
thought prompt and self-consistency, further prov-
ing the effectiveness of our method.

Guidance « | SingleOp MultiArith
w/o verifiers - 59.6 92.3
Vpatn only 0 80.2 95.8
Voutn + Varey 0.1 | 813 95.8

1 82.9 96.8

Table 4: Zero-shot results with different levels of guid-
ance from verifiers. a comes from Eq. (5).

4.3 Ablation Study

4.3.1 Is guidance important during path
searching reasoning?

We argued that it is important to introduce guid-
ance in the loop during reasoning path searching.
To validate this argument, we adjust the weight
of reward provided by verifiers during reasoning.
The experiments are conducted using models with-
out self-thinking. Table 4 summarizes the perfor-
mance on zero-shot datasets with different set-
tings of guidance. For “w/o verifiers”, the solu-
tions are predicted by a generator only and ap-
plied with “Self-Consistency”. As demonstrated
in Table 4, guidance from V)44, can provide per-
formance gains on SingleOp, with a 20.6% ab-
solute improvement. We further incorporate the
guidance from the step-level verifier Vi.p. As de-
scribed in Eq. (5), increasing the weight of reward
(o) from Vcp, CoRe achieves a higher accuracy
on both SingleOp and MultiArith. Thanks to the
feedback and guidance during the reasoning stage,
the generator tends to explore more often on a path
with a higher reward score. As a result, CoRe in-
creases the accuracy on SingleOP from 59.6% to
82.9% and MultiArith from 92.3% to 96.8%.

4.3.2 How much does self-thinking boost the
reasoning ability of a language model?
To examine the effect of self-thinking, we explore
it along with two axes: 1) the number of itera-
tions and 2) the type of search strategy. Since we

4476

AsDiv-A SingleOp

Accuracy (%)
Accuracy (%)

5 0 15 20 25 30 35 40 5 0 15 20 25

Number of reasoning paths Number of reasoning paths

o-Self-Consistency —e—CoRe o Self-Consistency —e=CoRe

Accuracy (%)

SingleEq MultiArith

100

.
80

60

40

Accuracy (%)

20

0 15

20 25 30 35 40 5

10

15 20 25 30 35

Number of reasoning paths Number of reasoning paths

o-Self-Consistency —e—CoRe o—Self-Consistency —e—CoRe

Figure 3: Zero-shot results with different search strategies in cooperative inference.

of iterations | 0 1 2

Generator only (Greedy) 29.9 347 349
Generator + Self-Consistency | 42.0 43.1 45.9
CoRe 60.0 632 61.6

Table 5: Results on GSMS8K with models undergone a
different number of self-thinking iterations. Outcomes
of various search strategies are provided.

apply the self-thinking procedure on the GSM8K
dataset, we investigate the performance of mod-
els under different settings on GSM8K, as shown
in Table 5. First, increasing the number of itera-
tions can always improve the performance for both
greedy decode and self-consistency. Our CoRe
reaches saturation in one round, which might be
attributed to the fact that System 1&2 learns better
and faster on self-generated data by collaborative
working. Second, regardless of the search strategy,
self-thinking consistently boost the model’s perfor-
mance, which verifies that self-thinking boost lan-
guage model’s reasoning ability.

4.3.3 Do self-thinking generalize to other
datasets?

We have performed self-thinking on GSM8K and
proved that it improves the model’s reasoning abil-
ity in 4.3.2. Furthermore, we explore whether the
improvement on GSM8K comes at the cost of per-
formance degradation on other datasets, i.e. the
model overfits the dataset. As presented in Table 6,
we vary the number of self-thinking iterations for
the generator and verifiers respectively and pro-
vide results on SingleOp and MultiArith. The re-
sults show that the performance of the generator
suffers a little, but verifiers can eliminate this un-
desirable effect and benefit a lot from self-thinking.
The best results are obtained when only the ver-
ifiers are further fine-tuned, with the 2.3% and
0.7% absolute improvement on the two datasets
respectively. This observation implies that we can

of iterations SingleOp MultiArith

Generator Verifiers
0 0 82.9 96.8
0 1 85.2 97.5
1 0 81.9 96.3
1 1 83.3 97.2

Table 6: Zero-shot results with a different number of
self-thinking iterations for generator and verifiers re-
spectively.

economize on training costs and time where target
datasets are not included in self-thinking data.

4.3.4 How performance varies as the number
of search iterations for different search
strategies changes?

As shown in Fig. 3, accuracy on 4 datasets consis-
tently increases along with the growth of search
iterations for both search strategies. However, the
scaling curves of self-consistency and CoRe are
quite different. The performance gain quickly sat-
urates with self-consistency. Sampling 40 paths
can not further improve the accuracy, while the
scaling curve of CoRe is much sharper. Due to
the heuristic algorithm that requires the model to
continue exploring on the previously generated
paths, CoRe starts from a relatively lower level in
the beginning, whereas the accuracy quickly im-
proves as the number of search iterations increases.
The result demonstrates the effectiveness of CoRe
in searching reasoning paths, with a fast growth
curve and a slow saturation rate.

4.4 Case studies

4.4.1 Improvements from CoRe

A typical exemplar from GSMS8K is presented
in Table 7. Greedy decode fails to find a reasonable
path due to the limited exploration in the output
space. In contrast, self-consistency samples multi-
ple reasoning paths randomly, resulting in a richer
candidate set. Although it finds some right solu-

4477

Question | Sophia and Rose went together to the market to buy onions and potatoes. Rose bought 4 times the number of onions and potatoes Sophia | Score
bought. If Rose bought 12 onions and 4 potatoes, how many onions and potatoes in total did Sophia buy at the market?
Greedy Rose bought 12 onions * 4 = 12 * 4 = 48 onions. Rose bought 4 potatoes * 4 = 4 * 4 = 16 potatoes. Sophia and Rose bought 48 onions | —
Decode + 16 potatoes = 64 onions and potatoes in total. [ANS] 64.
Most ap- | If Rose bought 12 onions at the market, then Sophia bought 12 / 4 = 3 onions. If Rose bought 4 potatoes at the market, then Sophia | —
propriate | bought 4 /4 = 1 potato. Since Rose bought 12 onions and 4 potatoes, Sophia bought 3 + 1 = 4 onions and potatoes in total. [ANS] 4.
SC Path
Most con- | Rose bought 4 x 48 = 192 potatoes. In total, Sophia bought 192 + 48 = 240 onions and potatoes at the market. [ANS] 240. -
sistent
SC Path
CoRe Since Rose bought 12 onions, this means there were 12 / 4 = 3 onions that Sophia bought. The number of potatoes that Sophia bought | 0.994
Path 1 is 4, meaning there were 4 / 4 = 1 potato that Sophia bought. The total number of onions and potatoes that Sophia bought is 3 + 1 = 4.
[ANS] 4.
CoRe The number of onions Rose bought is 12 onions / 4 = 3. Sophia bought 4 / 12 = 1/ 3 of the number of onions Rose bought. The number | 0.363
Path 2 of potatoes Rose bought is 4 potatoes / 4 = 1.33 of the number of potatoes Rose bought is 4 potatoes / 12 onions = 0.33. The total number
of onions and potatoes Rose bought at the market is 3 onions + 1 potatoes = 4. [ANS] 4.
CoRe Let x be the number of onions Sophia bought. Rose bought 4 * x onions. The total number of onions and potatoes Rose bought is 4 * x | 0.023
Path 3 +x=12.5%x=12. x =4. Sophia bought 4 onions. [ANS] 4.

Table 7: GSM8K samples generated through different searching methods. SC refers to Self-Consistency. The erro-
neous parts of each path are highlighted in red and the corresponding correct parts within other paths are blue.

Question Gunter is trying to count the jelly beans in a jar. He asks his friends how many they think are in the jar. One says 80. Another says 20
more than half the first one. A third says 25% more than the first one. What is their average guess?

No Self-Thinking ‘ Half the first guess is 80 / 2 = 40. The third guess is 40 * .25 = 10. Their total guesses are 80 + 20 + 40 + 10 = 150. Their average

guess is 150 /4 =37.5. [ANS] 37.5.

With Self-Thinking | Half the first friend’s guess is 80 / 2 = 40. The second friend’s guess is 40 + 20 = 60. The third friend’s guess is 80 * 1.25 = 100.
Their total guesses are 80 + 60 + 100 = 240. Their average guess is 240/ 3 = 80. [ANS] 80.

Table 8: An example of GSM8K, model with self-thinking reasoned correctly, while the non-self-thinking model

generated a wrong reasoning path and therefore failed.

tions occasionally, without any guidance, it fails to
explore more frequently on the high-quality paths,
thus ending up with a wrong answer obtained by
majority voting as shown in the fourth row.

As a comparison, results generated by CoRe are
listed with their scores. Similar to random sam-
pling, the reasoning paths might be partially illog-
ical, even though the final answers happen to be
correct. Despite this challenge, CoRe is capable
of distinguishing those poor-quality paths from the
superior ones thanks to the verifiers. Adhering to
the philosophy of cooperative reasoning we have
emphasized, the verifiers managed to harness the
generator throughout the reasoning procedure with
the help of MCTS. Therefore, CoRe enjoys not
only the advantage of having a diverse candidate
set, but also the merit of being wiser and efficient
during reasoning path searching.

4.4.2 Improvements from Self-Thinking

Table 8 shows an example that the vanilla model
failed to solve the given question, whereas after
the self-thinking, the model rectified the faulty
parts and successfully addressed it. This displays
that self-thinking boosts language models’ inner
reasoning ability regardless of the search strategy,
which is also proved in Sec. 4.3.2.

5 Discussion

Although we only fine-tune the language model
on GSMS8K due to the scarcity of QA datasets an-
notated with intermediate rationales, zero-shot re-
sults on several arithmetic datasets prove that basic
reasoning capability is transferable across datasets
within the same domain. This observation implies
that when it comes to a new domain, we only need
to collect a limited number of question-answer
pairs with reasoning paths, model’s reasoning abil-
ity can generalize to other unseen datasets and can
be further strengthened by our approach CoRe ac-
cording to the experimental results.

6 Conclusions

In this work, we mimic the dual system of human
cognition to develop an effective reasoning frame-
work for solving the math word problems. The pro-
posed approach is consisting of two ingredients:
the generator as System 1 and the verifiers as Sys-
tem 2, and overall reasoning is conducted based
on their mutual reinforcement. From the robust-
ness and generalization aspects, CoRe activates su-
perior reasoning ability of LMs, and thus outper-
forms PLMs that are dozens of times larger.

4478

Limitations

The outcome on multiple datasets verifies the pow-
erful reasoning ability, which even works on mod-
els with only several billion parameters. How-
ever, our self-thinking procedure utilizes only one
dataset, GSMS8K, and the available training set
size is only 7.5K. The main reason is the scarcity
of high-quality datasets with rich reasoning paths.
And, collecting such data incurs huge computation
costs and expensive human resources. Another
limitation is that we have not conducted experi-
ments on bigger language models, such as GPT-3
and PaLLM, due to the expensive usage costs and
the fact of no open-source codes. In a nutshell, in
the future, we will focus on collecting more high-
quality labeled data and exploring our method on
more powerful language models.

Ethics Statement

In this work, our CoRe shows impressive rea-
soning capability, however, it also comes with
social risks. Here, we summarize three possible
ethical impacts: i) PLMs with bias, ii) gener-
ated data with social stereotypes and iii) prob-
lematic data environments. Considering utilizing
PLMs as backbones, several works present var-
ious potential risks in PLMs (Lucy and Bam-
man, 2021; Amin and Kabir, 2022). Fortunately,
our method supports the replacement of different
PLMs. Therefore, we encourage deploying some
risk-free PLMs, expecting to reduce the potential
ethical risks. Furthermore, once deploying harm-
ful PLMs, the self-thinking process might gener-
ate several undesired data and those data are fed
into language models, which deepens the bias and
causes unintended social impacts. For reducing the
aforementioned cases, we suggest recording gener-
ated sentences. In real-world applications, a good
choice is to monitor generated content and then
hand them over for human review. In addition to
the two risks posed by PLMs, the data in down-
stream tasks is of great concern. In particular, pri-
vate data might cause unpredictable influence be-
cause of their nature as a non-open source. There-
fore, we believe that a data cleaning workflow is
necessary to mitigate potential risks, such as Pri-
vateClean (Krishnan et al., 2016). Finally, we en-
courage open debating about its utilization for in-
creasing transparency and reducing the potential
for misuse.

Acknowledgements

This work was partly supported by the National
Key Research and Development Program of China
(No. 2020YFB1708200) , the "Graph Neural Net-
work Project" of Ping An Technology (Shenzhen)
Co., Ltd. and the Shenzhen Science and Technol-
ogy Program (JCYJ20220818101001004).

References

Akhter Al Amin and Kazi Sinthia Kabir. 2022. A dis-
ability lens towards biases in GPT-3 generated open-
ended languages. CoRR, abs/2206.11993.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen,
Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin
Chess, Jack Clark, Christopher Berner, Sam Mc-
Candlish, Alec Radford, Ilya Sutskever, and Dario
Amodei. 2020. Language models are few-shot learn-
ers. In NeurIPS.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts,
Paul Barham, Hyung Won Chung, Charles Sutton,
Sebastian Gehrmann, Parker Schuh, Kensen Shi,
Sasha Tsvyashchenko, Joshua Maynez, Abhishek
Rao, Parker Barnes, Yi Tay, Noam Shazeer, Vin-
odkumar Prabhakaran, Emily Reif, Nan Du, Ben
Hutchinson, Reiner Pope, James Bradbury, Jacob
Austin, Michael Isard, Guy Gur-Ari, Pengcheng
Yin, Toju Duke, Anselm Levskaya, Sanjay Ghe-
mawat, Sunipa Dev, Henryk Michalewski, Xavier
Garcia, Vedant Misra, Kevin Robinson, Liam Fe-
dus, Denny Zhou, Daphne Ippolito, David Luan,
Hyeontaek Lim, Barret Zoph, Alexander Spiridonov,
Ryan Sepassi, David Dohan, Shivani Agrawal, Mark
Omernick, Andrew M. Dai, Thanumalayan Sankara-
narayana Pillai, Marie Pellat, Aitor Lewkowycz,
Erica Moreira, Rewon Child, Oleksandr Polozov,
Katherine Lee, Zongwei Zhou, Xuezhi Wang, Bren-
nan Saeta, Mark Diaz, Orhan Firat, Michele Catasta,
Jason Wei, Kathy Meier-Hellstern, Douglas Eck,
Jeff Dean, Slav Petrov, and Noah Fiedel. 2022.
Palm: Scaling language modeling with pathways.
CoRR, abs/2204.02311.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Ja-
cob Hilton, Reiichiro Nakano, Christopher Hesse,
and John Schulman. 2021. Training verifiers to
solve math word problems. CoRR, abs/2110.14168.

Johannes Czech, Patrick Korus, and Kristian Kersting.
2021. Improving alphazero using monte-carlo graph
search. In ICAPS, pages 103—111. AAAI Press.

4479

Jonathan St.B.T. Evans. 2003. In two minds: dual- Maxwell Nye, Anders Johan Andreassen, Guy Gur-Ari,

process accounts of reasoning. Trends in Cognitive
Sciences, 7(10):454-459.

Pengcheng He, Xiaodong Liu, Jianfeng Gao, and
Weizhu Chen. 2021. Deberta: decoding-enhanced
bert with disentangled attention. In /CLR. OpenRe-
view.net.

Henryk Michalewski, Jacob Austin, David Bieber,
David Dohan, Aitor Lewkowycz, Maarten Bosma,
David Luan, Charles Sutton, and Augustus Odena.
2022. Show your work: Scratchpads for interme-
diate computation with language models. In Deep
Learning for Code Workshop.

Maxwell 1. Nye, Michael Henry Tessler, Joshua B.

Daniel Kahneman. 2011. Thinking, fast and slow. Far-
rar, Straus and Giroux.

Levente Kocsis and Csaba Szepesvéri. 2006. Ban-
dit based monte-carlo planning. In ECML, volume

Tenenbaum, and Brenden M. Lake. 2021. Improv-
ing coherence and consistency in neural sequence
models with dual-system, neuro-symbolic reasoning.
In NeurlIPS, pages 25192-25204.

4212 of Lecture Notes in Computer Science, pages Subhro Roy and Dan Roth. 2015. Solving general arith-

282-293. Springer.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yu-
taka Matsuo, and Yusuke Iwasawa. 2022. Large

language models are zero-shot reasoners. CoRR,
abs/2205.11916.

metic word problems. In Proceedings of the 2015
Conference on Empirical Methods in Natural Lan-
guage Processing, EMNLP 2015, Lisbon, Portugal,
September 17-21, 2015, pages 1743—1752. The As-
sociation for Computational Linguistics.

Subhro Roy and Dan Roth. 2017. Unit dependency

Rik Koncel-Kedziorski, Hannaneh Hajishirzi, Ashish
Sabharwal, Oren Etzioni, and Siena Dumas Ang.

graph and its application to arithmetic word problem
solving. In AAAI pages 3082-3088. AAAI Press.

2015. Parsing algebraic word problems into equa- Subhro Roy, Tim Vieira, and Dan Roth. 2015. Rea-

tions. Transactions of the Association for Computa-
tional Linguistics, 3:585-597.

soning about quantities in natural language. Trans.
Assoc. Comput. Linguistics, 3:1-13.

Sanjay Krishnan, Jiannan Wang, Michael J. Franklin, vijctor Sanh, Albert Webson, Colin Raffel, Stephen

Ken Goldberg, and Tim Kraska. 2016. Privateclean:
Data cleaning and differential privacy. In SIGMOD
Conference, pages 937-951. ACM.

Yihuai Lan, Lei Wang, Qiyuan Zhang, Yunshi Lan,
Bing Tian Dai, Yan Wang, Dongxiang Zhang, and
Ee-Peng Lim. 2022. Mwptoolkit: An open-source
framework for deep learning-based math word prob-
lem solvers. In AAAI pages 13188—-13190. AAAI
Press.

Yifei Li, Zeqi Lin, Shizhuo Zhang, Qiang Fu, Bei Chen,
Jian-Guang Lou, and Weizhu Chen. 2022. On the
advance of making language models better reason-
ers. CoRR, abs/2206.02336.

Bach, Lintang Sutawika, Zaid Alyafeai, Antoine
Chaffin, Arnaud Stiegler, Arun Raja, Manan Dey,
M Saiful Bari, Canwen Xu, Urmish Thakker,
Shanya Sharma Sharma, Eliza Szczechla, Tae-
woon Kim, Gunjan Chhablani, Nihal V. Nayak,
Debajyoti Datta, Jonathan Chang, Mike Tian-Jian
Jiang, Han Wang, Matteo Manica, Sheng Shen,
Zheng Xin Yong, Harshit Pandey, Rachel Bawden,
Thomas Wang, Trishala Neeraj, Jos Rozen, Ab-
heesht Sharma, Andrea Santilli, Thibault Févry, Ja-
son Alan Fries, Ryan Teehan, Teven Le Scao, Stella
Biderman, Leo Gao, Thomas Wolf, and Alexan-
der M. Rush. 2022. Multitask prompted training en-
ables zero-shot task generalization. In /ICLR. Open-
Review.net.

Chao-Chun Liang, Kuang-Yi Hsu, Chien-Tsung Thomas Scialom, Paul-Alexis Dray, Jacopo Staiano,

Huang, Chung-Min Li, Shen-Yu Miao, and Keh-Yih
Su. 2016. A tag-based statistical english math
word problem solver with understanding, reasoning
and explanation. In IJCAI, pages 4254-4255.
IJCAIVAAAI Press.

Sylvain Lamprier, and Benjamin Piwowarski. 2021.
To beam or not to beam: That is a question of cooper-
ation for language gans. In NeurIPS, pages 26585—
26597.

Romal Thoppilan, Daniel De Freitas, Jamie Hall,

Li Lucy and David Bamman. 2021. Gender and repre-
sentation bias in GPT-3 generated stories. In Pro-
ceedings of the Third Workshop on Narrative Un-
derstanding, pages 48-55, Virtual. Association for
Computational Linguistics.

Shen-yun Miao, Chao-Chun Liang, and Keh-Yih Su.
2020. A diverse corpus for evaluating and develop-
ing English math word problem solvers. In Proceed-
ings of the 58th Annual Meeting of the Association
for Computational Linguistics, pages 975-984, On-
line. Association for Computational Linguistics.

4480

Noam Shazeer, Apoorv Kulshreshtha, Heng-Tze
Cheng, Alicia Jin, Taylor Bos, Leslie Baker, Yu Du,
YaGuang Li, Hongrae Lee, Huaixiu Steven Zheng,
Amin Ghafouri, Marcelo Menegali, Yanping Huang,
Maxim Krikun, Dmitry Lepikhin, James Qin, Dehao
Chen, Yuanzhong Xu, Zhifeng Chen, Adam Roberts,
Maarten Bosma, Yanqi Zhou, Chung-Ching Chang,
Igor Krivokon, Will Rusch, Marc Pickett, Kath-
leen S. Meier-Hellstern, Meredith Ringel Morris,
Tulsee Doshi, Renelito Delos Santos, Toju Duke,
Johnny Soraker, Ben Zevenbergen, Vinodkumar
Prabhakaran, Mark Diaz, Ben Hutchinson, Kristen

https://doi.org/https://doi.org/10.1016/j.tics.2003.08.012
https://doi.org/https://doi.org/10.1016/j.tics.2003.08.012
https://doi.org/10.1162/tacl_a_00160
https://doi.org/10.1162/tacl_a_00160
https://doi.org/10.48550/arXiv.2206.02336
https://doi.org/10.48550/arXiv.2206.02336
https://doi.org/10.48550/arXiv.2206.02336
https://doi.org/10.18653/v1/2021.nuse-1.5
https://doi.org/10.18653/v1/2021.nuse-1.5
https://doi.org/10.18653/v1/2020.acl-main.92
https://doi.org/10.18653/v1/2020.acl-main.92
https://openreview.net/forum?id=HBlx2idbkbq
https://openreview.net/forum?id=HBlx2idbkbq
https://doi.org/10.18653/v1/d15-1202
https://doi.org/10.18653/v1/d15-1202
https://doi.org/10.1162/tacl_a_00118
https://doi.org/10.1162/tacl_a_00118

Olson, Alejandra Molina, Erin Hoffman-John, Josh
Lee, Lora Aroyo, Ravi Rajakumar, Alena Butryna,
Matthew Lamm, Viktoriya Kuzmina, Joe Fenton,
Aaron Cohen, Rachel Bernstein, Ray Kurzweil,
Blaise Aguera-Arcas, Claire Cui, Marian Croak,
Ed H. Chi, and Quoc Le. 2022. Lamda: Lan-
guage models for dialog applications. CoRR,
abs/2201.08239.

Ben Wang and Aran Komatsuzaki. 2021. GPT-J-
6B: A 6 Billion Parameter Autoregressive Lan-
guage Model. https://github.com/kingoflolz/
mesh-transformer-jax.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V.
Le, Ed H. Chi, and Denny Zhou. 2022. Self-
consistency improves chain of thought reasoning in
language models. CoRR, abs/2203.11171.

Jason Wei, Maarten Bosma, Vincent Y. Zhao, Kelvin
Guu, Adams Wei Yu, Brian Lester, Nan Du, An-
drew M. Dai, and Quoc V. Le. 2022a. Finetuned
language models are zero-shot learners. In ICLR.
OpenReview.net.

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raf-
fel, Barret Zoph, Sebastian Borgeaud, Dani Yo-
gatama, Maarten Bosma, Denny Zhou, Donald Met-
zler, Ed H. Chi, Tatsunori Hashimoto, Oriol Vinyals,
Percy Liang, Jeff Dean, and William Fedus. 2022b.
Emergent abilities of large language models. CoRR,
abs/2206.07682.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Ed H. Chi, Quoc Le, and Denny Zhou.
2022c. Chain of thought prompting elicits reasoning
in large language models. CoRR, abs/2201.11903.

4481

https://github.com/kingoflolz/mesh-transformer-jax
https://github.com/kingoflolz/mesh-transformer-jax

A Dataset Details

The mathematical reasoning datasets with details
are as follows (Detailed description of the statis-
tics in Table 9). We follow the licenses for their
papers.

The dataset in fine-tuning:
GSMSK (Cobbe et al., 2021) is a high-quality
dataset with reasoning paths. It consists of 8.8K
grade school math problems created by human
writers, which are divided into a train set (7.5K)
and a test set (1.3K). The reasoning paths include
2 to 8 steps with considering basic arithmetic oper-
ations. Furthermore, we conduct cooperative train-
ing and self-thinking on its training set.

The datasets in zero-shot inference:
ASDiv-A (Miao et al., 2020) includes diverse
math word problems, which are required to answer
a number for each question.
SingleOP (Roy et al., 2015) is proposed with ele-
mentary math problems of a single operation.
SingleEq (Koncel-Kedziorski et al., 2015) is con-
strued with both single-step and multi-step math
problems from mixed sources.
MultiArith (Roy and Roth, 2015) includes ele-
mentary math problems with multiple steps.

B Experimental Settings

B.1 Hyper-parameters Setting

For the generator and the step verifier, we train
them for two epochs. The batch size is set to 16.
The learning rate (LR) is set to 1le — 5 at the first
epoch and 1e—6 at the second epoch for generator.
On the hand of step verifier we apply the warmup
method then linearly decaying scheduler, LR is set
to le — 6 and warmup ratio is 0.1.

For the path verifier, we train it for three epochs
with batch size set to 128 and LR set to le — 5.
Same LR scheduler as the step verifier has been
applied for the path verifier. We set the gradient
clip norm to 1.0 and the sampling temperature to
0.7. The random seed is set to 19990303 through-
out the training process.

For MCTS, we set max search iterations to 40
during inference. In expansion, we search 20 to-
kens each time. In order to avoid expanding too
many homogeneous children for the same node,
we simply penalize the probability of first token
if it has appeared in other child nodes. We set the
max token number to 300 in roll out and limit the
total token number of reasoning path to 400.

Dataset | #of samples ~ Avg # of words in questions
GSMBK 1319 46.9
ASDiv-A 1218 29.2
SingleOp 562 20.9
SingleEq 508 27.2
MultiArith 600 31.8

Table 9: Dataset statistics.

B.2 Details of Training Verifiers

Before two verifiers are fine-tuned, we utilize the
generator to sample 100 solutions for each ques-
tion following Cobbe et al. (2021). Then we train
the two verifiers on the generated data as described
in Sec. 3.2 Step 1.3.

B.3 Details of Self-Thinking

In each iteration of self-thinking, we initialize the
model with the weights obtained from the previ-
ous round so as to save the computational costs.
Since we use cooperative inference rather than ran-
dom sampling to generate data for further training,
solutions are expected more high-quality. Thus,
the number of generated solutions M mentioned
in Sec. 3.2 is set to 50 for saving computational
cost and time. Due to the flexibility of MCTS, we
have also tried to limit the time for searching rather
than the number of iterations, which makes the to-
tal search time controllable and predictable. More-
over, this allows the model to adaptively adjust
the final number of solutions searched for each
question, due to the different levels of difficulty
in questions. In our experiments, we observe that
setting the time limit to 320 seconds provides bet-
ter results than setting the iteration limit to 50,
while maintaining approximately the same time
consumption. Therefore, we use time control to
generate data during self-thinking.

B.4 Baseline Settings

As shown in Table 1, the Instruct GPT-3 is based
on text-davinci-002 version. Moreover, since Ko-
jima et al. (2022) provides difference prompt set-
ting, we list them in Table 10. For few-shot scenar-
ios with the chain of thought prompts, we follow
the original paper (Wei et al., 2022c).

C Extended Experiments

This section we replicate the work of Cobbe et al.
(2021) with GPT-J and report the results in Ta-
ble 11 for comprehensive comparison. CoRe fully
surpasses Cobbe et al. (2021) when the number of

4482

Backbone Method \ Reasoning Extraction Prompts Answer Extraction Prompts
Instruct GPT-3 175B zero-shot Let’s think step by step. The answer (arabic numerals) is
zero-shot™ Let’s think step by step. The answer is

zero-shot-CoT
zero-shot-CoT*

Let’s think step by step.
Let’s think step by step.

The answer (arabic numerals) is
The answer is

PalLM 540B

zero-shot
zero-shot-CoT
+ Self-Consistency

Let’s think step by step.
Let’s think step by step.
Let’s think step by step.

The answer (arabic numerals) is
The answer (arabic numerals) is
The answer (arabic numerals) is

Table 10: Prompt setting for few-shot baselines.

of reasoning paths \ ASDiv-A SingleOp SingleEq MultiArith

Cobbe et al.

5 71.9 70.5 68.5 923

10 76.9 73.1 74.6 95.0

20 79.6 74.6 76.0 95.5

30 814 76.2 76.2 95.2

40 81.4 76.9 78.1 94.8
CoRe

5 13.7 222 14.6 43

10 41.7 47.7 33.7 26.8

20 78.4 77.0 64.6 80.7

30 88.9 84.9 77.4 95.0

40 90.5 85.2 79.5 97.5

Table 11: Comparison between Cobbe et al. (2021) and CoRe with GPT-J as backbone model. The best scores are
in bold.

reasoning paths reaches 30 and maintains a faster
increasing rate after that. As a result, CoRe has
a superior performance over Cobbe et al. (2021)
on all the datasets and achieves a 9.1% and 8.3%
improvement compared to it on ASDiv-A and Sin-
gleOp.

D Future Work

We focus on measuring our method in boosting the
language model’s arithmetic reasoning ability in
this work. Nevertheless, we believe that our frame-
work can also be applied to other reasoning tasks
seamlessly, e.g., commonsense reasoning and sym-
bolic reasoning. We choose arithmetic reasoning
because it is the fundamental type of reasoning
task. Additionally, we believe solving arithmetic
reasoning is the first step toward a general cogni-
tive reasoning system. In the future, we will ex-
plore other reasoning tasks and put more effort
into low-resource scenarios.

4483

ACL 2023 Responsible NLP Checklist

A For every submission:

¥ Al. Did you describe the limitations of your work?
After conclusion section

¥ A2. Did you discuss any potential risks of your work?
After limitations section

¥ A3. Do the abstract and introduction summarize the paper’s main claims?
1

A4. Have you used Al writing assistants when working on this paper?
Left blank.

B ¥ Did you use or create scientific artifacts?
4.1

¥/ B1. Did you cite the creators of artifacts you used?
4.1

v B2. Did you discuss the license or terms for use and / or distribution of any artifacts?
Appendix A

v B3. Did you discuss if your use of existing artifact(s) was consistent with their intended use, provided
that it was specified? For the artifacts you create, do you specify intended use and whether that is
compatible with the original access conditions (in particular, derivatives of data accessed for research
purposes should not be used outside of research contexts)?

Ethics Statement

¥f B4. Did you discuss the steps taken to check whether the data that was collected / used contains any
information that names or uniquely identifies individual people or offensive content, and the steps
taken to protect / anonymize it?
Ethics Statement

¥/ B5. Did you provide documentation of the artifacts, e.g., coverage of domains, languages, and
linguistic phenomena, demographic groups represented, etc.?
Appendix A

¥f B6. Did you report relevant statistics like the number of examples, details of train / test / dev splits,
etc. for the data that you used / created? Even for commonly-used benchmark datasets, include the
number of examples in train / validation / test splits, as these provide necessary context for a reader
to understand experimental results. For example, small differences in accuracy on large test sets may
be significant, while on small test sets they may not be.
44

C ¥ Did you run computational experiments?
4

¥ C1. Did you report the number of parameters in the models used, the total computational budget
(e.g., GPU hours), and computing infrastructure used?
4.1

The Responsible NLP Checklist used at ACL 2023 is adopted from NAACL 2022, with the addition of a question on Al writing
assistance.

4484

https://2023.aclweb.org/
https://2022.naacl.org/blog/responsible-nlp-research-checklist/
https://2023.aclweb.org/blog/ACL-2023-policy/
https://2023.aclweb.org/blog/ACL-2023-policy/

v C2. Did you discuss the experimental setup, including hyperparameter search and best-found

hyperparameter values?
4, Appendix A

v C3. Did you report descriptive statistics about your results (e.g., error bars around results, summary

statistics from sets of experiments), and is it transparent whether you are reporting the max, mean,
etc. or just a single run?
4.1

v C4. If you used existing packages (e.g., for preprocessing, for normalization, or for evaluation), did

you report the implementation, model, and parameter settings used (e.g., NLTK, Spacy, ROUGE,
etc.)?
4

D Did you use human annotators (e.g., crowdworkers) or research with human participants?
Left blank.

O

0

O

O

d

D1. Did you report the full text of instructions given to participants, including e.g., screenshots,
disclaimers of any risks to participants or annotators, etc.?
No response.

D2. Did you report information about how you recruited (e.g., crowdsourcing platform, students)
and paid participants, and discuss if such payment is adequate given the participants’ demographic
(e.g., country of residence)?

No response.

D3. Did you discuss whether and how consent was obtained from people whose data you're
using/curating? For example, if you collected data via crowdsourcing, did your instructions to
crowdworkers explain how the data would be used?

No response.

D4. Was the data collection protocol approved (or determined exempt) by an ethics review board?
No response.

D5. Did you report the basic demographic and geographic characteristics of the annotator population
that is the source of the data?
No response.

4485

