
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics
Volume 1: Long Papers, pages 3747–3758

July 9-14, 2023 ©2023 Association for Computational Linguistics

Peer-Label Assisted Hierarchical Text Classification

Junru Song1, Feifei Wang2,3∗, Yang Yang4

1Institute of Statistics and Big Data, Renmin University of China
2Center for Applied Statistics, Renmin University of China

3School of Statistics, Renmin University of China
4Defense Innovation Institute, Chinese Academy of Military Science
{songjunru,feifei.wang}@ruc.edu.cn, bigyangy@gmail.com

Abstract

Hierarchical text classification (HTC) is a chal-
lenging task, in which the labels of texts can
be organized into a category hierarchy. To deal
with the HTC problem, many existing works
focus on utilizing the parent-child relationships
that are explicitly shown in the hierarchy. How-
ever, texts with a category hierarchy also have
some latent relevancy among labels in the same
level of the hierarchy. We refer to these labels
as peer labels, from which the peer effects are
originally utilized in our work to improve the
classification performance. To fully explore the
peer-label relationship, we develop a PeerHTC
method. This method innovatively measures
the latent relevancy of peer labels through sev-
eral metrics and then encodes the relevancy
with a Graph Convolutional Neural Network.
We also propose a sample importance learning
method to ameliorate the side effects raised by
modelling the peer label relevancy. Our experi-
ments on several standard datasets demonstrate
the evidence of peer labels and the superiority
of PeerHTC over other state-of-the-art HTC
methods in terms of classification accuracy.

1 Introduction

Hierarchical text classification (HTC) is a multi-
label text classification problem which aims to clas-
sify texts into categories that can be organized into
a taxonomic hierarchy. It is an important problem
in natural language processing and has attracted in-
creasing attention in both industrial and academic
fields. Typical HTC problems include patent cat-
egorization (Gomez and Moens, 2014), medical
record coding (Cao et al., 2020), and product cate-
gorization (Cevahir and Murakami, 2016).

Due to the complexity of category hierarchy,
the problem of hierarchical text classification is
more challenging than plain text classification. The
parent-child relationships between categories in ad-
jacent levels of the hierarchy are usually defined
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in advance. Then a natural way to solve the HTC
problem is to incorporate this prior knowledge into
the model, i.e., making the model aware of the
hierarchy. Building "hierarchy-aware" models is
beneficial for HTC, which is particularly true for
categories with few samples. Therefore, it has long
been the main focus in HTC to figure out the most
effective way of utilizing the category hierarchy to
improve the classification performance.

In the past literature, existing approaches for
HTC can be generally categorized into three
groups: local approaches, global approaches, and
local-global-combined ones (also known as hybrid
approaches). The local approaches train local clas-
sifiers for every child label, every parent label or
every level in the hierarchy (Shimura et al., 2018;
Banerjee et al., 2019). The parameters of local
classifiers are initialized in a top-down fashion ac-
cording to the category hierarchy. However, these
approaches usually contain a large number of pa-
rameters, and the whole hierarchy cannot be fully
captured merely by parameter initialization. Global
approaches, which are popular in recent years, aim
to flatten HTC into a multi-label classification prob-
lem, and then incorporate the information of cate-
gory hierarchy in various ways, such as using regu-
larization terms (Gopal and Yang, 2013), modeling
the architecture of category hierarchy (Zhou et al.,
2020), and using contrastive learning (Wang et al.,
2022). The local-global-combined approaches can
be seen as an improvement on local approaches,
which construct the information flow between local
classifiers in more effective ways, and meanwhile
utilize a global classifier to coordinate local ones
(Wehrmann et al., 2018; Rojas et al., 2020). How-
ever, these models might still suffer from error
propagation (Rojas et al., 2020), because the clas-
sification of child layers are dependent on that of
their parents.

To the best of our knowledge, existing methods
only exploit category relevancy that is explicitly
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reflected in the hierarchy. For example, Gopal and
Yang (2013) used a recursive regularization term in
which the parameters of parent labels are expected
to be similar to those of their children. Zhou et al.
(2020) used a structure encoder for labels, in which
the information of parent and child labels are inte-
grated into each label’s representation. However,
there could still exist some latent relevancy among
the labels in the same level, which could also be
beneficial to the HTC problem. Take the Blurb-
GenreCollection dataset (Aly et al., 2019) as an
example, which consists of descriptions and genres
of books. In this dataset, two third-level book cate-
gories "World History" and "Travel: Asia" belong
to different second-level categories "History" and
"Travel", respectively. However, these two third-
level categories both involve geographical and cul-
tural contents. Therefore, intuitively they should
share some common characteristics, and the clas-
sification of one category could benefit that of the
other. The phenomenon that labels in the same
level possess latent relevancy is similar to the "peer
effect" existing among peer friends. Thus we call
these labels as "peer labels" in this work.

To utilize the latent relevancy of peer labels to
improve the HTC performance, we develop a Peer-
HTC method. It incorporates two types of label
relationships: the parent-child relationship explic-
itly reflected in the hierarchy, and the peer-label
relationship implicitly hidden in the hierarchy. We
propose several measures to learn the relevancy
structure among peer labels, and then utilize the
Graph Convolutional Neural Network (GCN) to
realize "feature sharing" among peer labels. To ad-
dress the possible side effect caused by modeling
peer labels, we also develop a measure to evalu-
ate the degree of confusion between labels in the
same level, and then assign different weights to
training samples according to their contribution in
alleviating label confusion. The PeerHTC method
is realized through an embedded two-stage training
approach, in which valuable information about la-
tent relevancy of peer labels and the label confusion
can be harvested from the first round of warm-up
training and then enhances the second round for
final classification.

The rest of this article is organized as follows:
Section 2 introduces related works. Section 3 de-
fines the HTC problem. Section 4 introduces the
PeerHTC method in detail. Section 5 presents the
experimental results on three datasets. Section

6 concludes the article. We share our codes on
GitHub1 for reproducibility.

2 Related Work

2.1 Local Approaches
The local approaches train local classifiers for each
category or each level in the hierarchy. These local
classifiers are initialized in a top-down fashion ac-
cording to the category hierarchy so that knowledge
learned by each parent classifier can be transferred
to their children. For example, the method HTrans
(Hierarchical Transfer Learning) (Banerjee et al.,
2019) trained a binary classifier for each label, and
then initialized the classifiers according to their
parents. The method HFTCNN (Hierarchical Fine-
tuning Based CNN) (Shimura et al., 2018) trained a
multi-label classifier for each level in the category
hierarchy, and then followed a similar approach for
parameter initialization. However, these models
usually have a large number of parameters to es-
timate and also suffer from insufficient use of the
category hierarchy.

2.2 Global Approaches
Global approaches flatten HTC into a simple multi-
label classification problem, and seek to incorpo-
rate the information of category hierarchy in var-
ious ways. For example, Gopal and Yang (2013)
imposed recursive regularization on parameters of
parent and child nodes. The method HiAGM (Zhou
et al., 2020) includes two variants, i.e., HiAGM-LA
and HiAGM-TP. In HiAGM-LA, texts and labels
are encoded separately, and multi-label attention
mechanism is used to extract label-wise features. A
structure encoder is also used to aggregate prior cat-
egory hierarchy information into label embeddings.
In HiAGM-TP, label embeddings are not used and
text features are directly propagated through the
structure encoder. The method HTCInfoMax (Hi-
erarchical Text Classification via Information Max-
imization) (Deng et al., 2021) seeks to improve
HiAGM-LA with mutual information maximiza-
tion that constrains text and label representations.
The method HiMatch (Hierarchy-aware Label Se-
mantics Matching Network) (Chen et al., 2021)
projects the representations of words and labels
into a common latent space and utilizes hierarchy-
aware matching learning. The method HGCLR
(Hierarchy-Guided Contrastive Learning) (Wang
et al., 2022) models texts and labels separately only

1https://github.com/WoodySJR/PeerHTC
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in the training process, and then incorporates the
information of category hierarchy into the text en-
coder via contrastive learning.

2.3 Hybrid Approaches
Local-global-combined approaches(or hybrid ap-
proaches) can be seen as an improvement on local
ones. The method HMCN (Hierarchical Multi-
label Classification Networks) (Wehrmann et al.,
2018) is probably the first hybrid model. In HMCN,
local classifiers are arranged in series and global
classification is conducted to coordinate these lo-
cal classifiers. The method HARNN (Hierarchi-
cal Attention-based Recurrent Neural Network)
(Huang et al., 2019) is another typical hybrid model.
It shares a similar architecture with HMCN, but
uses the multi-label attention mechanism to extract
label-wise text features. However, since errors in
the prediction of higher-level categories may pro-
vide misleading information for lower levels, these
hybrid approaches might suffer from error propa-
gation (Rojas et al., 2020).

3 Problem Formulation

We define the HTC problem in this section. Specif-
ically, we first give the definition of a category
hierarchy and its properties, and then define the
HTC problem mathematically.

Definition 1. (Category Hierarchy) Assume
there exists an H-level category hierarchy γ.
All possible labels in γ are denoted by C =
{C1, C2, · · · , CH}, where Ci = {c1, c2, · · · } ∈
{0, 1}|Ci| is the label set in the i-th level, and |Ci|
is the total number of labels in Ci. Consequently,
the total number of labels in C is K =

∑H
i=1 |Ci|.

The category hierarchy γ is then defined to be a
partially order set (C,≺), where ≺ represents the
superior-subordinate relationship between labels
and it satisfies the following three properties:

• asymmetry: ∀cx ∈ Ci and cy ∈ Cj , if cx ≺
cy, then we have cy ⊀ cx.

• anti-reflexivity: ∀cx ∈ Ci, we have cx ⊀ cx.

• transitivity: ∀cx ∈ Ci, cy ∈ Cj and cz ∈ Ck,
if cx ≺ cy and cy ≺ cz , then we have cx ≺ cz.

Definition 2. (Hierarchical Text Classi-
fication, HTC) Given a category hierarchy
γ = (C,≺), assume there exist a total
number of M documents denoted by D =
{(D1, L1), (D2, L2), · · · , (DM , LM )}. Here Dd

denotes the dth text document, which is typ-
ically a sequence of words, i.e., Dd =
{wd1, wd2, · · · , wdNd

}, where Nd is the total num-
ber of words in document Dd. Define Ld =
{ld1, ld2, · · · , ldH} to be the label set of the dth
document with the i-th level label set ldi ⊂ Ci.
Then the goal of HTC is to train a classification
model Ω based on γ and D. Specifically, for an ar-
bitrary text document D∗, we can predict its label
set L∗ through the classification model, i.e.,

Ω(D∗, γ,Θ) → L∗,

where Θ is the parameters in the model Ω.

4 Methodology

In this section, we introduce the PeerHTC method
in detail. We first introduce peer label learning and
sample importance learning, and then propose a
two-stage training procedure. The overall architec-
ture of PeerHTC is illustrated in Figure 1.
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Figure 1: The model architecture of PeerHTC.

4.1 Peer Label Learning

4.1.1 Latent relevancy encoding by GCN
As we mentioned before, there exist latent relation-
ships among peer labels, which are not explicitly
expressed in the category hierarchy. Incorporating
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the latent relevancy structure among peer labels
could also benefit HTC. Motivated by this idea,
we consider learning label relevancy from two per-
spectives. First, we follow the practice of HiAGM
(Zhou et al., 2020) to learn the parent-child rela-
tionships between labels in adjacent levels. Second,
we utilize GCN to incorporate the latent relevancy
among peer labels into the label encoder.

We encode labels and texts separately in Peer-
HTC. For labels, let V ∈ Rdv×K denote the initial
label embeddings, where dv is the embedding di-
mension and K is the total number of labels. Then
following HiAGM (Zhou et al., 2020), we feed the
initial embeddings V into a TreeLSTM encoder to
learn the hierarchy-aware embeddings H↕, where
the symbol "↕" stands for the parent-child relation-
ships. Actually, H↕ is the concatenation of two sets
of embeddings derived in top-down and bottom-up
fashions, i.e., H↕ = H↑⊕H↓; please refer to Zhou
et al. (2020) for more details.

To characterize the latent relationships of peer
labels, we use H↔ = GCN(V ), which is derived
from latent label connections enabled by GCN. We
refer to H↔as peer-aware embeddings in the sub-
sequent analysis. To fully explore the latent rel-
evancy of peer labels, we propose GCN methods
using two strategies. The first one is level-wise
GCN, which only incorporates connections of la-
bels in the same level. Specifically, define A to be
the adjacent matrix that tells how labels should be
connected. Define W and b to represent the weight
matrix and bias term, which are both trainable. Let
σ(·) denote ReLU non-linear activation function.
Then in level-wise GCN, we first compute H↔

(h)
for levels 1 ≤ h ≤ H , and then concatenate them
together. The detailed computation is shown below.

H↔
(h) = σ(A(h)V

⊤
(h)W(h) + b(h))

⊤,

H↔ = concat{H↔
(1), H

↔
(2), · · · , H↔

(H)}.
(1)

The second method is to use whole-hierarchy
GCN, which is a single GCN for labels in the whole
hierarchy. This strategy allows for label connec-
tions throughout the whole hierarchy. The peer-
aware embeddings are then computed as follows:

H↔ = σ(AV ⊤W + b)⊤. (2)

After computing the hierarchy-aware embed-
dings H↕ and peer-aware embeddings H↔, we
concatenate them together. Specifically, we have
H↔ concatenated column-wise with H↕, the result

of which is then put through a non-linear projection.
This leads to the final label embeddings H∗, which
is computed as follows:

H∗ = σ{W ∗ · (H↕ ⊕H↔)},

4.1.2 Initialization of the adjacent matrix A
By using GCN as the latent relevancy encoder to
model peer labels, we need to specify the adjacent
matrix A in advance, i.e., to tell how labels should
be associated with graph edges. To this end, we
propose a data-driven approach to initialize A. In-
spired by the idea of knowledge distillation (Hinton
et al., 2015), the estimated label probabilities (also
called soft labels in knowledge distillation) contain
extra knowledge on the relationships among differ-
ent labels. Therefore, the estimated label probabili-
ties can be regarded as a good source to learn the
latent relevancy among peer labels. Specifically,
if two labels are closely related with each other,
their estimated label probabilities should tend to
be correlated on the same sample. Therefore, a
similarity measure between the estimated probabil-
ities of two labels can reflect how closely they are
related. Besides, recall that we have computed the
label embeddings H∗, the similarity among which
could also reflect label relevancy.

Based on the above considerations, we propose
two methods for initializing A. In the first method,
we adopt the non-parametric Spearman Rank Corre-
lation Coefficient (SRCC) to measure the similarity
between estimated probabilities. Let pdk be the
estimated probability of the dth document associ-
ated with the kth label. Recall there are a total of
M documents. Hence we can compute the rank
of pdk among the estimated probabilities of the M
documents (i.e., p1k, ..., pMk), which is denoted by
rdk. We then compute r̄k, which is the average
of rdk among M documents. Then, we can com-
pute absolute SRCC for any two labels k and j as
follows

ρrank
kj =

∣∣∣∣∣∣

∑M
d=1(rdk − r̄k)(rdj − r̄j)√∑M

d=1(rdk − r̄k)2
∑M

d=1(rdj − r̄j)2

∣∣∣∣∣∣
.

(3)
The SRCC measure can be computed on either
training samples or test samples, since it does not
require true labels.

In the second method, we measure label rele-
vancy based on label embeddings. Specifically, let
hk and hj be the embeddings for labels k and j,
which are extracted from H∗. Then we can use the
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absolute cosine similarity between them to measure
their relevancy, i.e.,

ρemb
kj =

∣∣∣∣
h⊤k hj

∥hk∥ · ∥hj∥

∣∣∣∣ . (4)

After getting the similarity measures (ρrank
kj or

ρemb
kj ), they are aligned into a matrix and then nor-

malized row-wise (except for the diagonal entries
so they remain to be one). This leads to two matri-
ces Arank and Aemb, which would then be used in
the initialization of GCN. We empirically compare
the performance of different initialization methods
of A; see Section 5.2.3 for the detailed results.

4.1.3 Multi-label attention
We adopt the multi-label attention mechanism to
extract label-wise text features (Huang et al., 2019;
Zhou et al., 2020; Deng et al., 2021). For the dth
document with Nd words, let s̃d = {sd1, ...sdNd

}
denote the word representations derived from a text
encoder. Recall that hk is the embedding of label k,
which is extracted from H∗. Then within the dth
document, we can compute the attention score α(d)

kn

between the representation of the nth word and the
embedding of label k, i.e.,

α
(d)
kn =

exp{s⊤dnhk}∑Nd
g=1 exp{s⊤dghk}

.

The value α
(d)
kn indicates how informative the nth

word is to a certain label k within one document.
Note that in PeerHTC, label embeddings have

now included two parts of information, i.e., the hi-
erarchical relationship between parent and child la-
bels and the latent relationship between peer labels.
Hence, the attention score α

(d)
kn is also equipped

with the ability to identify text features favoring
labels closely related to label k. This leads to re-
inforced feature sharing. Finally, we calculate a
weighted average u

(d)
k =

∑Nd
g=1 α

(d)
kn sdg for label

k. These features are then flattened and fed into a
fully-connected network for final classification.

4.2 Sample Importance Learning
4.2.1 A metric for label confusion
Assisted by GCN to model the latent relevancy of
peer labels, we achieve reinforced feature sharing
that would enhance the classification of one cat-
egory with the help of text features extracted by
other closely related categories. However, a side
effect emerges when we strengthen the similarity

between the embeddings of peer labels by GCN.
That is, it would make easily confused labels be-
come even less distinguishable. To characterize
this phenomenon, we first formalize a new concept
called "label confusion". Specifically, we say there
is confusion between two labels k and j, when one
document belongs to label k but gets a high prob-
ability in another label j, or the other way around.
Take two book categories named "Classics" and
"Poetry" for example. They are prone to confusion
since both of them involve some genteel expres-
sion. More intuitively, label confusion is pretty
much like the case where a person gets confused
when distinguishing between very similar objects.

To tackle this potential side effect, we first pro-
pose a metric to evaluate how easily any two la-
bels can be confused. Let L(d) denote the true
label set of the dth document. Assume we have
label k ∈ L(d) but label j /∈ L(d). Then the
estimated probability of label j measures the con-
fusion between these two labels on this document.
To formulate this idea mathematically, let pdk be
the estimated probability that the dth document
belongs to label k. Let ckj denote the degree of
confusion between labels k and j. Denote the index
set Dkj = {d : 1 ≤ d ≤ M,k ∈ L(d), j /∈ L(d)}.
Then we can compute ckj as follows,

ckj =
1

|Dkj |
∑

d∈Dkj

pdj . (5)

4.2.2 Training with sample weighting
A document sample is said to be important in dis-
tinguishing labels k from j, if its label set contains
k but not j. With the metric of label confusion ckj ,
we can evaluate the importance of each training
sample. Specifically, define βdk to be the impor-
tance of the dth document with respect to a label k.
Then in the case k /∈ L(d), we set βdk = 1. In the
case k ∈ L(d), we specify βdk as follows:

βdk = 1 +
∑

j /∈L(d)
{exp(τckj)− 1}, (6)

where τ is a temperature hyperparameter con-
trolling how radical we are in assigning sample
weights. We then plug βdk into the binary cross
entropy loss (BCE) function, which is popularly
used in HTC (Nam et al., 2014), i.e.,

L = −
∑

d∈D

∑

k∈C
βdk{yk log(pdk)

+ (1− yk) log(1− pdk)},
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where yk is either 1 or 0 depending on whether
k ∈ L(d) or not.

4.3 A Two-Stage Training Approach

As mentioned in Section 4.1 and Section 4.2, we
use a data-driven approach to identify the adjacent
matrix A and sample importance weights βdk’s,
which all rely on the estimated label probabilities
and label embeddings. To obtain the adjacent ma-
trix and sample importance weights, we develop
a two-stage training approach. The first round is
a warm-up training stage. We randomly initialize
the adjacent matrix A in GCN, and assign equal
weights to all training samples. Then we train the
PeerHTC model for the first time. The obtained
estimated label probabilities and label embeddings
from the warm-up training are then used to com-
pute the adjacent matrix and sample importance
weights. Then we re-train the PeerHTC model for
the second time with the updated adjacent matrices
and sample weights. This leads to the final classifi-
cation model. The whole procedure is illustrated in
Algorithm 1.

Algorithm 1: The Two-Stage Training Ap-
proach of PeerHTC

Input: Training documents D and validation/test
documents D∗; label hierarchy γ;

Output: A hierarchical text classifier Ω.
for Warm-up training: do

Step 1. Randomly initialize the adjacent matrix
A in GCN, and assign equal weights to training
samples;

Step 2. Train the PeerHTC model and then save
the estimated label probabilities on training and
test samples, together with the label
embeddings H∗;

Step 3. Compute the adjacent matrices Arank or
Aemb;

Step 4. Compute the label confusion measure cjk
and the sample weight βdk.

for Second-round training: do
Re-initialize the adjacent matrix in GCN with
Arank or Aemb, and plug sample weights βdk

into the loss function. Then re-train the
PeerHTC model to get the final classifier.

5 Experiments

5.1 Experimental Setup

Datasets. We use three datasets to explore the
classification performance. The first one is Web-
of-Science (WOS) dataset (Kowsari et al., 2017),
which consists of abstracts of published papers
from journals in Web of Science. The disciplines

that each paper belongs to are regarded as the classi-
fication labels. The second dataset is BlurbGenreC-
ollection (BGC) (Aly et al., 2019), which consists
of advertising descriptions of books. The genres of
books are regarded as classification labels, while
the advertising descriptions are regarded as text
documents. The last dataset consists of the textual
names of retailing products (we refer to as Goods),
which are collected by ourselves from a Chinese
retailing company. In this dataset, each product be-
longs to a three-level product hierarchy. Among the
three datasets, WOS and Goods are both for single-
path HTC, i.e., each sample only has one single
label in each level, whereas samples in BGC have
multi-path labels, i.e., each sample is allowed to
have multiple labels in the same level. Each dataset
is randomly split into the training set (70%), valida-
tion set (15%) and test set (15%). The descriptive
statistics of the three datasets are listed in Table 1.
In addition, the intended use of public datasets and
pre-trained models, as specified in their license or
terms, was strictly obeyed in our work.

Statistics BGC WOS Goods
# categories 146 141 225
# categories in level 1 7 7 20
# categories in level 2 46 134 80
# categories in level 3 77 - 125
# categories in level 4 16 - -
# hierarchical levels 4 2 3
# average categories per instance 3.01 2 3
# average tokens per instance 157.5 250.0 12.9
# instances 91,892 46,985 14,969
# instances in training set 64,324 32,889 10,478
# instances in validation set 13,784 7,048 2,245
# instances in test set 13,784 7,048 2,246

Table 1: Descriptive Statistics of Datasets.

Baselines. In order to demonstrate the effective-
ness of PeerHTC, we compare it with three naive
approaches that treat HTC as a simple multi-label
classification problem, along with four state-of-the-
art HTC models. The three naive approaches are
LSTM (Hochreiter and Schmidhuber, 1997), Tex-
tRCNN (Lai et al., 2015), and BERT (Devlin et al.,
2018). The four state-of-the-art HTC models are
briefly introduced as follows.

(1) HMCN (Wehrmann et al., 2018). It is prob-
ably the first hybrid approach that combines a se-
quence of local classifiers with global optimization.

(2) HARNN (Huang et al., 2019). It is also a
hybrid approach, but utilizes attention mechanism
and refines how information flows between levels.

(3) HiAGM-LA (Zhou et al., 2020). It encodes
labels and documents separately, and utilizes multi-
label attention mechanism to extract hierarchy-

3752



aware text features.

(4) HTCInfomax (Deng et al., 2021). It is basi-
cally an improvement on top of HiAGM-LA via
mutual information maximization.

Evaluation metrics. To measure the classifi-
cation performance, we apply two standard eval-
uation metrics, i.e., the Micro-F1 and Macro-F1
(Gopal and Yang, 2013). Micro-F1 computes the
overall precision and recall of all the labels, while
Macro-F1 computes the average of F1 scores of
all labels. As a result, Micro-F1 assigns greater
weights to more frequent labels, while Macro-F1
treats all the labels equally.

Implementation details. We use BERT as the
text encoder in PeerHTC, and set the dimension
of label embeddings as 256. The BERT models
are pretrained on "book_corpus_wiki_en_uncased"
and "wiki_cn_cased" for English and Chinese
datasets respectively, both of which have 12 hid-
den layers and 768 hidden units. The vocabulary
is created with words that appear no less than 5
times. We set the maximum length of token inputs
as 100. The threshold for tagging is chosen to be
0.5. Model parameters are initialized according
to the Xavier uniform (Glorot and Bengio, 2010)
when random initialization is needed. We use the
Adam optimizer (Kingma and Ba, 2014) with mo-
mentum parameters β1 = 0.9 and β2 = 0.999, a
learning rate α = 1× 10−5, and a mini-batch size
of 64. To prevent overfitting, we also use dropout
(Srivastava et al., 2014) with the rate of 0.1, and
weight decay (Loshchilov and Hutter, 2017) with
the tuning weight equal to 1×10−7. The parameter
τ in equation (6) is set as 1.2.

For HTC competitors, the same parameter set-
tings are adopted. We follow their original prac-
tices to use simple text encoders, but also replace
them with BERT for a fair comparison. Specifi-
cally, in HARNN, HiAGM-LA and HTCInfoMax,
we use a single-layer bidirectional LSTM as the
text encoder; in HMCN, we use three parallel CNN
layers with filter sizes {3, 4, 5} and numbers of
channel {100, 70, 70} as the text encoder. For sim-
ple text encoders, 300-dimensional pretrained word
embeddings GloVe (Pennington et al., 2014) and
Fasttext (Bojanowski et al., 2017) are used on En-
glish and Chinese datasets respectively. Our hyper-
parameters are tuned on the validation set, taking
both classification performance and the computa-
tion resources available into consideration, and the
classification performances reported in our exper-

imental results are evaluated on the test set. Our
models are trained on two Tesla P100 GPUs.

5.2 Experimental Results
5.2.1 Evidence of peer labels
In order to demonstrate the existence of peer labels,
we take the BGC and WOS datasets as examples
and show the adjacent matrices of their first-level
labels, which are computed using estimated label
probabilities on training samples according to equa-
tion (3). As shown by Figure 2, some labels have
higher degrees of relevancy with others, which can
serve as useful prior knowledge for classification.
For example, in the BGC dataset, "Classics" and
"Poetry", corresponding to the intersection of the
third row and fourth column in Figure 2(a), are
closely related. In the WOS dataset, "Mechanical
Aerospace Engineering (MAE)" and "Civil Engi-
neering" (in the fourth row and fifth column) show
extremely high relevancy. These findings verify
the existence of peer label relevancy. However,
compared with BGC and WOS datasets, the latent
relevancy of peer labels is relatively weak for the
Goods dataset, which is not shown to save space.
This is largely due to the fact that the Goods dataset
has a larger number of categories, which are more
fine-grained and thus less relevant with each an-
other.

(a) BGC (b) WOS

Figure 2: The adjacent matrices of first-level categories
in the BGC and WOS datasets.

5.2.2 Comparison results
To explore the classification performance of Peer-
HTC, we compare this model with (1) naive clas-
sification approaches (i.e., LSTM, TextRCNN,
BERT), and (2) state-of-the-art HTC approaches
(i.e., HMCN, HARNN, HiAGM-LA, HTCInfo-
Max). For the HTC approaches, we also replace
their original text encoders with BERT for better
classification performance and a fair comparison
with PeerHTC. To characterize the latent relevancy
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of peer labels in PeerHTC, the GCN methods with
the "level-wise" and "whole-hierarchy" strategies
are considered; see Equations (1) and (2) for de-
tails. To decide the adjacent matrix A in GCN, we
consider three methods: (1) Arank-train, computed
by the estimated label probabilities on training sam-
ples; (2) Arank-test, computed by the estimated label
probabilities on test samples; and (3) Aemb, com-
puted by label embeddings. This results in a to-
tal of 2 × 3 = 6 choices for A. We report the
performances of all these different choices for a
comparison.

Table 2 reports the classification results of dif-
ferent models, from which we can draw the fol-
lowing conclusions. First, our method PeerHTC
has achieved better classification performance than
all naive approaches and HTC approaches, when
evaluated by both Micro-F1 and Macro-F1 in
the three datasets. Second, when replacing the
traditional text encoders in HTC approaches by
BERT, their classification performances have been
largely improved. This reveals the great poten-
tial of pretrained models in HTC problems. Even
so, our method PeerHTC still outperforms HTC
approaches with BERT on the BGC and WOS
datasets. On the Goods dataset, however, the
method HTCInfoMax achieves the best perfor-
mance while PeerHTC ranks second with compa-
rable results. We believe that this slightly poorer
performance of PeerHTC mainly results from the
weak latent relevancy among peer labels, as re-
marked in Section 5.2.1.

Model BGC WOS Goods
F1(c) F1(a) F1(c) F1(a) F1(c) F1(a)

Naive approaches
LSTM 48.08 26.49 49,23 33.80 88.29 75.91

TextRCNN 58.76 38.46 68.75 60.14 89.50 77.95
BERT 68.19 48.12 66.47 58.29 91.29 79.59

HTC approaches
HMCN 63.77 43.02 70.31 61.62 89.24 77.73
HARNN 63.92 43.31 70.46 62.10 87.68 75.21

HiAGM-LA 67.62 48.65 72.44 63.21 89.87 78.27
HTCInfoMax 68.48 48.02 73.90 64.49 88.98 78.29

HTC approaches with BERT as text encoder
HMCN 76.46 61.72 73.13 64.97 91.21 80.31
HARNN 75.92 59.98 72.60 65.45 91.89 81.06

HiAGM-LA 76.35 62.09 73.22 65.48 91.43 80.91
HTCInfoMax 76.66 61.11 73.54 65.08 92.79 82.41

Our approach
PeerHTC 77.47 63.54 74.24 67.38 92.61 82.10

Table 2: Experimental results of different methods.
F1(c) and F1(a) represent Micro-F1 and Macro-F1.

5.2.3 Ablation study
To further demonstrate the advantages of incorpo-
rating peer labels and using sample weights, we

conduct the following ablation study. Specifically,
we compare the following three models. The first
one, denoted by "NA", is a naive HTC model with-
out considering peer labels or sample weights. The
second one, denoted by "OPL", is a variant of Peer-
HTC that only considers the latent relevancy among
peer labels, but does not utilize the sample weights.
The last one is our proposed PeerHTC, which con-
siders both peer labels and sample weights. In
addition, to explore the performances of using dif-
ferent adjacent matrices A, we report OPL with
six different adjacent matrices, as described in Sec-
tion 5.2.2. The detailed results are shown in Table
3. It is obvious that, nearly all OPL methods, as
well as the PeerHTC method, have obtained bet-
ter classification performance than the NA method.
These results suggest that leveraging peer effect is
beneficial to hierarchical text classification.

Models BGC WOS Goods
F1(c) F1(a) F1(c) F1(a) F1(c) F1(a)

NA 76.35 62.09 73.22 65.48 91.43 80.91

OPL

whole-hierarchy
Arank-train 77.18 63.23 74.24 66.12 92.02 81.65
Arank-test 76.98 62.74 73.55 65.91 92.21 82.51
Aemb 76.99 62.75 73.05 66.04 92.33 81.84

level-wise
Arank-train 77.06 62.81 73.72 66.84 92.14 81.72
Arank-test 76.62 62.57 73.54 66.97 92.19 82.03
Aemb 77.09 62.71 73.99 66.59 92.22 81.95

PeerHTC 77.47 63.54 74.24 67.38 92.61 82.10

Table 3: Experimental results of ablation study. F1(c)
and F1(a) represent Micro-F1 and Macro-F1.

We then compare the performances of using dif-
ferent adjacent matrices in OPL. As shown by Ta-
ble 3, on the dataset BGC, the "whole-hierarchy"
strategy works better in most cases. On the dataset
WOS, the "level-wise" strategy generally works
better. On the Goods dataset, the performances
of "level wise" and "whole hierarchy" are rather
comparable. When it comes to adjacent matrices
computed using either sample probabilities or la-
bel embeddings, there is no obvious distinction
between their performances, indicating all these
methods can be helpful in revealing latent relation-
ships among peer labels.

Finally, we focus on the effect of using sample
weights. As we mentioned in Section 4.2, charac-
terizing the latent relevancy of peer labels would
create shortcuts between labels and may have po-
tential side effect of label confusion. To cope with
this problem, we first measure the degree of label
confusion, then identify the importance of different
training samples in alleviating label confusion, and
finally plug these weights into the BCE loss func-
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tion. As shown by Table 3, the PeerHTC method
can improve the classification performance consis-
tently on the three datasets, when compared with
the OPL method. These results demonstrate the
usefulness of sample weights in PeerHTC.

6 Conclusion

In this work, we originally propose the concept of
"peer labels" to characterize the phenomenon that
labels in the same level have latent relevancy. To
utilize these peer labels to enhance HTC, we de-
velop the PeerHTC method. We exploit GCN as
an encoder for latent relevancy among peer labels,
and reinforce feature sharing among these closely
related peer labels. We also use a novel technique
to assign training sample weights based on their im-
portance in alleviating label confusion. The above
procedures are embedded in a two-stage training
approach. Our experimental results demonstrate
the evidence of peer labels in real datasets and the
generally better performance of PeerHTC against
other state-of-the-art HTC methods. In terms of
application, one would expect a higher lift in per-
formance from PeerHTC when the granularity of
categorization is relatively low, as demonstrated by
our experimental results. We also suggest that one
should carry out exploratory analysis or take into
account domain knowledge, in order to decide the
extent of peer-label relevancy for a specific dataset.

Limitations

In this work, we adopt a data-driven approach to
identifying latent relevancy. However, we believe
that external knowledge such as knowledge graphs
could also be of great help for this purpose, and is
thus one of the directions of our future work.
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