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Abstract

Attribute extraction aims to identify attribute
names and the corresponding values from de-
scriptive texts, which is the foundation for ex-
tensive downstream applications such as knowl-
edge graph construction, search engines, and
e-Commerce. In previous studies, attribute
extraction is generally treated as a classifi-
cation problem for predicting attribute types
or a sequence tagging problem for labeling
attribute values, where two paradigms, i.e.,
closed-world and open-world assumption, are
involved. However, both of these paradigms
have limitations in terms of real-world applica-
tions. And prior studies attempting to integrate
these paradigms through ensemble, pipeline,
and co-training models, still face challenges
like cascading errors, high computational over-
head, and difficulty in training. To address
these existing problems, this paper presents
Attribute Tree, a unified formulation for real-
world attribute extraction application, where
closed-world, open-world, and semi-open at-
tribute extraction tasks are modeled uniformly.
Then a text-to-tree generation model, AtTGen,
is proposed to learn annotations from different
scenarios efficiently and consistently. Experi-
ments demonstrate that our proposed paradigm
well covers various scenarios for real-world
applications, and the model achieves state-of-
the-art, outperforming existing methods by a
large margin on three datasets. Our code, pre-
trained model, and datasets are available at
https://github.com/lsvih/AtTGen.

1 Introduction

Attribute Extraction (AE) is a practical applica-
tion of the Information Extraction (IE) task, aim-
ing to identify the attribute name and the corre-
sponding attribute value from unstructured or semi-
structured text fragments (Ghani et al., 2006; Ravi
and Pasca, 2008; More, 2016). Figure 1 shows a
typical product profile with extracted attribute tags.

∗Corresponding Author

Figure 1: An example of attribute extraction, high-
lighted with annotations in different tagging forms.

As the foundation for various downstream applica-
tions such as knowledge graph construction, search
engines, e-Commerce and recommender systems,
AE has attracted extensive research interest in re-
cent years (Zheng et al., 2018; Xu et al., 2019; Zhu
et al., 2020; Jain et al., 2021; Zhang et al., 2022; Li
and Zou, 2022).

There are two basic subtasks in the research of
AE, namely, attribute name extraction and attribute
value extraction. And we use the RDF-style triple1

<e, n, v> to denote the entity, attribute name, and
attribute value respectively. According to whether
the attribute name set is pre-defined, AE can be
divided into two paradigms, i.e., the Closed-World
Assumption (CWA) and the Open-World Assump-
tion (OWA). For CWA AE, the attribute name n is
limited to a finite set of the pre-defined schema,
where attribute name extraction is typically mod-
eled as a classification task (Zeng et al., 2014; Zhou
et al., 2016), and attribute value extraction models
are trained for each target attribute (Zheng et al.,
2018; Zhu et al., 2020; Yan et al., 2021). While for
OWA AE, which is also known as “New Attribute
Discover” (Wong and Lam, 2010; Zhang et al.,
2022) and “Open Information Extraction” (Cui
et al., 2018), the attribute name is schema-free and
can be extracted from the text. Sequence tagging
methods are broadly employed to extract those at-
tributes (Xu et al., 2019). Recently, researchers

1https://www.w3.org/TR/n-triples/

2139

https://github.com/lsvih/AtTGen
https://www.w3.org/TR/n-triples/


also explore novel paradigms such as Question An-
swering (QA) models (Wang et al., 2020; Shinzato
et al., 2022; Yang et al., 2022) and generative mod-
els (Roy et al., 2022) to generalize the ability of
attribute extraction.

However, AE in the real world is far more com-
plicated. On the one hand, in closely related fields
like e-commerce, new types of products with new
sets of attributes are so constantly arising that the
pre-defined schema is never enough. For exam-
ple, an analysis in Zhang et al. (2022) has shown
that only 30 / 51 attributes are found in existing
structured product profiles of Amazon’s 10 product
types. On the other hand, however, attribute extrac-
tion methods shouldn’t overlook the huge value and
commonalities behind known attributes, and it is
inherent that not all attributes can be fully identified
by open extraction methods due to the lack of literal
name mentions, e.g. name and size in Figure 1. It is
possible to carry out both CWA and OWA methods
when needed, just as Zhang et al. (2021) attempts
preliminarily. But apart from the fragmentation
of the problem form and the unnecessary comput-
ing overhead, a more prominent issue is that such
simple integration neglects the natural connections
between the CWA vocabulary and the OWA ability
in attribute extraction, and thus cannot achieve sat-
isfactory results. In this paper, we, for the first time,
explicitly unify the different AE paradigms in the
form of Attribute Tree, and present a text-to-tree
based generative model called AtTGen to solve the
real-world attribute joint extraction task.

Specifically, our proposed AtTGen successfully
implements the unification of attribute tagging
and classification tasks by generating the Attribute
Tree, and congenitally circumvents the problem of
“null”-value that troubles pioneers (Xu et al., 2019;
Wang et al., 2020). Further, the head entity is op-
tional as the root node on Attribute Tree to meet the
actual situation, as well as to enhance the extraction
performance with the help of the subject guidance
(Yu et al., 2021; Zhang et al., 2021). AtTGen re-
duces the length of the generated sequence and
thus shrinks the search space by conducting the
tree generation model. And it can accurately mark
out the span of attribute values and extract unseen
attributes with the pointer-copy mechanism (Zhou
et al., 2018). Moreover, the teacher forcing man-
ner (Williams and Zipser, 1989) and the converted
path-generation training objective further reduce
the exposure bias (Zhang et al., 2020) to improve

the generalization and effectiveness.
In short, the major contributions of this paper

can be summarized as follows:

• We are the first to define different attribute extrac-
tion paradigms like CWA, OWA and semi-open
as the attribute tree generation problem, formally
unifying multiple tasks and fully capturing the
internal connections.

• We design a novel text-to-attribute tree genera-
tion model with a pointer-based copy mechanism
for extracting both literal mentions and category
labels.

• We evaluate our model on several benchmark
datasets. Experimental results show that our
method achieves state-of-the-art (SOTA) and out-
performs existing works by a large margin in all
scenarios including open, semi-open and closed-
world attribute extraction.

2 Preliminary

We first formalize the definition of two mainstream
paradigms widely used in Attribute Extraction.

Definition 1 (Closed-World Assumption). CWA AE
receives a descriptive text T = [t1, t2, ...], e.g. a
product title, and a pre-defined schema A which
contains a set of attributes (i.e., attribute vocabu-
lary) to extract all attribute pairs <n, v> for a pos-
sibly given head entity e, where n ∈ A is the at-
tribute name (also called attribute type), and v ∈ T
is the attribute value extracted from the text.

Definition 2 (Open-World Assumption). OWA AE
takes a descriptive text T = [t1, t2, ...] as input, and
the target is to discover all attribute pairs <n, v>
for a possibly given head entity e, where both the
attribute name n and the attribute value v are from
the given text, i.e. n ∈ T and v ∈ T .

As stated in Section 1, individual one of the
above paradigms does not always work well in
real-world applications, and the pipeline approach
adopted by Zhang et al. (2021) to merge the results
of the two paradigms would introduce problems
such as cascading errors. Therefore, we propose a
formal definition of real-world AE and its solution
in the following sections.

3 Problem Formalization

Section 1 has expounded that attribute extraction in
real-world applications sometimes needs both the
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Figure 2: The abstract illustration of Attribute Tree (left)
and an instantiated one describing the attributes of the
example in Figure 1 (right). The attribute names starting
with “@” represent those stemming from the schema.

guidance of the schema and the ability to extract
free attributes from texts. It is actually an extensive
aggregation covering both CWA and OWA AE, as
well as a semi-open scenario where attribute names
can be obtained from both. Therefore we formally
define the real-world attribute extraction as:

Definition 3 (Real-world Attribute Extraction).
Given a text T , and an optional A, “real-world
AE” is to fill the explicit slots for the optional cate-
gory in A, or to dig more free attributes from T , or
to capture attributes from both A and T . i.e., the fi-
nal result of real-world AE is a set of attribute pairs
<n, v> where v ∈ T , n ∈ H = {A,∅} ∪ {T ,∅}
and H ̸= ∅.

To implement such an extraction paradigm uni-
formly, we devise a principled structure, Attribute
Tree, to formally model the target of all real-world
AE circumstances:

Definition 4 (Attribute Tree). An attribute tree T
for a descriptive sentence sent is an unweighted
tree with a fixed height h = 2. All the branches
of the tree T have a determined order (r, v, n), and
the root r is the only entry node that can be either
empty ∅ or the head entity (also called the subject)
subj of the attributes.

Figure 2 visualizes the attribute tree and its in-
stances. The path from the root to the leaves is also
the reasoning path of the proposed model. Borrow-
ing the notation from epistemology (Martin-Löf,
1996), there are:

{sent, r} ⊢ v

{sent, r, v} ⊢ n
r ∈ {∅, subj} (1)

which means the attribute value v is derived from
the original sentence sent and the root node r; and
the attribute name n, whether coming from the
input text or the given schema, can be predicted
by the integrated information from the sentence,
the attribute value, and the root node. This kind
of path order can naturally evade the insignificant

“NULL” value problem pointed out by Shinzato
et al. (2022).

Definition 5 (Subject Guidance). Setting the sub-
ject subj of a descriptive sentence sent as the root
node r of the corresponding attribute tree T when
available, i.e. let r = subj in Equation 1, is called
enabling the subject guidance.

As attributes typically characterize entities and
are strongly bound to the subject, we naturally in-
troduce the subject guidance for AE in such a way
and the effectiveness has been preliminarily demon-
strated in Yu et al. (2021); Zhang et al. (2021).

4 Methodology

We design a unified tree generative model AtTGen,
committing to jointly extracting attribute names
and values under various scenarios in the real world.
It is partially inspired by the success of Seq2Tree
models (Dong and Lapata, 2016; Liu et al., 2019;
Zhang et al., 2020) and pointer-copy based span-
selector (Zhou et al., 2018; Ma et al., 2022) in other
tasks. The overall architecture is shown in Figure
3, and we demonstrate the model details in the
following subsections.

4.1 Encoder
We employ the classical BiLSTM-CNN (Chiu and
Nichols, 2016) neural network to encode the in-
put text into a continuous latent space2. Given a
sequence input [t1, t2, ..., tn], the encoded text rep-
resentation ht ∈ Rm×n is obtained by:

ht = Encoder(sent)

= Convenc(BiLSTMenc(Emb(sent))
(2)

in which Emb is to gain the embedded vector of
tokens from the lookup table and m is the dimen-
sion of the embedding, BiLSTMenc is Bidirectional
Long Short-Term Memory network (Hochreiter
and Schmidhuber, 1997) for modeling the depen-
dencies of the input sequence, and Convenc is Con-
volutional Network (Collobert et al., 2011) for ex-
tracting features from the encoded text representa-
tion. Meanwhile, the category labels of attribute
names from the given schema also contain useful
semantic information for generating the attribute
tree, thus we use the same encoder to obtain the
label representation of the attribute names as:

hl = Encoder(labels) (3)
2Adapting PLMs to AtTGen is discussed in Section 8
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Figure 3: The overview of AtTGen (Best viewed in color). The blocks in yellow, green, and blue, denote the encoded
text representation, the tree decoder, and the obtained attribute tree respectively, and the red arrows represent the
direction of copying.

Then we can concatenate the two parts and get
the initial root node representation as hr =
Encoder([sent||labels]), which allows the succes-
sor decoders to uniformly generate nodes from both
the input sentence and the category label set.

In addition, the subject of the attribute would
be concatenated with the input sentence as
[⟨subject⟩, [sep], t1, ..., tn] for the subject guid-
ance, in which [sep] is a separator token.

4.2 Tree Decoder
The decoding target of our method is to generate a
structured attribute tree. As a tree can be divided
into several paths from the root node to the leaf
node, the generation of a tree can also be decom-
posed into the problem of generating multiple paths.
Therefore, the decoder of AtTGen is denoted as:

rs,hrs, st = Decoder(T,hp, st−1) (4)

where rs is the generated result, hrs is the repre-
sentation of the decoded tokens, st and st−1 are
the current and the previous state of the decoder
respectively. Each decoding step relies on several
inputs: (1) the target space of decoding T, which is
to limit the selection range of the final result of the
decoder and thus shrinks the search space; (2) the
representation of the antecedent path hp; (3) the
state of the decoder st, used to determine the cur-
rently decoded node is at what level of the attribute
tree.

Specifically, given the input hp and the previous
decoding state st−1, a unary LSTM is employed
for decoding the state st as:

st = LSTMdec(hp, st−1) (5)

The decoding feature hrs for generating results is
obtained by a convolutional network Convdec with
an attention-based weighted sum like (Bahdanau
et al., 2015) as:

hrs = Convdec(Att(ht, st)) (6)

Then the final result as follows is decoded from
the pointer-based span copier (Ptr) explained in
Section 4.3:

istart, iend = Ptrs(hrs),Ptre(hrs)

rs = T[istart : iend]
(7)

The whole decoding process for AtTGen is de-
scribed in Algorithm 1.

Algorithm 1: Attribute Tree Decoder
Input :A descriptive sentence:sent

A category set from flattened schema:labels
Output :The attribute tree of sent

// Decoding attributes from plain text and
pre-defined schema jointly.

1 hr ←Encoder([sent∥labels])
2 if use subject guidance then
3 r, hr, sr ←Decoder(sent, hr,∅)
4 root←Tree(r)
5 else
6 sr ← ∅
7 root←Tree(placeholder)
8 v,hv, sv ←Decoder(sent, hr, sr)
9 for v, hv in v,hv do

10 hv = hr ⊕ hv

11 n,hn, sn ←Decoder([sent∥labels], hv, sv)
12 for n, hn in n,hn do
13 if v /∈ root.children() then
14 root.add_child(v)
15 root.find_child(v).add_child(n)
16 return root

where ∅ is a randomly initialized vector to repre-
sent the initial decoding state. r, hr and sr are the
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decoder’s output for the root node (the optional sub-
ject), representing the generated result, the hidden
representation and the current state respectively.
Similarly, (v, hv, sv) and (n, hn, sn) are the other
two sets of outputs from the decoder, for the decod-
ing process of attribute values and attribute names
respectively. Note that if subject guidance is en-
abled, the decoder will update hr by decoding sub-
ject firstly, and construct the root node of the tree
(Line 2-4), otherwise the root node is replaced by a
placeholder (Line 5-7). The attribute values and at-
tribute names are sequentially decoded in the order
of Equation 1 to construct Attribute Tree as shown
in Line 8-15 in Algorithm 1.

4.3 Span Copier
We propose to use a unified span copier to ensure
the spans are correctly copied from the original sen-
tence or the label set during the decoding process.

Ptrs(h) = σ(Wsh+ bs)

Ptre(h) = σ(Weh+ be)
(8)

in which Ws and We are trainable weights, bs

and be are trainable bias, h denotes the hidden
state of the current decoding step, and σ is the
sigmoid active function. The Ptr(·) produces a
constant vector that denotes the start/end index of
the copied span. For those nodes in the closed-
world setting whose mention does not exist in the
original text (e.g., name, size, and price in Figure
1), we further add an equality constraint Ptrs =
Ptre, restricting the pointers to select only one
category label when decoding from the label set,
which reduces generative errors and improves the
training efficiency.

4.4 Training Objective
In the decoding process, we apply teacher forcing
manner (Williams and Zipser, 1989) for efficient
training and encourage the model to reduce the
distance of all paths between the generated tree and
the ground truth:

Lpath = δ
∑

i∈{s,e}
BCE(Ptri(hr), y

∗
i_r)

+
∑

j∈{v,n}

∑

i∈{s,e}
BCE(Ptri(hj), y

∗
i_j)

where δ ∈ {0, 1} indicates whether to enable the
subject guidance; y∗s_(·)/y

∗
e_(·) denotes the golden

standard start/end index of either a literal mention

or a category label of the target span; h(·) repre-
sents the hidden state of the decoder to distinguish
the level it is decoding. BCE is the Binary Cross
Entropy loss to optimize the prediction of the index
vectors individually for each step:

BCE(y, y∗) = − 1

N

N∑

i=1

y∗i ·ln yi+(1−y∗i )·ln(1−yi)

where N is the length of the input sentence, yi is
the predicted probability of the i-th element and y∗i
is the corresponding ground truth.

5 Experiments

5.1 Experimental Setup

Datasets. We conduct our experiments on three
publicly available datasets to examine the capacity
and the generality of our model over various real-
world AE settings:

MEPAVE (Close-World Benchmark)3 (Zhu et al.,
2020) is a multimodal e-Commerce product at-
tribute extraction dataset, which contains 87k prod-
uct description texts (in Chinese) and images, in-
volving 26 types of attributes. We follow the same
dataset settings as Zhu et al. (2020), except that we
leave the visual information and use the description
texts only.

AE-110K (Open-World Benchmark)4 (Xu et al.,
2019) is a collection of 110k product triples (in En-
glish) from AliExpress with 2,761 unique attributes.
It can well measure the open extraction ability and
generation performance of different models. We
split this dataset via the cleaning script of Shin-
zato et al. (2022), and remove invalid and “NULL”
value attributes following Roy et al. (2022).

Re-CNShipNet (Semi-Open Benchmark) is a re-
vised version of the functional attribute extraction
dataset CNShipNet5 (Zhang et al., 2021), where nu-
merical attributes account for the majority to bring
new challenges. We manually fix the incorrect an-
notations in the old version and rebalance the ratio
of closed- to open-setting labels (Li et al., 2021).
Now it contains about 5k entity-attribute instances
(mostly in Chinese), among which 40% obtain at-
tributes from the literal texts and others are within
9 pre-defined attribute types.
Baselines. We compare the proposed model with
several strong and typical baselines including:

3https://github.com/jd-aig/JAVE
4https://github.com/lanmanok/ACL19_Scaling_Up_

Open_Tagging/blob/master/publish_data.txt
5https://github.com/lsvih/SOAE
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1) Sequence Tagging-based methods, a kind com-
monly adopted in IE which typically uses seman-
tic tags such as BIO to identify the extracted
items: RNN-LSTM (Hakkani-Tür et al., 2016),
Attn-BiRNN (Liu and Lane, 2016), and BiLSTM-
CRF (Huang et al., 2015) are all specially designed
RNN-based models for modeling the intent of clas-
sification and extraction tasks. ScalingUp (Xu
et al., 2019) is a BERT-based model to extract at-
tribute values with BiLSTM to perform interaction
attention between attribute names and values.
2) PLM-based methods: BERT (Devlin et al.,
2019) is a well-known pre-trained language model
(PLM) and we follow the vanilla setting of
classification and sequence tagging tasks, Joint-
BERT (Chen et al., 2019) is a variant of BERT to
solve slot filling and classification jointly.
3) Joint IE-based (JE) methods, which originate
from the entity-relation extraction task and typi-
cally extract entities and classify relations in a cas-
cading fashion: ETL-Span (Yu et al., 2020) and
CasRel (Wei et al., 2020) are two classic JE mod-
els for relation extraction and we adapt them to the
AE task here. SOAE (Zhang et al., 2021) achieved
SOTA on CNShipNet by merging the results of a
JE model and a classification model. JAVE (Zhu
et al., 2020) is an attention-based attribute joint
extraction model and M-JAVE further takes advan-
tage of multimodal information, and they were the
best models for MEPAVE.
4) Sequence Generative Model: We also implement
the latest word sequence generation method (Roy
et al., 2022) based on the large-scale pre-trained
BART (Lewis et al., 2020) model.

We conduct the baselines and adapt them to the
target datasets accordingly. See Appendix A for
implementation details.
Metrics. Following previous works (Zheng et al.,
2018; Xu et al., 2019; Zhu et al., 2020; Zhang et al.,
2021), we use F1 score as the metric and adopt
Exact Match criteria (Wei et al., 2020), in which
only the full match to the ground truth is considered
correct. We report the results of attribute name and
value extraction respectively as Zhu et al. (2020).

5.2 Main Results

This section presents the overall results of the mod-
els over various AE scenarios in Table 1, 2, and
3. In general, we can observe that our model out-
performs the baselines over all three scenarios in
real-world AE.

Model Attribute Value

RNN-LSTM 85.76 82.92
Attn-BiRNN 86.10 83.28
BERT 86.34 83.12
Joint-BERT 86.93 83.73
ScalingUp (BERT-based) - 77.12
CasRel (BERT-based) 84.74 79.61
JAVE (LSTM based)‡ 87.88 84.09
JAVE (BERT based)‡ 87.98 84.78
M-JAVE (LSTM-based)†‡ 90.19 86.41
M-JAVE (BERT-based)†‡ 90.69 87.17

AtTGEN (LSTM-based, Ours) 96.48 96.26

Table 1: Experimental results on MEPAVE (CWA). †
denotes the method utilizing image information. ‡ rep-
resents the result is from the original paper.

Model Attribute Value

RNN-LSTM 36.79 20.86
BiLSTM-CRF 40.25 37.51
ScalingUp (BERT-based) - 31.67
BERT 54.01 52.42
CasRel (BERT-based) 56.92 53.73
JAVE (BERT-based) 53.82 38.25
BART (Seq. Gen.) 58.46 53.32

AtTGEN (LSTM-based, Ours) 57.60 59.77

Table 2: Experimental results on AE-110K (OWA).

As shown in Table 1, our model achieves a big
improvement in the closed-world AE task. Even
though the previous SOTA model (M-JAVE BERT
version) introduces PLM and takes advantage of
extra multimodal information (product images), we
still gain a 9.09% improvement in attribute value
extraction and 5.79% in attribute name prediction.

In the open setting shown in Table 2, AtTGen
consistently performs well in attribute value ex-
traction, with a 6.45% improvement than BART,
an elaborate and dedicated PLM-based model. It
has a slightly lower result compared with BART
when extracting attribute names (0.86%), due to
the absence of the semantic knowledge contained
in the large-scale PLMs for efficiency issues. We
will consider introducing such knowledge in fu-
ture work, which we believe will further improve
the performance. But the current results are still
strong enough to demonstrate the open extraction
capability of our model.

As for the semi-open scenario displayed in Table
3, our model again outperforms CasRel, a strong
joint model in the information extraction field. We
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Model Attribute Value

RNN-LSTM 53.6 52.9
Attn-BiRNN 51.9 52.0
BERT 58.3 57.8
Joint-BERT 59.1 58.4
ScalingUp (BERT-based) - 56.1
ETL-Span 66.7 65.6
CasRel (LSTM-based) 66.5 67.2
CasRel (BERT-based) 70.1 69.7
SOAE (BERT-based) 69.4 69.0

AtTGEN (LSTM-based, Ours) 73.4 75.4

Table 3: Experimental results on Re-CNShipNet (Semi).

also attain better results than SOAE, which was
the SOTA on this dataset by conducting both OWA
and CWA models. This can be credited to our
unified attribute tree model to naturally capture the
intrinsic connections in the partial-closed world.

It can be concluded that, as the first to design
a tree generative model in AE, our method can
be silkily adapted to different real-world scenarios
at a small cost, and achieves remarkable results
whether the dataset is in the e-Commerce domain
(MEPAVE, AE-110K) or news (Re-CNShipNet),
and whether the language of the datasets is En-
glish (AE-110K) or Chinese (MEPAVE and Re-
CNShipNet). Moreover, unlike quite many base-
lines relying on external knowledge in the large-
scale language models, we achieve outstanding re-
sults by training from scratch, and thus has a dom-
inant advantage in the parameter-efficiency (e.g.,
BERT has ~110M parameters, BART has ~139M,
AtTGen has only ~2M). We hypothesize that the
superiority comes from the unified problem formal-
ization as well as the novel tree generation model
design. On the one hand, our model keeps the
simplicity as a generation model, providing a uni-
fied way to capture the semantic associations be-
tween open and closed vocabulary, and between
attribute names and values. On the other hand, dif-
ferent from traditional Seq2Seq models that decode
all triples autoregressively into a linear sequence,
our tree structure decomposes the decoding target
into several paths of length three, removing the
unnecessary order among different triplets and ef-
fectively alleviating the exposure bias problem in
long-distance generation tasks (Zhang et al., 2020).

Furthermore, we notice that the performance of
the models varies across different datasets, which
can be attributed to the varying levels of complexity

Variant MEPAVE AE-110K R-CSN

AtTGen 96.14 56.85 73.21
w/o subject guidance - - 70.06
w/o span copier 89.20 49.16 61.59
repl. (r, n, v) path order 95.12 49.39 67.58
w/o schema - - 42.73

Table 4: Ablation results measured by Exact Match F1
score of attribute pairs. “-” denotes the setting is not
appropriate to the corresponding dataset; R-CSN is the
abbreviation for Re-CNShipNet.

and quality of the datasets. For example, MEPAVE
is a well-annotated benchmark with only a small
number of attribute types, hopefully for better re-
sults. While AE-110K suffers an inevitable long-
tail distribution problem, and Re-CNShipNet is
limited by the data scale and the uncertain ratio of
CWA/OWA labels, posing greater challenges and
leading to the results that all models still have a
large room for improvement.

5.3 Ablation Study

In this section, we carry out several ablation ex-
periments to study the effectiveness of each sub-
component in AtTGen. The whole results are listed
in Table 4 and we can find these phenomenons:
1) The performance reduces by 3.15% on Re-
CNShipNet dataset without the subject guidance,
indicating the usefulness to exploit the constraint
semantics of the subject in attribute extraction.
Along with the findings in Yu et al. (2021); Zhang
et al. (2021), we may conclude that subject guid-
ance is a powerful enhancement in various infor-
mation extraction situations.
2) We remove the span copier by replacing it with
an ordinary token generator to extract values from
the whole vocabulary. It can be seen that the perfor-
mance drops by 8.75% on average, and the degra-
dation is more evident in the open and semi-open
settings, where the performances are down to the
same level as other sequence tagging-based models.
This proves that the advantage of the model largely
comes from the copy mechanism to detect bound-
ary information of the spans rather than directly
modeling the attributes. We therefore say that span
copier can play a prominent role in AE.
3) We also explore the influence of the generation
order in Attribute Tree and the results show that
changing the path order from (r, v, n) to (r, n, v)
slightly reduces the effect (4.7% averagely). Some-
what different from a prior experiment conducted
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in (Zhang et al., 2020), which shows that in entity-
relation joint extraction task, relations should come
first to get the best performance, our conclusion
here is that attribute values should be extracted
before attribute names, especially in open sce-
narios. One possible explanation for this difference
between relation and attribute extraction is that at-
tribute values typically have more evident patterns
to trigger the following attribute name prediction.
Besides, the path order of (r, v, n) is able to reduce
the confusion of multifarious attribute names and
well evades the “NULL” value problem.
4) Removing schema information directly deprives
the model’s capacity to learn from the existing on-
tology, and significantly degrades its performance
on the Re-CNShipNet dataset, showing that pre-
defined schema can strengthen models’ applica-
bility in real-world AE applications.

By these ablation studies, we have not only
demonstrated that each delicate design in our model
plays an important role, but proposed several inter-
esting findings which we believe will shed some
light for future research.

5.4 Case Study

We present two case studies from Re-CNShipNet
dataset to further illustrate our proposed Attribute
Tree and the effectiveness of AtTGen model, as
shown in Figure 4. In the first case, the sentence
contains an out-of-schema attribute, “sea trialed”,
which is ignored by the BERT-based extraction
model. While our AtTGen model, starting from a
given subject, identifies all attribute pairs including
the purely literal one by first listing all possible
attribute values and then smoothly corresponding
to names based on the value and the context. In
the other case, the number “158,700” is misex-
tracted as “700” by the Bert-based extractor due to
the interference of the thousands-separator. This
roots in the model’s failure to really understand
numerical values, which is a unique challenge to
deep learning-based techniques (Xue et al., 2022).
Nonetheless, AtTGen directly captures the bound-
ary pattern of numbers and successfully retains the
complete value with the span copier, showing a
possible solution for this challenge.

6 Related Works

Attribute Extraction is a classical IE task with
extensive research. In earlier years, heuristic
rules and dictionaries were usually used to iden-

tify attributes and extract attribute values from the
texts (Tan et al., 1999; Sasaki and Matsuo, 2000;
Vandic et al., 2012; More, 2016; Zheng et al., 2018;
Yan et al., 2021). With the development of deep
learning for NLP, researchers attempt to leverage
neural network technology-based model for tag-
ging attributes (Huang et al., 2015; Hakkani-Tür
et al., 2016; Mai et al., 2018) or classifying attribute
types (Riedel et al., 2010; Zeng et al., 2014; Am-
playo, 2019; Iter et al., 2020; Zhao et al., 2021).
Beyond CWA AE, researchers also explore AE in
OWA scenario, e.g., some prior works try to ex-
pand free attributes from plain texts (Wong and
Lam, 2010; Zhang et al., 2022; Cui et al., 2018)
and extract the values of schema-free attributes (Xu
et al., 2019). Recently, more novel frameworks are
proposed to generalize the capacity of AE models.
AVEQA (Wang et al., 2020; Shinzato et al., 2022)
and MAVEQA (Yang et al., 2022) introduce Ques-
tion Answering framework for AE task, and Roy
et al. (2022) tries to employ large-scale PLM to
introduce external knowledge. Further, some aca-
demics propose multimodal AE tasks and datasets
to enrich the research (IV et al., 2017; Zhu et al.,
2020). Generative Information Extraction, a ris-
ing technique in these two years (Ye et al., 2022),
is also an inspiration for proposing this research. A
contemporaneous work (Roy et al., 2022) adopts se-
quence generation models and preliminarily shows
the potential of generative models in open-world at-
tribute extraction. Alongside sequence-based gen-
eration models, structure generation models are
also widely studied and have shown power in other
IE tasks. For example, REBEL (Huguet Cabot
and Navigli, 2021) introduces a structure-linearized
model for relation extraction; Seq2UMTree (Zhang
et al., 2020) conducts a sequence-to-unordered-
multi-tree generation model for extracting entities
and relations jointly; UIE (Lu et al., 2022) proposes
a text-to-structure generation framework that can
universally model different IE tasks based on the
guidance of the pre-defined schema.

Though both attribute extraction and generative
models have been widely explored, we are the first
to design a novel tree generation model for AE
and demonstrate the effectiveness on our unified
real-world paradigm.

7 Conclusion and Future Work

In this paper, we formulate the real-world AE task
into a unified Attribute Tree, and propose a simple
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Gold Standard: <overall length, 79.90 meters> <overall width, 13.40 meters>
<depth, 7.50 meters> <sea trialed, November 11, 2011>
BERT:<overall length, 79.90 meters> <overall width, 13.40 meters> <depth, 7.50 meters>
Ours: <overall length, 79.90 meters> <overall width, 13.40 meters> <depth, 7.50 meters>
<sea trialed, November 11, 2011>

On November 11, 2011, Nantong Yahwa Shipbuilding’s newly built bulk carrier “Yahwa 104”, with an overall length of 79.90 meters, an overall width of 13.40 meters 
and a depth of 7.50 meters, was successfully sea trialed. (Chinese version: 2011年11月11日，南通亚华船舶新造散货船顺利试航，该散货船“亚华 104”总长 79.90
米、总宽 13.40米、型深 7.50米)

bulk carrier “Yahwa 104”

79.90 meters 13.40 meters 7.50 meters November 11, 2011

overall length overall width depth sea trialed

The tanker “AST Sunshine” is 274 meters long, 48 meters wide and has a displacement of 158,700 dwt. (Chinese version:油船"AST Sunshine"全长 274 米，宽 48 米，
排水量为 158,700 载重吨)

Gold Standard: <overall length, 274 meters> <overall width, 48 meters> <deadweight, 158,700 dwt>
BERT:<overall length, 274 meters> <overall width, 48 meters> <deadweight, 700 dwt>
Ours: <overall length, 274 meters> <overall width, 48 meters> <deadweight, 158,700 dwt>

tanker “AST Sunshine”

274 meters 48 meters 158,700 dwt

overall length overall width deadweight

Figure 4: Two cases of the method. The spans in red, blue, green, yellow represent subject entities, attribute values,
pre-defined attribute names, and literal attribute names respectively.

but effective tree-generation model to extract both
in-schema and schema-free attributes from texts.
Experiments on three public datasets demonstrate
our prominent performance over various scenarios,
and detailed analyses also reveal several interesting
findings for attribute extraction.

Several potential directions are left for the fu-
ture. The first one is that our current approach does
not utilize the commonly-provided multimodal in-
formation in e-Commerce, which can be naturally
introduced into our tree structure as nodes for bet-
ter results later. Besides, PLM has powerful effects
on understanding the semantics of texts and scaling
to open-domain AE applications, so incorporating
knowledge of different granularity from PLMs is
also an attractive extension to be explored.

8 Limitations

Adapting PLMs to our proposed model does not go
as smoothly as expected, because there are three
different forms of tokenization: the PLM tokenizer,
the multilingual tokenizer implemented in our pro-
posed model, and the special annotations of numer-
ical values/entity mentions/long-winded attribute
values in the attribute extraction datasets, which
are difficult to reconcile simultaneously. Although
our model without PLM has outperformed PLM-
based ones, this does impose a limitation for future
explorations.

Although Re-CNShipNet, one of the datasets
used in our experiments, is more accurate with our
careful re-annotating, the size of which is still so
small that would produce randomness bias during
the model training and may affect the final experi-
mental results.

Besides, due to the limitation of computational
resources, we did not conduct experiments on large

language models such as T5 (Raffel et al., 2020),
LLaMA (Touvron et al., 2023), etc., which may
lead to insufficiency of the experiment.
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A Implementation Details

We implement our model on PyTorch, and manu-
ally tune the hyper-parameters based on the dev
set. It is trained using Adam with the batch
size/learning rate/maximum training epoch set to
512/0.0002/40. The model of the best epoch evalu-
ated on the dev set is saved as the final model. For
the encoder, we use 200-dimensional embeddings;
the 2-layer BiLSTMenc is configured with 200 hid-
den state size, and the kernel size of Convenc is
set to 3. For the decoder, we use a 1-layer uni-
directional LSTMdec for decoding the state, and
Convdec with the same configuration of Convenc
to extract the generative features. All the experi-
ments are performed on a cluster with Nvidia A40
GPUs, and we run each experiment 5 times with
different seeds, reporting the average scores to en-
sure reliability. For more implementation details,
please refer to our publicly available repository at
https://github.com/lsvih/AtTGen.
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