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Abstract

Image ad understanding is a crucial task with
wide real-world applications. Although highly
challenging with the involvement of diverse
atypical scenes, real-world entities, and rea-
soning over scene-texts, how to interpret im-
age ads is relatively under-explored, especially
in the era of foundational vision-language
models (VLMs) featuring impressive general-
izability and adaptability. In this paper, we
perform the first empirical study of image ad
understanding through the lens of pre-trained
VLMs. We benchmark and reveal practical
challenges in adapting these VLMs to image
ad understanding. We propose a simple fea-
ture adaptation strategy to effectively fuse mul-
timodal information for image ads and further
empower it with knowledge of real-world enti-
ties. We hope our study draws more attention
to image ad understanding which is broadly
relevant to the advertising industry.

1 Introduction

As advertisements play an integral role in hu-
man society, image ad understanding has many
real-world applications such as ad targeting (Hus-
sain et al., 2017), visual metaphor understanding
(Abokhoza et al., 2019) and creative ad genera-
tion (Chilton et al., 2019; Akula et al., 2022). It is
also highly challenging due to several reasons, as
exemplified in Fig. 2. First, image ads consist of di-
verse visual elements including non-photorealistic
objects and atypical scenes synthesized creatively
that are beyond common academic datasets. Sec-
ondly, they involve knowledge of a large number
of real-world entities such as brands and products
where existing work (Su et al., 2018; Li et al.,
2022a) struggles to cover. Lastly, many adopt vi-
sual or multimodal rhetorics requiring reasoning
over diverse visual elements including scene-texts,
and sometimes even elude humans (Petridis and
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Figure 1: We propose to utilize external knowledge via
a brand understanding module and combine features of
different modalities via a lightweight attention-based
feature adapter to decode the correct messages of im-
age ads. The VLM baseline is confused and gives the
wrong one. All brand info is anonymized.

Chilton, 2019). However, image ad understanding
is relatively under-explored in the machine learning
community, especially in the presence of recently
developed foundational vision-language models
(VLMs) pre-trained using a tremendous number
of image and text description data.

The pre-trained VLMs are shown to have great
generalization capability, contain real-world knowl-
edge (implicitly), and can be adapted to a wide
range of downstream tasks in a data-efficient way
(Radford et al., 2021; Alayrac et al., 2022). It is
then natural to utilize VLMs for image ad under-
standing. In this paper, we perform the first empiri-
cal study of adapting VLMs to the task of decoding
the overall messages delivered by image ads, which
is usually formulated as visual question answering
(Hussain et al., 2017). Specifically, we examine
three popular pre-trained VLMs that are alignment-
based and are publicly available, namely, CLIP
(Radford et al., 2021), ALBEF (Li et al., 2021)
and LiT (Zhai et al., 2022). We examine zero-shot
performance as well as adaptation strategies and
reveal the practical challenges of applying VLMs
to image ads. We propose a simple feature adapta-
tion strategy that effectively utilizes VLM features.
We further propose to incorporate external brand
knowledge (real-world entities) that brings a signif-
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Figure 2: Example image ads with diverse visual el-
ements, atypical scenes and rhetorics to convey their
messages creatively. All brand info is anonymized.

icant performance boost.
Our contributions are three-fold. First, we em-

pirically find that the sheer scale of data & ca-
pacity of the model used in pretraining matters
the most for the performance of image ad under-
standing, partly due to VLM’s capability of stor-
ing real-world knowledge, which is not captured
well by the commonly used metrics for compar-
ing VLMs. Second, we reveal the practical chal-
lenges of adapting VLMs for image ad understand-
ing (i.e., overfitting to the limited training data &
supervision signals and high computation burden
of hard negative mining) and propose a simple solu-
tion (attention-based feature adaptation) that better
leverages VLM features than previous adaptation
strategies. Lastly, we propose to leverage exter-
nal knowledge for brand understanding that we
have empirically shown to further enhance image
ad understanding. Together with the aforemen-
tioned adaptation strategy, we call our approach
knowledge-augmented feature adaptation (KAFA).

2 Related Work

Image Ad Understanding Learning to automat-
ically interpret image ads was proposed by the Pitt
Image Ads Dataset (Hussain et al., 2017), where
each ad is annotated by a caption that answers
“what should I do according to the ad and why?”
Different from traditional image captioning, this
task is highly non-trivial as discussed at the be-
ginning of Sec. 1. While prior methods utilize
cultural connotations via external symbolic knowl-
edge (Ye and Kovashka, 2018), capture relations
between scene-texts and objects by GNNs (Dey
et al., 2021), and leverage pre-trained language
models to combine multimodel information (Kalra
et al., 2020), none have exploited vision-language
models (VLMs) and the knowledge of real-world
entities (i.e., brands). Besides the wide applications
in the ad industry, later work hints that the study

of image ads is relevant to much broader research
topics (Singh et al., 2019; Akula et al., 2022).

Foundational Alignment-based VLMs A re-
cent surge of collections of tremendous images
paired with text descriptions (Schuhmann et al.,
2022) enables alignment-based pretraining (i.e.,
contrastive learning) of foundational VLMs that are
efficient zero-shot or low-shot learners for down-
stream tasks. By learning to embed images and
texts into a shared semantic space, they handle
domain variations in an open-vocabulary manner
(which involves real-world knowledge). Among
these are CLIP (Radford et al., 2021), ALIGN (Jia
et al., 2021), LiT (Zhai et al., 2022) and BASIC
(Pham et al., 2021). Another line of work further
adopts masked language modeling, image caption-
ing loss, and object-level alignment, e.g., ALBEF
(Li et al., 2021), Florence (Yuan et al., 2021), CoCa
(Yu et al., 2022) and GLIP (Li et al., 2022b).

Transfer Learning of VLMs Transfer learning
of VLMs has become popular with the zero-shot
performance of CLIP in image classification tasks.
A direct approach is to (partially) fine-tune the
VLMs with (optionally) additional neural networks
tailored for downstream tasks, e.g., TAP-C (Song
et al., 2022), CPT (Yao et al., 2021), KAT (Gui
et al., 2021) and VL-Adapter (Sung et al., 2022).
Another approach that bypasses the need of tuning
the VLMs is prompt learning. For instance, CoOp
(Zhou et al., 2022b) and CoCoOp (Zhou et al.,
2022a) only tune learnable inputs to the VLMs.
The third approach that further reduces memory
and computation burden is feature adapters, where
VLM features of the inputs are pre-computed be-
fore transfer learning. Examples are CLIP-Adapter
(Gao et al., 2021), SVL-Adapter (Pantazis et al.,
2022) and Attention-Adapter (Zhao et al., 2022).

Knowledge-Augmented Image Understanding
Many image understanding tasks require real-world
knowledge beyond what can be captured by the
input data. For instance, FVQA (Wang et al.,
2017) and OK-VQA (Marino et al., 2019) require
models to process external fact-based knowledge;
TextVQA (Singh et al., 2019) asks to understand
named entities in the wild; the Pitt Dataset (Hussain
et al., 2017) involves recognition of large quanti-
ties of brands. Existing work incorporates exter-
nal knowledge either explicitly via structured or
unstructured knowledge base (Wang et al., 2015;
Gardères et al., 2020; Ye and Kovashka, 2018),
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or implicitly from knowledge stored in pretrained
models (Kalra et al., 2020; Kim et al., 2022), or
both (Marino et al., 2021; Gui et al., 2021).

3 What Really Matters for Pre-trained
VLMs in Image Ad Understanding?

The first insight of our empirical study is that the
sheer size of data and the model used in pretraining
is the key factor determining the performance of
VLMs for image ad understanding.

To promote reproducibility, we evaluate three
alignment-based VLMs (i.e., CLIP, ALBEF and
LiT) that are publicly accessible in a zero-shot man-
ner on the Pitt Dataset (Hussain et al., 2017), which
formulates ad understanding as image-to-text re-
trieval. We adopt the official evaluation protocol,
which asks the model to select one of the 3 cor-
rect messages conveyed by the image ad from a set
of 15 candidates (including 12 wrong messages)
for each of the 12805 test samples. Specifically,
given an alignment-based VLM, let us denote its en-
coders with normalized outputs as fIp¨q and fT p¨q
for image and text branches, respectively. Given
an image x and the ground truth texts y, the VLM
retrieves y from candidates Cpxq according to the
dot-product score fIpxq ¨ fT pyq. We then mea-
sure the performance of the VLM with 3 metrics
commonly used in the literature: accuracy (the per-
centage of images with any positive text retrieved
with rank one), rank (how the top retrieved positive
text is ranked averaged over all images), and the
mean rank (the mean rank of the all positive texts
averaged over all images).

With the results reported in Tab. 1, we have
several findings. First, the more data used during
the pretraining of a VLM, the better it generalizes
to the image ad domain. For a comparison, CLIP
has seen 400M image-text pairs, LiT 100M, and
ALBEF 14M. Second, the larger the capacity of
a model, the better it understands image ads. We
have evaluated different sizes of the CLIP model
beyond the three sizes shown in Tab. 1 and the trend
keeps the same. Third, commonly used metrics for
comparing VLMs, including zero-shot accuracy on
the ImageNet (Russakovsky et al., 2015) validation
set (for which LiT claims to outperform CLIP)
and image-to-text retrieval precision on Flickr30K
(Young et al., 2014) (for which ALBEF claims to
outperform CLIP), do not reflect the performance
of image ad understanding well.

We hypothesize that this is partly because image

Acc Ò Rank Ó m. Rank Ó
ViLBERT (Lu et al., 2019) 61.8 1.860 4.190
VS (v1) (Dey et al., 2021) 86.8 1.264 3.072
BERT-FT (Kalra et al., 2020) 89.7 1.230 2.982

ALBEF (Li et al., 2021) 57.6 2.220 4.935
ALBEF (ft. on Flickr30k) 64.2 2.242 5.125
ALBEF (ft. on MSCOCO) 64.0 2.002 4.651
LiT (L16L) (Zhai et al., 2022) 64.0 1.849 4.268
CLIP (ViT-B/32) (Radford et al., 2021) 88.1 1.213 2.937
CLIP (ViT-B/16) 92.2 1.123 2.694
CLIP (ViT-L/14@336px) 95.2 1.069 2.547

KAFA (ours) 97.4 1.033 2.391

Table 1: Zero-shot VLM performance on the Pitt
Dataset (Hussain et al., 2017) with its official eval pro-
tocol (3 positive texts and 12 negative ones for each test
image). The best CLIP model already surpasses previ-
ous state-of-the-art results (BERT-FT). The size of the
data and model used in VLM pretraining have a huge
impact on the results. See Sec. 3 for details of the met-
rics. For completeness, we also include the results of
our proposed method (KAFA) here.

ad understanding requires knowledge of real-world
entities (e.g., brands) which the pre-trained models
contain. Similar to the dramatic performance ad-
vancement of GPT language models (Brown et al.,
2020) driven by the larger scale of training data
and the model capacity, more knowledge can be
distilled and implicitly stored in the weights of
pre-trained VLMs with larger models and more
pre-training data. We empirically verify that the
VLM’s capability of recognizing brands from im-
ages is aligned with its performance of decoding
the messages from the ads. See results in Tab. 4.

4 Challenges in VLM Adaptations to
Image Ads and An Intuitive Solution

With CLIP as the clear champion, we further study
VLM adaptations for image ad understanding using
the best CLIP model (ViT-L/14@336px) as the
backbone. We aim to enable better performance
for image ad understanding by better adapting pre-
trained VLMs to the image ad domain with the
help of additional information such as scene-texts
extracted from the image.

4.1 The Issue of Overfitting and High
Computation Complexity

We find two practical challenges in adapting pre-
trained VLMs to the image ads, first, the overfitting
issue in fine-tuning due to limited image ads and
the lack of a strong supervision signal, and second,
the high computation burden caused by solutions
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to the previous challenge.
Annotations of image ads are hard to obtain

in general (Akula et al., 2022), making it com-
mon to only have limited training data (e.g., the
Pitt Dataset only contains 51,223 image-text pairs).
This results in VLM’s vulnerability to overfitting
during adaptation. We find that directly fine-tuning
CLIP contrastively on the Pitt Dataset with the sym-
metric cross-entropy loss (as in the original CLIP
paper) gives worse performance than the zero-shot
one unless we adopt early stopping and a carefully
tuned learning rate schedule. Moreover, as reported
in Tab. 1, the best zero-shot performance of CLIP
already surpasses the previous state-of-the-art and
is very close to 100%, leading to very weak su-
pervision signals for vanilla fine-tuning. We thus
need strong training signals. To save GPU memory
required by much larger batch sizes, we adopt hard
negative mining (Xuan et al., 2020), which selects
hard negatives from a very large candidate set as
opposed to within the mini-batch.

However, hard negative mining (HNM) strate-
gies usually incur a large computation burden. In
fully online hard negative mining (denoted full
HNM), for each training image x and the corre-
sponding texts y, we first rank Ncand negative
texts ty|y ‰ yu sampled from the entire training
data according to the online similarity scores (the
dot-product score fIpxq ¨ fT pyq computed from
the current VLM model), and then we choose the
Nhard ´ 1 most similar y as the hard negatives.
While this essentially constructs a much harder
candidate set Cpxq, it requires the computation of
features of all training texts at every gradient step,
which is prohibitively expensive. Existing meth-
ods propose to reduce the complexity by keeping a
sparsely updated bank of all training text features
(memory bank) (Wu et al., 2018) or with the help
of a momentum-updated text encoder (MoCo) (He
et al., 2020). Nevertheless, we tailor these methods
to our setup1 and find that they perform worse than
full HNM. We report the accuracy (%) in Tab. 2
with a harder eval protocol than the official one
by using larger numbers (K) of negative samples
randomly drawn from the test texts (thus a set of
harder negatives).

We believe this is because image ad understand-
ing requires fine-grained information extraction
(e.g., the specific brand of a product) and both these

1We use these methods to compute similarity scores but
still only select the hardest negatives for fine-tuning to save
GPU memory (the purpose of HNM).

Number of Candidates K 20 100 500 1000

Zero-shot 91.7 80.7 64.4 56.5
Direct FT 92.4 82.2 66.7 59.0
Direct FT + memory bank 92.8 82.9 67.5 60.3
Direct FT + MoCo 93.3 83.8 69.8 62.4
Direct FT + full HNM 93.7 84.6 70.0 62.9

Table 2: Accuracy (%) reported with different sizes (K)
of the candidate set on the test set of the Pitt Dataset.
The larger K means harder negative samples. Zero-
shot is the zero-shot performance of the best CLIP
model. FT means fine-tuning the best CLIP model.

two strategies are subject to the destruction of such
information as they compute the loss not in a fully
online manner. In particular, their text features used
for contrastive fine-tuning always come from differ-
ent VLM encoders, either the past checkpoints or
the momentum-updated versions). Although direct
fine-tuning with full HNM outperforms the others,
it is extremely inefficient and thus impractical.

4.2 Feature Adaptation as the Solution

We propose a simple and intuitive solution,
attention-based feature adaptors, that both handle
the aforementioned issues during adaptations and
enable incorporating additional information (e.g.,
scene-texts) for better image ad understanding.

Feature adapters are recently proposed (Gao
et al., 2021; Zhang et al., 2021; Pantazis et al., 2022;
Zhao et al., 2022) as a line of very efficient adapta-
tion strategies of VLMs. They freeze the weights
of the pretrained VLMs, pre-compute features us-
ing their encoders, and use additional lightweight
adapter networks to process these features. As a
result, on-the-fly feature computation over a mas-
sive candidate set becomes computationally feasi-
ble and so is the fully online hard negative mining,
since we only compute the adapted features online
via a lightweight network. More efficiently, we can
set the text adapter to an identity function (i.e., only
use adapters for image features).

More importantly, feature adapters are suitable
for fusing info from multiple sources. While previ-
ous feature adapters are mostly designed for image
classification, we consider it as a strategy to aggre-
gate multiple input branches (of potentially differ-
ent modalities). For instance, previous methods for
image ad understanding, such as VS (Dey et al.,
2021), utilize scene-texts extracted from images
(by OCR) to enhance its performance. Similarly,
we can extract text features from scene-texts using
a VLM’s text encoder and merge them with the
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Figure 3: Illustration of our brand understanding module that is an ensemble of text-matching and vision-based
recognition. Given an input image ad, we use MAVL to propose regions by prompting “all trademarks” and
retrieve entries in BrandSet-110K over the regions with CLIP. We aggregate the predictions across regions and the
text-matching results to generate the final output via some simple rules (see details in Appendix B).

image features extracted by the image encoder (of
the same VLM) via a feature adapter. In doing so,
we obtain a better representation of image ads.

Specifically, we propose to adopt one layer
of multi-head attention (Vaswani et al., 2017) as
our feature adapter design, similar to the Tiny-
Attention Adapter (Zhao et al., 2022). Here the in-
put sequence to the attention layer varies by modal-
ities (brand, scene-texts and image, as in Fig. 4)
instead of temporally or spatially as commonly in
Transformers. By the nature of alignment-based
VLMs, all information (whether in the text for-
mat as the scene-texts or the visual elements) are
embedded as vectors and lie in a shared semantic
space. We then utilize this property and fuse com-
plementary information (e.g., image features and
scene-text features) into one feature. Moreover, we
append a linear layer after the attention features
and equip it with a residual connection. Let us
use the notation in previous sections and further
denote xst as the scene-texts extracted from the
image x (by Google OCR APIs). Then our adapter
is represented as

fattpxq “ npfIpxq `ArfIpxq, fT pxstq, ...sr0sq

where np¨q is a normalization function and A is
multi-head attention (we leave room for other input
branches by leaving “...” here). Note that we do not
use any adapter for the text descriptions of images
(the labels of image ads), which further reduces the
computation complexity as now we only need to
compute and cache all text features in the training
set once and for all during full HNM.

In comparison, we also evaluate the popular
CLIP-Adapter (Gao et al., 2021) as a strong base-
line, which we tailor to our setup by training three

2-layer residual MLPs. Please see the Appendix
for implementation details. As reported in Tab. 3,
our proposal of using an attention-based adapter
(denoted KAFA w/o K) utilizes VLM features
well by aligning multimodal features already in
the same semantic space and outperforms CLIP-
Adapter. While other existing work (Shen et al.,
2021; Gui et al., 2021) merges multiple branches
of information by leveraging foundation models,
they rely on large encoder-decoder networks that
are computationally intensive and might not work
well with limited training data as in our case.

5 Improving Image Ad Understanding
with External Knowledge

To further improve image ad understanding, we pro-
pose to leverage external knowledge of real-world
entities, namely product and brand information.
The major focus of advertisements is to promote
brand awareness (Macdonald et al., 2003). Some-
times brand information is even a necessity to in-
terpret ads correctly since it eliminates ambiguities
and gives visual cues to the audiences (e.g., the ad
for a cleaning product in Fig. 2). It is then natural
to empower feature adapters introduced previously
with a brand understanding module that extracts
brand information from images. Here we present
our training-free brand understanding module that
considerably exploits VLMs.

5.1 Brand Understanding Module

Extracting brand information from an image is very
challenging due to the sheer scale of brands in the
real world. Existing published work (Su et al.,
2018; Li et al., 2022a) and even commercial APIs
tend to fall short of a good coverage. To solve this
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Figure 4: The overall training pipeline of our proposed KAFA, where three branches of information are fed into the
attention-based feature adapter, the only neural module free in the fine-tuning process. We leverage VLM encoders
for both sides of the contrastive fine-tuning.

issue, we construct a knowledge base that covers
brands much better than existing datasets. Our
knowledge base has the format, KFC: KFC is a
fast food chain, with around 110k entries covering
names of brands, companies, organizations and
others appearing in image ads. We call this dataset
BrandSet-110K (see details in Appendix B).

Next, we take an ensemble approach to detect
and retrieve relevant brand entries from BrandSet-
110K given an image ad. On one hand, we re-
trieve brands by performing string matching over
all names in BandSet-110K using the scene-texts
extracted by OCR from the image. On the other
hand, in case of OCR failures, no detection (some
logos have no texts), or multiple detected entries
(potentially false positives as most image ads pro-
mote only one brand at a time), we use a more
powerful vision-based module. Specifically, we
adopt MAVL (Maaz et al., 2022), a state-of-the-art
VLM, to propose object regions according to the
text prompt “all trademarks”, We then use the best
CLIP model to perform region classification based
on a set of carefully engineered prompts. And then,
we select the best entries in BrandSet-110K accord-
ing to the proposed regions. We finally use some
simple rules to combine the retrieved results from
text-matching and the vision-based module, as in
Fig. 3 (see details in the Appendix).

Overall, our brand understanding module is
training-free, covers much more entities than previ-
ously published work, and even outperforms some
commercial logo detection APIs by evaluation on
a small validation set, as reported in Tab. 4

5.2 Overall Pipeline and Final Results

Combining with our proposed brand understanding
module, we illustrate our overall pipeline in Fig. 4
and call this approach knowledge-augmented fea-
ture adaptation (KAFA). In Tab. 3, we demonstrate
that KAFA achieves substantial improvements in
image ad understanding over the VLM baseline

Method Inputs 20 100 500 1000

Zero-shot I 91.7 80.7 64.4 56.5
Direct FT + full HNM I 93.7 84.6 70.0 62.9
CLIP-Adapter I+ST 93.9 85.0 70.2 62.8

KAFA w/o K I+ST 95.0 86.8 72.7 65.1
KAFA w/o ST I+K 94.7 86.5 72.3 64.5
KAFA (ours) I+ST+K 95.6 87.7 73.9 66.0

Table 3: Accuracy (%) reported on the Pitt Dataset.
KAFA (our proposed attention-based adapter with ex-
ternal knowledge) achieves the best results compared
to other approaches and the versions with fewer inputs
(K = brand knowledge, ST = scene-texts, I = image).
Note: “Direct FT + full HN” is extremely inefficient.

Acc (%) Acc (%)

VLM-based (ALBEF) 14.5 Text-matching 36.0
VLM-based (LiT) 29.0 Google Cloud API 42.0
VLM-based (CLIP) 64.4 Combined (Text + CLIP) 66.6

Table 4: Brand recognition accuracy on ~600 valida-
tion image ads. It justifies our brand understanding
module and further verifies that models better at rec-
ognizing brands are better at image ad understanding.

and consistently outperforms other ablation ver-
sions with fewer inputs, justifying that our pro-
posed brand understanding module helps to further
improve image ad understanding. We present an
example in Fig. 1 to illustrate the improvement
of our method over the baseline, where for better
display we only show 2 negative text descriptions.
See more examples in Appendix G.

6 Additional Analysis

6.1 Hard Negative Samples in Evaluations
We report our main results with a harder eval pro-
tocol than the official one. In fact, it is a challenge
to perform effective evaluations in retrieval tasks
(Akula et al., 2020). While we need hard negatives
to better reflect the capabilities of a model, usually
by increasing the size of the candidate set, we also
want those hard negatives to be real negatives. As
illustrated in Fig. 5 (right), two companies can have
two different image ads that share a very similar
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Figure 5: (Left) Similarity distributions of texts of the
same and across images. Both are spread out with no
easy cutoff threshold to sample hard negatives. (Right)
Two different ads share the same message “I should
drive this car because it can drive anywhere”, exempli-
fying the difficulty of sampling hard negative samples.

message. Hence, given an image, simply using a
text of another as the negative might not work.

There is no easy solution. We can use a generic
sentence encoder to measure similarities among
different texts in (Hussain et al., 2017) and only
sample texts that are semantically different from
the target one (the ground truth) as negatives. We
adopt a strong sentence encoder (publicly avail-
able here) based on MiniLM (Wang et al., 2020) to
measure semantic similarities. We compute similar-
ities among descriptions of the same ad and those
across different ads. The similarity distributions are
spread out, as demonstrated in Fig. 5 (left), without
easy cutoff thresholds to make negative samples
both hard and truly negative. Instead, we propose
to use several different sizes K of the candidate set
with K “ 20, 100, 500, 1000. For each image in
the Pitt Dataset (Hussain et al., 2017), we randomly
choose a text from the ground truth and uniformly
sample K ´ 1 negatives from other images (harder
negatives with larger K).

While most existing methods evaluate (Hussain
et al., 2017) with the official evaluation protocol
(for ease of comparison we also provide results by
this protocol in Tab. 1), it suffers from the lack of
hard negatives. Each image ad comes with only
15 randomly sampled candidate texts including 3
positives, giving a random model a 20% accuracy.
Moreover, negatives are easy as they tend to be
semantically distinct from the positives, making
it hard to examine a model at finer levels. We
provide examples to compare negatives sampled in
our protocol and in the official one in Appendix E.

6.2 Data Leakage Regarding VLMs
The CLIP (Radford et al., 2021) model we use in
our experiments was pre-trained on a tremendous

Figure 6: An evaluation image and a found one in
LAION-400M. As a reference, this image’s caption
reads: I should drink “Brand Name” because it’ll give
me a recharge of energy.

amount (400M) of image-text pairs on the Inter-
net. A concern is that there might be data leakage,
i.e., the pre-trained VLMs might have already seen
images in the evaluation set, leading to inflated re-
sults. We perform an analysis to conclude that this
is unlikely the case. We manually inspect images
in the LAION-400M dataset (Schuhmann et al.,
2021) that are semantically similar to a set of ran-
domly sampled 100 eval image-text pairs. While
the dataset used to train CLIP is not publicly re-
leased, LAION-400M is a very close one with a
similar scale of data filtered by the CLIP model.
Specifically, for each of the 100 random samples,
we use the open-sourced CLIP-retrieval tool (here)
to find the closest images from LAION-400M in-
dexed by both the sample text and image. We do
not find any substantially overlapped content or
near duplicates (see Fig. 6 as an example). More-
over, our proposed method achieves significant per-
formance improvement over the VLM baseline and
both are based on the same CLIP model. Therefore,
data leakage is less of a concern.

7 Conclusion

In this paper, we study the adaptation of pretrained
alignment-based VLMs for the challenging image
ad understanding task. We benchmark and reveal
practical challenges in adapting VLMs, propose a
simple and intuitive (yet effective) strategy for fea-
ture adaptations, and further improve image ad un-
derstanding with external brand knowledge. While
we mainly focus on the image-to-text retrieval task
for its simplicity, we believe further studies can ex-
tend it to directly generating text descriptions given
image ads or even generating image ads given the
descriptions. We hope our study draws more atten-
tion to image ad understanding that are relevant to
the advertising industry and provide insights for a
broader machine learning community.
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Limitations

The data from the Pitt Dataset (Hussain et al.,
2017), while useful for our paper, contains many
images and annotations that may perpetuate harm-
ful stereotypes according to sensitive characteris-
tics such as gender and carry the risk of amplifica-
tion by machine learning models. We plan to col-
laborate with AI robustness researchers to identify
such examples and develop methods for improving
ML models in terms of robustness and reliability.
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A Scene-text Extraction by OCR

In our paper, we use scene-texts as one of the in-
puts for experiments in Pitt Dataset (Hussain et al.,
2017). We use the Google Cloud OCR API (link)
to extract all text tokens, which are grouped by
paragraphs by the API. We then group paragraphs
into blocks by simple heuristic rules (e.g., two con-
secutive paragraphs with similar font sizes should
be considered in the same block) and then filter out
those blocks with an average prediction confidence
score (provided by the API) less than 0.7.

B Brand Recognition

B.1 BrandSet-110K

We construct BrandSet-110K by first compiling en-
tries from public websites. Specifically, for the list
of topics (such as automobiles and healthcare) in
the Pitt Dataset (Hussain et al., 2017), we Google
with the query “Top XX brands/companies in Y” to
obtain a list of thousands of common brands, orga-
nizations, etc., denote source I. We further scrape
the Google Knowledge Graph Search API (link)
to find a much larger list of named entities, de-
noted source II, whose categories fall into “brands”,
“companies”, etc., where each entry comes with a
one-paragraph description. Since results from the
Knowledge Graph (KG) is a little bit noisy and
might miss some popular entities, we rely on source
I to make sure that the most prevalent entities ap-
pearing in our commercial world are included in
our dataset. We then query entries from source I in
KG to also obtain the descriptions. If such entries
are not found in KG, we simply use the descriptions
“X is a brand name in the industry of Y”. Together
with source II, we obtain a raw combined knowl-
edge base. Then we filter out those entries that
are common English words (if the entry appears
in the English dictionary (link) or a word set from
NLTK (link)). We do so to remove entries such
as “Everyday”, which will result in too many false
positives during brand detection. We also remove
entries consisting of a single character. Eventually,
we end up with around 110K entries, i.e., name and
description pairs.

Since the descriptions returned by KG can be
quite long, we further use a learning-based sen-
tence parser to only select the very first sentence
of the description (usually in the format of “X is
a brand/company/org in the industry of Y with Z
features”). We use this API (link) from Hugging

Face (Wolf et al., 2019), which is based on spaCy.

B.2 Brand Recognition by Text-Matching
The text-based brand recognition module essen-
tially performs text matching to exhaustively
search over all entries in BrandSet-110K given the
scene-texts extracted by OCR. For each name in
BrandSet-110K that is larger than 6 characters, we
match the text in a case-insensitive manner; other-
wise, we match it case-sensitively to reduce false
positives. A name is set to be matched in a scene-
text if it is a phrase of the text (“abc” is matched
in “abc def” but not in “abcdef”.) When doing
ablation studies of evaluating text-matching only
performance, in case of multiple predictions we
randomly select one as the output.

B.3 Vision-based Brand Recognition
The vision-based brand recognition module han-
dles situations where the text-based one fails (when
texts are too small or blurred or artistic for OCR
to work; or when logos are purely graphic). The
vision-based module is a pipeline of several steps.
The class-agnostic region proposal (we use the best
model in MAVL (Maaz et al., 2022), a state-of-the-
art model) is adopted to generate candidate regions
that contain brand logos or visual elements reveal-
ing brand information. We choose “all trademarks”
as the best prompt with other candidates such as:

• “all small objects”, “all brand logos”,

• “all brand icons”, “all brands”, “all logos”

After the region proposal, we use the best CLIP
(Radford et al., 2021) model (its visual encoder)
to compute the region features. We include the
entire image as an extra proposed region. Then we
use the text features (via the CLIP text encoder) of
the following 6 prompts to find the best entry in
BrandSet-110K. Namely

• “A brand logo of X”, “A logo of X”,

• “A trademark of X”,“A brand logo of X. Y”,

• “A logo of X. Y”, “A trademark of X. Y”

where X is the name and Y is the corresponding
description in BrandSet-110K. We first average dot
products of the region features and brand features
across all 6 prompts. We then find two candidates:
(1) the name X with the largest predicted scores
among all names and all regions of an image and
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(2) the name X with the largest predicted scores av-
eraged across all regions among all names that are
champions in at least one region. Our final output
is chosen by the higher value of the dot products of
the global image feature and the two text features
of the prompt “’An advertisement of X” (we select
this prompt after another minor prompt engineering
process).

B.4 Ensemble of Text-matching and
Vision-based Brand Recognition

We use simple heuristic rules to ensemble the
text-matching results and the vision-based ones.
Specifically, if there is no name detected from text-
matching, we return the vision-based result; if there
is only one name detected from text-matching, we
return the text-based result; if more than one name
is detected from text-matching, we select the name
from detection of both text and vision-based mod-
ules by the highest value of the dot product of the
global image feature and the text features of “’An
advertisement of X”. The ensemble module finally
returns the single name and the corresponding de-
scription in BrandSet-110K.

C Network Architecture of
Attention-based Feature Adapter

We adopt a very lightweight network for feature
adaptation. For each modality of the inputs (e.g.,
inputs to KAFA in the Pitt Dataset are three vec-
tors: scene-text features, image features, and brand
features), we first add learnable positional embed-
ding (which is used to distinguish between different
modalities) and then apply a multi-head attention
layer (Vaswani et al., 2017) to obtain a list of vec-
tors; we finally use the first vector (corresponding
to the image feature input branch) and add residual
connections from the input image feature (before
positional embedding) to produce the final output
(with normalization). To make things clearer, we
also provide the pseudocode.
import t o r c h . nn . P a r a m e t e r a s param
import t o r c h . nn . f u n c t i o n a l a s F

# args i s a l i s t o f i n p u t f e a t u r e s
# e . g . , [ img_f s , s c e n e _ t e x t _ f s , b r a n d _ f s ]

p o s _ e m b _ l i s t = [ ]
f o r _ in range ( n _ i n p u t ) :

p o s _ e m b _ l i s t . append (
param ( t o r c h . z e r o s ( [ i n p u t _ d ] ) ) )

a t t n = t o r c h . nn . M u l t i h e a d A t t e n t i o n (
embed_dim= i n p u t _ d ,
num_heads =8 ,
b a t c h _ f i r s t =True )

i n p u t s = [ ]
f o r i in range ( n _ i n p u t ) :

i n p u t s . append (
a r g s [ i ] + p o s _ e m b _ l i s t [ i ] )

x = t o r c h . s t a c k ( i n p u t s , 1 )
x , _ = a t t n ( x , x , x , n e e d _ w e i g h t s = F a l s e )
# The f i r s t i s t h e image f e a t u r e s .
x = x [ : , 0 ] + a r g s [ 0 ]
x = F . n o r m a l i z e ( x , dim=´1)

D Data Cleaning on Pitt Dataset

We perform data cleaning on both the training and
evaluation data of the Pitt Dataset (when evalu-
ated using the official evaluation protocol, whose
issue is discussed in the main paper, we stick to the
raw evaluation set). For every text in the dataset
(the response to the “what should I do according
to the ad and why” question), we remove invalid
ones (e.g., “I don’t know”, “not an ad”, “not sure”),
fix typos (e.g., “becasue”, “becaues”), and remove
those without answering the “why” question. Fur-
thermore, we filter out texts that do not mention
nouns or only have nouns that are not very infor-
mative (we compile a list of non-informative nouns
appearing frequently in the dataset, such as “prod-
uct”, “thing” and “vendor”). This step is to remove
non-specific texts such as “I should buy this prod-
uct because ...”. In the end, we randomly select one
text (with a fixed random seed) as the ground truth
of its image. If an image has all its texts removed
by data cleaning, we remove the image from the
dataset. We find such images constituting less than
3% of all images.

E Hard vs. Easy Negatives for
Evaluation in Pitt Dataset

Here we explain why we use larger number of
candidates K during evaluation. Model evalua-
tion for cross-modal retrieval is challenging (Akula
et al., 2020). The official evaluation protocol in
Pitt Dataset suffers from the issue that it lacks hard
negatives to fully reflect the perception and reason-
ing capability of the models. Each image in the
protocol has 3 positive texts and only 12 negative
ones, giving a random guess model a 20% accuracy.
On the contrary, increasing the number of candi-
dates in our evaluation protocol as introduced in
the main paper effectively yields harder negatives.
For instance, for the image ad in Fig. 7 whose
ground truth is “I should buy a Brand A camera be-
cause it will help me create”, if we set the number
of candidates to be 10 (i.e., 9 negatives), the best
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CLIP model makes the correct selection with all
easy negatives, among which the most confusing
ones are

• “I should drink Brand B because it de-ages
you”

• “I should not drown in my decision because
bad choices will keep you under”

• “I should buy this bag because it is resealable”

If we set 50 total candidates (i.e., 49 negatives),
again the CLIP baseline predicts correctly with
the most confusing ones still being relatively easy
negatives:

• “I should use Brand C cosmetics because it
makes you beautiful”

• “I should buy Brand D products because they
are reliable”

• “I should see a movie because it’s fun”

For a larger number (e.g., 100 total candidates),
the CLIP model starts to make mistakes, with hard
negatives such as

• “I should use Brand E makeup because it will
make me more seductive”

• “I should buy Brand F makeup because it will
make me beautiful”

• “I should buy this makeup because it will
make me shine”

Notice that for privacy reasons, all brand names in
this example are anonymized.

F Training Details

F.1 Direct Fine-tuning of CLIP
We fine-tune the best CLIP model on the train-
ing images of Pitt Dataset with a batch size of 8,
symmetric cross-entropy loss (the one used in the
original paper of CLIP) and the Adam optimizer
(Kingma and Ba, 2014) with weight decay of 1e´4.
We set other parameters of Adam as in the original
implementation of CLIP. We find that using a very
small learning rate (e.g., 1e ´ 7) is necessary for
fine-tuning CLIP on Pitt Dataset; otherwise, the
CLIP model can overfit easily. For the same rea-
son, we adopt early stopping and only fine-tune the
model for a maximum of 4 epochs. We leave the de-
tails in the next section for the fine-tuning version
with online hard negative mining (very computa-
tionally intensive as suggested in the main paper).

Figure 7: An example to illustrate the issue of easy neg-
ative samples in evaluation.

F.2 Fully Online Hard Negative Mining (full
HNM)

When performing hard negative mining during
training, for each image in a mini-batch, we first
compute the VLM features of a large number of
randomly sampled negative texts (in our experi-
ments we find 1000 to be large enough; while a
larger number can marginally improve the final per-
formance but it incurs a larger computation burden),
then we compute the dot products of the current
image feature and all these sampled text features,
and finally, we rank the dot products and select the
top N ´ 1 negatives to be included in computing
the gradients of the loss (we find N “ 8 to be effec-
tive). We use the asymmetric version of the cross-
entropy loss (i.e., the normal one) compared to
the asymmetric version in CLIP pre-training since
the number of negatives per image does not equal
the batch size when HNM is adopted. We reduce
the batch size to 4 whenever with online HNM so
that directly fine-tuning the largest CLIP model is
viable with a single V100 Nvidia GPU. We still
apply the learnable “logit scale” parameter in CLIP
pre-training which effectively makes contrastive
learning more stable.

For full HNM, if we directly fine-tune the CLIP
model, we need to compute text features of all texts
in the training set in every gradient step. While
this is computationally prohibitive, we adopt the
feature adapter strategy and thus cache all the text
features once and do not update the text encoder
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Figure 8: Additional examples that demonstrate KAFA’s improvements over the VLM baseline.

and the text features during fine-tuning.

F.3 More Ablation Studies
In our experiments presented in the main paper
(specifically in Tab. 1), we have justified the use of
online HNM, the additional inputs (scene-text and
brand information) to the feature adaptation, and
the advantages of the attention-based adapter over
the baseline adapter. We also perform experiments
on several variants of the attention-based feature
adapter and find that either using more than one
attention layer or adding layer norm & additional
linear projection as in the encoder-decoder Trans-
former (Vaswani et al., 2017) make the model more
vulnerable to overfitting.

F.4 Additional Details of Feature Adapters
For feature adapters (CLIP-Adapter and KAFA),
we use the full HNM for fine-tuning as discussed
in the previous section. We use the same training
setup as that of “Direct ft + HMN” except for the
additional input branches. For CLIP-Adapter, we
tailor it to our setup by training three 2-layer resid-
ual MLPs. Specifically, let as denote them as gmlp

I ,
gmlp
T and hmlp, built on top of the image and text

features extracted by VLMs, and a mixture of these
features, respectively. The adapted feature for x
becomes

fmlp
I pxq “ npfIpxq ` gmlp

I pfIpxqqq
fmlp
T pxstq “ npfT pxstq ` gmlp

T pfT pxstqqq
fmlppxq “ nphmlppcatrfmlp

I pxq, fmlp
T pxstq, ...sqq

where cat is concatenation. Here we omit the
adapted feature for text label y. And the adapted
feature for the text label y becomes

fmlp
T pyq “ npfT pyq ` gmlp

T pfT pyqqq
which is used during full HNM for fine-tuning.

For fine-tuning of both CLIP-Adapter and
KAFA, we find a much larger learning rate (i.e.,
1e´4) to be effective and train the model similarly
with early stopping and a maximum of 10 epochs.
We find it helpful to stabilize training by adding
an additional regularization loss to keep the feature
adapter’s output close to the VLM image features.
Specifically, we add the negative of dot products
between the two (averaged over all data points in
the mini-batch) to the overall training objective.
For this regularization term, we use a coefficient of
5 in all our experiments in the Pitt Dataset.

G Additional Examples

We present 2 additional examples in Fig. 8 to il-
lustrate the improvement of our method over the
baseline. Again, we only show 2 negative text de-
scriptions for better display, and we anonymize all
brand info.
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