
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics
Volume 5: Industry Track, pages 687–694

July 10-12, 2023 ©2023 Association for Computational Linguistics

Search Query Spell Correction with Weak Supervision in E-commerce

Vishal Kakkar1,Chinmay Sharma2,Madhura Pande2,Surender Kumar2
1Microsoft India

2Flipkart Internet Private Limited
vishalkakkar90@gmail.com

{chinmay.sharma,madhura.pande,surender.k}@flipkart.com

Abstract

Misspelled search queries in e-commerce can
lead to empty or irrelevant products. Besides
inadvertent typing mistakes, most spell mis-
takes occur because the user does not know
the correct spelling, hence typing it as it is pro-
nounced colloquially. This colloquial typing
creates countless misspelling patterns for a sin-
gle correct query. In this paper, we first system-
atically analyze and group different spell errors
into error classes and then leverage the state-
of-the-art Transformer model for contextual
spell correction. We overcome the constraint
of limited human labelled data by proposing
novel synthetic data generation techniques for
voluminous generation of training pairs needed
by data hungry Transformers, without any hu-
man intervention. We further utilize weakly
supervised data coupled with curriculum learn-
ing strategies to improve on tough spell mis-
takes without regressing on the easier ones. We
show significant improvements from our model
on human labeled data and online A/B experi-
ments against multiple state-of-art models.

1 Introduction

An incorrectly spelt search query can return irrele-
vant products in e-commerce which hurts both the
business and experience for a user who is unable
to find the intended product. As per the latest En-
glish Proficiency Index report of written test data
from 100 countries, 1 only 29% countries are pro-
ficient in English. Our platform operates in Asian
countries like India which are ranked low in this
survey. As per the latest Indian census only ∼10%
of the Indian population is versed in the English
language thus causing high spell errors in the user
queries. Spelling errors are generally classified
as — typographic and cognitive (Toutanova and
Moore, 2002). Typographic errors emanate from
the typing mistakes on the keyboard which wors-
ens on mobiles due to smaller keypads. Cognitive

1https://www.ef.com/wwen/epi

errors happen when a user does not know how to
correctly spell a word. This leads to phonetic errors
like "cenityjer" for "sanitizer".

Edit-distance2 based spell corrections at
run-time are computationally expensive for higher
edit distances at web-scale. Also, this approach
typically works at an individual word level
(Norvig, 2009; Garbe, 2021; Whitelaw et al., 2009)
is not able to identify contextual mistakes like
"greeting cart". Human labeling being expensive
and time-consuming, these methods use a large
amount of user query reformulations as training
data for learning. Most of the web search work
relies on this for generating correct-incorrect word
pairs(Whitelaw et al., 2009; Gao et al., 2010).
Query reformulations alone fail to cover all kinds
of errors like phonetic (cognitive) ones - "metras"
vs "mattress" or edit/phonetic+word-compounding
like "ball pen" vs "bolpan" when the user herself
does not know the correct spelling. Fig. 1 shows
the distribution of different types of spell errors
on our platform over a sample of ∼ 23k queries
as classified by human judges. Inspired by the
low-resource machine translation research, the
latest spell systems create synthetic data to learn
Neural (Zhou et al., 2017; Jayanthi et al., 2020)
and statistical (Brill and Moore, 2000; Cucerzan
and Brill, 2004) models for spell correction. To
solve at internet scale, 3 billion search queries a
month from over 450 million users, we too create
a large amount of synthetic and user feedback data.
Given significant colloquial phonetic mistakes (1),
we develop a novel way of generating phonetic
mistakes besides edit-distance and compounding
ones. Along with the user query reformulations,
the user clicks on the spell-corrected queries also
provides another source of noisy labeled data.
Curriculum learning (Bengio et al., 2009; Elman,
1993) has shown to generate robust models which
show the improvements in their learning ability

2https://en.wikipedia.org/wiki/Levenshtein_distance

687



Figure 1: Spell Error Distribution

when they first learn on simpler tasks followed by
tougher tasks. We devise a few simple curriculums
to improve accuracy on tougher mistakes. Using
Transformers, the main contributions of our work
are:
(i) Generating large synthetic and weakly super-
vised labelled data for different spell mistakes
including novel deep learning models for phonetic
mistakes.
(ii) Curriculum learning to improve on tough error
classes like edit/phonetic+word-compounding
without degrading performance on the easier ones.

We report the effectiveness of our approach
ReparoS (Reparo-Spell) through offline evaluation
as well as online A/B experiment on user queries
with significant improvements. In the following
sections, we discuss related work followed by ap-
proach, the experiments, and finally the results.

2 Related Work

Context-free word-based spell checkers in web
search have been commonly implemented in two
ways: edit distance (Damerau, 1964) and statistical
noisy channel. Damerau-Levenshtein edit distance
finds the correct words by editing ’k’ characters
of the input word. On the other hand, statistical
noisy channel methods (Kernighan et al., 1990)
assume that the user inadvertently introduces some
noise through keyboard errors. Brill and Moore
improves the standard noisy channel model. Rule-
based systems like Soundex(Knuth, 1973) and
Metaphone(Atkinson, 2009) generate a phoneme
sequence for a given word to match against the
phoneme sequence of the correct word. Context-
aware spell checkers (Whitelaw et al., 2009) incor-
porate the surrounding words to improve the cor-
rection. However, this approach still corrects each
word individually and is not able to address word-

compounding spell mistakes. Machine Translation
( (Hasan et al., 2015)) based approaches treat a cor-
rect query as a translation of the misspelled query.
Zhou et al. use an RNN with encoder-decoder
architecture that improves upon the statistical ap-
proaches. To avoid expensive human-labeled data,
it’s become common to generate copious amounts
of synthetic labeled data (Etoori et al., 2018; Jayan-
thi et al., 2020) for model training. NeuSpell
(Jayanthi et al., 2020) formulates spell correction
as a sequential labeling problem where a correct
word is labelled as itself and a misspelled token is
labeled as its correction. These approaches suffer
due to synthetic data being mainly edit-distance
based errors. Simple phonetic based corrections
have been explored as well (Yang, 2022), (Brill
and Moore, 2000). NeuSpell also ignores the com-
pounding errors which form more than 25% of the
spell errors. Our approach overcomes these by us-
ing state-of-art context-aware Transformer models
with curriculum learning, user feedback-based data
and synthetic data sets for different types of spell
mistakes. In the following sections we describe
data generation methods for training, model details
followed by experiments and discussion.

3 Data generation

3.1 Spell Error Classes

In this section, we describe various error classes
based on the patterns we observe in our e-
commerce search logs. Broadly, any spell error
can be classified as below:
Edit: These are induced by performing the follow-
ing character operations on a correct word: (i) dele-
tion (“nike” → “nke”), (ii) adjacent swap(“nike”
→ “nkie”), (iii) replacement like from neighbour-
ing characters on the keyboard (“nike” → “bike”),
(iv) insertion (“nike” → “nioke”).
Compounding: These errors are induced by the
wrong usage of space ("back pack" vs "backpack").
Phonetic: When users write a query based on their
pronunciation. This challenging class of errors
(37%) is full of variations due to accents influenced
by the regional, colloquial languages of the users
("shart", "sart" → "shirt").
{Edit/Phonetic}+Compounding: This is when
edit or phonetic errors exist simultaneously with
the compounding errors. For example, "air cooler"
→ "yercular", "dry fruits" → "drayfrut"

Figure 1 shows the distribution of various error
classes based on monthly search queries received

688



Figure 2: Pipeline for inducing phonetic errors

on our platform. Phonetic errors are highest and
can have numerous forms like shirt spelt shart,
sart etc based on user’s regional accent. Contex-
tual spell correction is important too, for example,
"pan" in "bol pan blue", needs correction to "pen"
but not in "tea pan".

3.2 Synthetic Data Generation

We generate training data based on the error
classes defined in the previous section. From our
e-commerce search logs, we extract a seed set
of clean (correctly spelt) queries on which we
induce all types of errors. The clean queries are
selected on the basis of their high volume and
query CTR (Click Through Rate on the search
result page). Errors are induced at word-level and
then subsequently put back in the original query to
generate the incorrect-correct training query pairs.
Edit-Distance Error: This is done by using one
or more of the operations as discussed in detail
in the section 3.1. We want frequent errors made
by users to have a higher representation in our
training data. Hence, we replace the correct word
in query with its incorrect form with a probability
proportional to its Brill-Moore Error Model(EM)
score (Cucerzan and Brill, 2004).
Error Model (EM):We first acquire training triplets
(intended word, observed word, frequency) from
the user query logs (Whitelaw et al., 2009). Given
a target correct word w and input word s, we
then use this noisy-channel word error model to
compute the probability P (s|w) as described by
Brill and Moore.

Phonetic Error: We leverage the fact that the
users do a mental transliteration of the word from
their native pronunciation to the English (Suzuki
and Gao, 2012; Boyd, 2009). Although we focus
on Hindi script here as it is the native language
of 57% of the Indian population, this approach
generalizes across any language. We first use our
multilingual e-commerce product catalogue data
that is already translated from English to Hindi and

Figure 3: Pipeline with synthetic & weakly supervised
data

extract the transliterated word-pairs for particular
fields like brand names and model names. We
next train a character level sequence-to-sequence
translation models for the transliteration tasks
(English to Hindi and Hindi to English) using
Transformer (Vaswani et al., 2017) architecture.
To generate synthetic phonetic word-level mistakes,
we first transliterate the user typed English word
into a Hindi (Devanagari 3 script) word(s) using
the transliteration model described above. We
then augment the transliterated Hindi word(s) and
generate more noisy Hindi candidates by adding
the most commonly occurring Hindi spell mistakes
in the Devanagari script. These language-specific
mistakes are learned separately from Hindi search
queries (user query reformulations in the same
user session). These native words are then back
transliterated to English. Figure 2 shows the
an example of how different misspelt forms of
the word "mobile" are obtained via this method.
Besides, transliteration we also use Soundex
(Knuth, 1973), Metaphone (Atkinson, 2009) to
generate phonetic candidates. In only edit-distance
based erroneous word generation, the number of
incorrect candidates explodes combinatorially as
the length of the input word and number of edits
increase which prevents generating many potential
incorrect user spellings. Also, the random edit
distance mistakes can generate a lot of garbage
mistakes and negatively impact the model learning.
The data generated by our phonetic method thus
addresses these problems in a principled manner
mimicking the user mistakes.
Spell Query Chain Errors: Many a times users
type an incorrect spelling and subsequently correct
themselves in just the next query they type. We
make use of such query chains to get the spell
reformulations. To ensure minimal noise we use
the LLR and PMI (Jones et al., 2006) measures

3https://en.wikipedia.org/wiki/Devanagari

689



on co-occurring queries along with other checks
like CTR of input and target query. We add
edit-distance based guardrails to avoid generating
drastically different query. Besides edit-distance
query pairs, we also obtain compounding [("pen-
drive","pen drive"), ("iphonepro", "iphone pro")]
errors here. Note that this method mines the user
logs for the entire pair of (incorrect, correct query)
which is unlike the earlier methods that induce
errors on correct queries.
Edit/Phonetic+Compounding Error: This
method combines the edit/phonetic errors that we
described earlier and compounds the words. For
example, for a correct bi-gram compound word
"ball pen" this method generates “bolpan” from
the individual mistakes on unigram tokens "ball"
and "pen" which intermediately generates mistakes
such as “bol" and "pan” respectively. These tokens
are then joined to obtain the final incorrect unigram
form "bolpan".

We finally use all the correct to incorrect word
dictionaries generated above and use them to create
noisy/misspelled queries for a given set of clean
queries.

We also collate a substantial chunk of (correct,
correct) query pairs so that the model learns not
to overcorrect (Zhu et al., 2019; Movin, 2018) in
cases when it is undesired.

3.3 Weakly Supervised Data

Another set of data is collected from the interactive
user click feedback. These are user queries where
our spell system intervenes to correct the input and
generates a potentially correct query to fetch the
search results. We collect the (user query, system
corrected query) to form a training pair based on
the CTR of the corrected query. Note that this
data is be obtained after deploying one version of
the spell model. With regular model retraining,
this method also helps us to continuously learn on
changing query patterns and mistakes.

4 Model and Training Details

We formulate the problem of query correction as a
Neural Machine Translation (NMT) problem (Zhou
et al., 2017), where for a source sequence (incor-
rectly spelt query) the task is to predict the spell
corrected query. An NMT model learns the con-
ditional probability p(y1, .., yT ′ |x1, .., xT ) where
(x1, .., xT ) is the input query and (y1, .., yT ′ ) is

the target correct query. Note that the input query
length T may differ from the output length T

′
due

to splitting mistakes (space as a character) by users.
We use Transformer (Vaswani et al., 2017) neural
architecture that is superior (as shown in results sec-
tion) due to bidirectional self-attention, multi-head
attention and uses best neural tricks of batch nor-
malization, resnets with encoder and decoder layer.
Our choice to use Transformer was also because
we found pre-trained (on in-domain data) models
like BART (et al, 2019) (combining BERT (Devlin
et al., 2018) and GPT) was slightly inferior to sim-
ple Transformer model which is most likely due
to BART/BERT kind of models requiring longer
contexts. Hyperparameter and latency details are
included in the Appendix.

4.1 Curriculum Learning
Bengio et al. demonstrate the effectiveness of
curriculum learning for neural language modeling
tasks. Our results demonstrate that it can also help
in the spell correction task. We create a curricu-
lum strategy of first training on noisier but simpler
data of synthetic query pairs. This is followed
by fine-tuning the model on a smaller number of
more complex errors ({edit+phonetic} with com-
pounding). Another curriculum is fine-tuning with
weakly supervised query pair data obtained from
user click feedback which is also relatively cleaner.
After training on noisier synthetic data, as a next
step of the curriculum, we fine-tune our model on
this cleaner weakly supervised data. We present the
improvements brought in by the curriculum learn-
ing in the results section as compared to learning
a model using all the data at once without needing
any human labelled data.

4.2 Training and Eval Datasets
Our e-commerce catalog has ∼50 heterogeneous
categories like clothing, electronics etc. For each of
these categories, we glean top-20 percent queries
(by frequency and click rates) over one month and
treat them as clean queries. This created a seed
set of 300K clean queries which we fed into the
synthetic data generation pipeline described in sec-
tion 3.2. We generate ∼270M synthetic query pairs
with all kinds of mistakes. In theory, user queries
may have multiple misspelled words but our analy-
sis showed that ∼90% queries have mistakes in up
to two words per query which we incorporated in
our synthetic data generation pipeline too. To ob-
tain the weakly supervised data, we first deployed

690



Model Training Data Imp Reg
GoogleSWBS (statistical web search) (Whitelaw et al., 2009) in-house synthetic data 33.96 82.45
Seq2Seq-BiRNN (Zhou et al., 2017) in-house synthetic data 34.86 91.1
NeuSpell-BERT (Jayanthi et al., 2020) neuspell data 12.19 58.55
NeuSpell [in-domain BERT] neuspell data generation methods applied on in-house data 25.3 83.6
NeuSpell [in-domain BERT] in-house synthetic data 32.6 84.2
ReparoS-Base in-house synthetic data 37.63 90.72
ReparoS-C1(fine-tune ReparoS-Base) ed/ph + comp 42.81 86.63
ReparoS-C2(fine-tune ReparoS-C1) user click feedback (weak supervision) 46.09 91.62

Table 1: Accuracy (%) comparison of different models on Improvement and Regression datasets

the first version of the model and logged the user
interaction with the model output. Whenever the
system spell corrects a given user query and user
accepts it by clicking on the products (indicated by
query CTR) from the altered query, we consider
that as a positive correction. We collected this data
for a month and used the same to fine-tune the sub-
sequent versions of our model. This fine tuning
process allows for continual learning of the model
from user feedback. A more detailed continual
learning with knowledge distillation is our future
area of work. For evaluation, we obtain 72K hu-
man labelled query pairs. This data is created by
stratified sampling from unique head/tail queries
(queries sorted in descending order of frequencies
in a month and split into 2 equal quantiles: head
and tail). These are then labeled by the human
judges who provide the corrected queries for the
input set. We measure the performance separately
on 2 types of sub-datasets called Regression and
Improvement. The regression set consists of 90%
head and 10% tail queries and is hence predomi-
nantly clean. This ratio is inverted for the improve-
ment set where 90% are tail (tough queries) and
has a lot of spell mistakes.

5 Results and Discussion

We conduct both offline and online evaluation of
our models.
Offline evaluation: Table 1 shows the results of
multiple baselines on the Improvement and Regres-
sion data sets. Row 1 compares the performance
of ReparoS with a statistical model GoogleSWBS
(Whitelaw et al., 2009) that corrects at a word-level.
We improved this model to correct the entire query
using beam search (Freitag and Al-Onaizan, 2017)
(to avoid combinatorial explosion of candidates)
and a language model. In Row 2, Zhou et al.
train a bidirectional RNN based sequence to
sequence model with encoder/decoder architecture
for NMT. Row 3-5 has NeuSpell (Jayanthi et al.,

2020) that is bidirectional encoder-only model
with sequence labeling task for each input token.
Jayanthi et al. provide a toolkit where different
models (ELMO, CNN-LSTM, BERT) can be
plugged while the last two layers remain constant.
We chose their best performing variant with BERT,
i.e., Neuspell-BERT for comparison. In Row 3,
we evaluate unmodified NeuSpell model on our
evaluation sets and observed poor performance. To
provide a better domain adaptation, we plugged
in our in-house trained BERT model that is
pre-trained on e-commerce search queries. Row 4,
5 show the performance of this model. In Row 4,
we use the data generation methods suggested by
Jayanthi et al. on our data and then train this model.
Although we see an increase in the numbers but
still not better than the other models. Row 5
shows the results when we train this NeuSpell
model plugged in with in-domain BERT with our
data generation techniques. This also is the best
performing configuration among all the NeuSpell
experiments. The results also demonstrate the
improvements due to our data generation methods
as the seed queries/words for Row 4 and 5 were
same. Additionally, we observe that seq-to-seq
model (RNN, Transformer) is better than sequence
labeling one. Another limitation of NeuSpell
due to sequence labeling is that it can’t handle
compounding errors like iphonepro to iphone
pro. It’s evident that our diverse synthetic data
generation techniques are effective and lead to
significant improvement even with a simple 1 layer
enc/dec (ReparoS-Base) transformer compared
to deeper pre-trained models like BERT and
NeuSpell. Adding candidates from our novel
phonetic transliteration model was beneficial and
led to a total absolute gain of 2-3% at query level
consistently across the models and 7.5% accuracy
improvement at the word candidate level.

Effect of curriculum learning: While ReparoS-
Base itself is good than the competent baselines,

691



Treatment Control ∆Page-
CTR

∆Cart-
Add

∆Null-
Search

∆Corr-
ections

∆Click-
back

ReparoS-
Base

Google-
SWBS

0.13% 1.02% 0% 2.92% -1.56%

ReparoS-
C2

ReparoS-
Base

0.06% 0% -6.94% 7.65% -3.43%

Table 2: A/B results against control @5%significance

our error analysis showed that it still couldn’t ad-
dress the complex edit/phonetic + compounding
spell errors. This led us to design a few new cur-
ricula to improve. Our first curriculum ReparoS-
Base-1, was to simply add more of complex
edit/phonetic+compounding training samples. This
resulted in marginal improvement over ReparoS-
Base. However, with a different curriculum of
only fine-tuning ReparoS-Base on tougher mis-
takes (model ReparoS-C1) we observe that the per-
formance increases significantly on the Improve-
ment Set where most of the mistakes lie, however,
there’s a drop in the Regression Set performance
when compared to the ReparoS-Base and ReparoS-
Base-1. On analyzing this further, we observed that
this was due to the over-correction problem where
the model is aggressively altering correct queries
in the regression set. Hence, we change the cur-
riculum and in ReparoS-C2 we find that a further
fine-tuning on weakly supervised user feedback
data improves upon all the variants significantly on
both the data sets. This is intuitively due to rela-
tively more frequent queries in the Regression Set
on which receiving implicit user-feedback through
clicks is possible at scale. Thus adding this new
curriculum helped acheive the best performance.

Online evaluation: In production, we adopt
a 2-step architecture by adding an ML ranker
(Yang, 2022) that does the final candidate
selection (from multiple candidates from the
ReparoS/GoogleSWBS). This multi-stage setup
empirically produced better results than just fine-
tuning the NMT model since top-10 accuracy of
ReparoS-C2 is 76.31% on Improvement Set and
98.08% on Regression Set. This helped all the
models (and ReparoS more due to their better top-k
accuracy) and is removed from results discussion
for brevity.

Table 2 reports the online performance of
ReparoS-Base against its control bucket of
GoogleSWBS (our first deployed in-house produc-
tion model) and later ReparoS-C2 against the con-
trol bucket of ReparoS-Base.

In both the A/B tests, 20% of the users were ran-
domly assigned to each bucket (control and treat-
ment) and the experiments were run for 3 weeks
each to achieve statistical and practical significance.
ReparoS-C2 is the currently deployed model serv-
ing the entire search traffic of our app for more
than 9 months. At our scale, 0.01% is quite a sig-
nificant change in PageCTR. Both ReparoS-Base
and ReparoS-C2 show a reduction in click backs
while increasing spell system coverage as well as
the Search results page CTR. ReparoS-C2 also re-
duced the Null Searches drastically while ReparoS-
Base improved the number of cart adds by the users.
These results demonstrate the effectiveness of both
the versions of ReparoS across multiple user and
business metrics.

6 Conclusion

We presented the generation of large synthetic and
weakly supervised labeled data for different types
of user spell mistakes including a creative deep
learning model to generate the phonetic mistakes.
We then presented a sequence-to-sequence deep
Transformer based Spell model with curriculum
learning on tough spell mistakes and user feedback
data that demonstrates superior performance than
state-of-the-art statistical and neural spelling cor-
rection models. Our solution is currently deployed
on an India’s e-commerce platform and serves over
billions of queries per month from over 450 million
users across 100% zip codes of India. With new
users with varying literacy rates joining our plat-
form every day, spell correction remains a tough
problem to solve. We found that deeper NMT mod-
els result in better performance but are impractical
(in the current state due to higher latencies) to de-
ploy in production to serve real-time user requests.
Hence our future work is to focus on model prun-
ing, quantization, and knowledge distillation and
continual learning to reduce latencies for deploy-
ment and improve upon our current system.

7 Acknowledgements

We thank our colleagues Samir Shah, Pooja Kusha-
lappa, Shubham Kumar Rastogi, Adit Mittal,
Rikkin Majani for stimulating discussions and crit-
ical feedback. We also thank our human annotators
for their help in labelling and evaluation.

692



References
K Atkinson. 2009. Gnu aspell.

Yoshua Bengio, Jérôme Louradour, Ronan Collobert,
and Jason Weston. 2009. Curriculum learning.
ICML ’09, page 41–48, New York, NY, USA. Asso-
ciation for Computing Machinery.

Adriane Boyd. 2009. Pronunciation modeling in
spelling correction for writers of english as a for-
eign language. In Proceedings of Human Language
Technologies: The 2009 Annual Conference of the
North American Chapter of the Association for Com-
putational Linguistics, Companion Volume: Student
Research Workshop and Doctoral Consortium, pages
31–36.

Eric Brill and Robert C Moore. 2000. An improved
error model for noisy channel spelling correction. In
Proceedings of the 38th annual meeting on associ-
ation for computational linguistics, pages 286–293.
Association for Computational Linguistics.

Silviu Cucerzan and Eric Brill. 2004. Spelling correc-
tion as an iterative process that exploits the collective
knowledge of web users. In Proceedings of the 2004
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 293–300, Barcelona, Spain.
Association for Computational Linguistics.

Fred J. Damerau. 1964. A technique for computer de-
tection and correction of spelling errors. Commun.
ACM, 7(3):171–176.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Jeffrey L. Elman. 1993. Learning and development in
neural networks: The importance of starting small.
Cognition, 48:71–99.

Mike Lewis et al. 2019. BART: denoising sequence-
to-sequence pre-training for natural language gen-
eration, translation, and comprehension. CoRR,
abs/1910.13461.

Pravallika Etoori, Manoj Chinnakotla, and Radhika
Mamidi. 2018. Automatic spelling correction for
resource-scarce languages using deep learning. In
Proceedings of ACL 2018, Student Research Work-
shop, pages 146–152.

Markus Freitag and Yaser Al-Onaizan. 2017. Beam
search strategies for neural machine translation. In
Proceedings of the First Workshop on Neural Ma-
chine Translation, pages 56–60, Vancouver. Associa-
tion for Computational Linguistics.

Jianfeng Gao, Xiaolong Li, Daniel Micol, Chris Quirk,
and Xu Sun. 2010. A large scale ranker-based system
for search query spelling correction. In Proceedings
of the 23rd International Conference on Computa-
tional Linguistics (Coling 2010), pages 358–366, Bei-
jing, China. Coling 2010 Organizing Committee.

Wolf Garbe. 2021. Symspell: Spelling correction and
fuzzy search: 1 million times faster through symmet-
ric delete spelling correction algorithm.

Saša Hasan, Carmen Heger, and Saab Mansour. 2015.
Spelling correction of user search queries through
statistical machine translation. In Proceedings of the
2015 Conference on Empirical Methods in Natural
Language Processing, pages 451–460.

Sai Muralidhar Jayanthi, Danish Pruthi, and Graham
Neubig. 2020. NeuSpell: A neural spelling correc-
tion toolkit. In Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Process-
ing: System Demonstrations, Online. Association for
Computational Linguistics.

Rosie Jones, Benjamin Rey, Omid Madani, and Wiley
Greiner. 2006. Generating query substitutions. In
Proceedings of the 15th International Conference on
World Wide Web, WWW ’06, page 387–396, New
York, NY, USA. Association for Computing Machin-
ery.

Mark D. Kernighan, Kenneth W. Church, and William A.
Gale. 1990. A spelling correction program based on
a noisy channel model. In Proceedings of the 13th
Conference on Computational Linguistics - Volume
2, COLING ’90, page 205–210, USA. Association
for Computational Linguistics.

Guillaume Klein, Yoon Kim, Yuntian Deng, Jean Senel-
lart, and Alexander Rush. 2017. OpenNMT: Open-
source toolkit for neural machine translation. In Pro-
ceedings of ACL 2017, System Demonstrations, pages
67–72, Vancouver, Canada. Association for Compu-
tational Linguistics.

Donald Knuth. 1973. The art of computer programming:
Volume 3, sorting and searching. pages 391–392.

Taku Kudo. 2018. Subword regularization: Improving
neural network translation models with multiple sub-
word candidates. arXiv preprint arXiv:1804.10959.

Maria Movin. 2018. Spelling correction in a music en-
tity search engine by learning from historical search
queries.

Peter Norvig. 2009. Beautiful data. page 234–239.

Hisami Suzuki and Jianfeng Gao. 2012. A unified ap-
proach to transliteration-based text input with online
spelling correction.

Kristina Toutanova and Robert C. Moore. 2002. Pronun-
ciation modeling for improved spelling correction. In
Proceedings of the 40th Annual Meeting on Associa-
tion for Computational Linguistics, ACL ’02, page
144–151, USA. Association for Computational Lin-
guistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998–6008.

693

http://aspell.net/
https://doi.org/10.1145/1553374.1553380
https://www.aclweb.org/anthology/W04-3238
https://www.aclweb.org/anthology/W04-3238
https://www.aclweb.org/anthology/W04-3238
https://doi.org/10.1145/363958.363994
https://doi.org/10.1145/363958.363994
http://arxiv.org/abs/1910.13461
http://arxiv.org/abs/1910.13461
http://arxiv.org/abs/1910.13461
https://doi.org/10.18653/v1/W17-3207
https://doi.org/10.18653/v1/W17-3207
https://www.aclweb.org/anthology/C10-1041
https://www.aclweb.org/anthology/C10-1041
https://github.com/wolfgarbe/symspell
https://github.com/wolfgarbe/symspell
https://github.com/wolfgarbe/symspell
https://doi.org/10.18653/v1/2020.emnlp-demos.21
https://doi.org/10.18653/v1/2020.emnlp-demos.21
https://doi.org/10.1145/1135777.1135835
https://doi.org/10.3115/997939.997975
https://doi.org/10.3115/997939.997975
https://aclanthology.org/P17-4012
https://aclanthology.org/P17-4012
https://www.oreilly.com/library/view/beautiful-data/9780596801656/
https://doi.org/10.3115/1073083.1073109
https://doi.org/10.3115/1073083.1073109


Casey Whitelaw, Ben Hutchinson, Grace Y. Chung, and
Gerard Ellis. 2009. Using the web for language
independent spellchecking and autocorrection. In
Proceedings of the 2009 Conference on Empirical
Methods in Natural Language Processing: Volume 2
- Volume 2, EMNLP ’09, page 890–899, USA. Asso-
ciation for Computational Linguistics.

Fan et al Yang. 2022. Spelling correction using pho-
netics in E-commerce search. In Proceedings of the
Fifth Workshop on e-Commerce and NLP (ECNLP
5), Dublin, Ireland. Association for Computational
Linguistics.

Yingbo Zhou, Utkarsh Porwal, and Roberto Konow.
2017. Spelling correction as a foreign language.
arXiv preprint arXiv:1705.07371.

Canxiang Zhu, Zhiming Chen, Yang Liu, Juan Hu, Shu
qiong Sun, Bixiao Cheng, Zhen-dong, and Yang.
2019. Automatic query correction for poi retrieval
using deep and statistical collaborative model.

8 Appendix

8.1 Experimental Setup

For model training, we used GPU set-up (NVIDIA
Tesla V100-SXM2) while for inferencing in the
user path we used CPU set-up (Intel x_86, 64 bit,
2.1GHz, VM with KVM Hypervisor). After hyper-
parameter tuning, we used 8 attention heads, and
128 hidden dimensions with Adam Optimizer with
learning rate set to 1.0 and β1 = 0.8, β2 = 0.998,
ϵ = 1e− 8. We used sentencepiece (Devlin et al.,
2018) (Kudo, 2018) to generate a subword vocab-
ulary of size 8K. Beam-width was set to 10 in the
decoder phase. OpenNMT (Klein et al., 2017) was
used for training due to its CTranslate utility 4 for
faster inference (brought down CPU inference time
for 1 layer model to < 7ms from 25ms per query
at single concurrency. For fine-tuning we set learn-
ing rate to 0.0001 and all the model parameters are
updated during the training.

8.2 Latency/Accuracy trade-offs with deeper
models

While deeper models improve the accuracy, they
also take more time in inference which is criti-
cal in live systems like search query spell correc-
tion. Table 3 summarizes the comparison of deeper
models on time taken for inference on both GPU
(NVIDIA Tesla V100-SXM2) and CPU(Intel x_86,
64 bit, 2.1GHz, VM with KVM Hypervisor) set-
ups along with the corresponding model metrics.
Please note that for NeuSpell, we have used the

4https://github.com/OpenNMT/CTranslate2

Model CPU
time

GPU
time

Imp Reg set

NeuSpell[in-domain BERT]
(12-encoder layers)

71 20 32.6 84.2

ReparoS-C2 (1-encoder and
1-decoder layer)

6.67 7.85 46.09 91.62

ReparoS-C2 (4-encoder and
4-decoder layers)

16.43 18.19 51.27 92.83

ReparoS-C2 (6-encoder and
6-decoder layers)

56.08 27.92 52.6 93.14

Table 3: Accuracy(%) vs latency trade-off as depth of
the models increase. Time is reported in ms.

12 layer in-domain BERT to match NeuSpell’s in-
built out-of-domain BERT which also has 12 layers
of encoders. For ReparoS, the number of encoder
and decoder layers were always kept equal. Due
to higher latencies on CPUs (the typical econom-
ical serving infrastructure of choice) observed on
deeper models, we eventually chose ReparoS-C2
with one layer of encoder/decoder.

8.3 A/B Metrics
• PageCTR: Click through rate of Search Re-

sults Page

PageCTR = #Pages with at least 1 click
#Total Pages shown

• CartAdd: Number of products per user visit
(to the search page) being added by the users
to the cart to purchase

CartAdd = #Search V isits with product added to cart
#Total user visits to search page

• NullSearch: It represents ratio of search result
page with no results to total search results
pages shown

NullSearch = #Pages with no results
#Total Pages shown

• Corrections: It represents the number of times
spell system changed a user query and has
to be looked in conjunction with the other
metrics.

Coverage = #Spell system changed original query
#Total searches

• Clickback: It measures events where user tells
the system to show results for his/her origi-
nal query by clicking ’show results instead
for <original query>’. Hence, a reduction in
Clickback and NullSearch denotes improve-
ment.

Clickback = #clicks on ′results for originalquery′
#Total search requests

694

https://doi.org/10.18653/v1/2022.ecnlp-1.9
https://doi.org/10.18653/v1/2022.ecnlp-1.9

