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Abstract

Recent work has shown that large-scale anno-
tated datasets are essential for training state-of-
the-art Question Answering (QA) models. Un-
fortunately, creating this data is expensive and
requires a huge amount of annotation work. An
alternative and cheaper source of supervision
is given by feedback data collected from de-
ployed QA systems. This data can be collected
from tens of millions of user with no additional
cost, for real-world QA services, e.g., Alexa,
Google Home, and etc. The main drawback
is the noise affecting feedback on individual
examples. Recent literature on QA systems
has shown the benefit of training models even
with noisy feedback. However, these studies
have multiple limitations: (i) they used uniform
random noise to simulate feedback responses,
which is typically an unrealistic approximation
as noise follows specific patterns, depending on
target examples and users; and (ii) they do not
show how to aggregate feedback for improving
training signals. In this paper, we first collect
a large scale (16M) QA dataset with real feed-
back sampled from the QA traffic of a popular
Virtual Assistant. Second, we use this data to
develop two strategies for filtering unreliable
users and thus de-noise feedback: (i) ranking
users with an automatic classifier, and (ii) ag-
gregating feedback over similar instances and
comparing users between each other. Finally,
we train QA models on our filtered feedback
data, showing a significant improvement over
the state of the art.

1 Introduction

Large pre-trained language models, e.g., based on
The Transformer neural network (Lin et al., 2022),
have recently improved Natural Language Process-
ing and Information Retrieval in several tasks, e.g.,
document classification (Chaudhary et al., 2020),
Question Answering (QA) (Garg et al., 2020), neu-
ral retrieval (Karpukhin et al., 2020).

∗Work done during an internship at Amazon Alexa.

Transformer models can be conveniently pre-
trained on large-scale unlabeled web data through
general task-agnostic unsupervised objectives, e.g.,
Masked Language Model (MLM) and Next Sen-
tence Prediction (NSP), making the networks able
to be easily specialized on various downstream
tasks (Devlin et al., 2019). However, they still re-
quire labeled training data (expensive to produce)
to be adapted on the target domain. Recent re-
search in QA has shown that the more data is used
for fine-tuning the models, the better is the final per-
formance (Huber et al., 2022). For instance, Garg
et al. (2020) showed and measured the benefits
of using large-scale labeled web datasets, Google
NQ (Kwiatkowski et al., 2019), for training their
answer selection ranker. The authors divided the
fine-tuning stage into two steps: transfer and adapt
(TANDA). In the first step, the pre-trained Trans-
former is tuned on general out-of-domain large-
scale QA data. Then, the resulting model is further
trained on the target domain. However, building
large-scale annotated resources is costly in terms
of expert annotator work and annotation time. To
reduce costs, various strategies to generate cheap
training data have been recently explored, includ-
ing data augmentation (Pappas et al., 2022; Riabi
et al., 2021), distant supervision (Lin et al., 2018;
Zhao et al., 2021), and active learning (Kratzwald
et al., 2020).

A rather different approach is based on the avail-
ability of feedback data, i.e., the QA system output
(typically an answer) is evaluated by users. These
question/answer (q/a) pairs can be used for further
improving the training of QA systems (Li et al.,
2022; Campos et al., 2020). User feedback can,
thus, be used to build large and cheap training data,
especially when the QA system constitutes the back
bone of commercial applications such as virtual as-
sistants, e.g., Google Home, Alexa, Siri, to which
million questions are asked every day. Unfortu-
nately, feedback data is affected by noise, i.e., the
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individual feedback over a q/a pair has high proba-
bility to be incorrect. Indeed, users are not expert
annotators, and they often provide judgments with
lack of knowledge, subjectivity, and specific pref-
erences. For instance, some users may return a
positive feedback to a wrong answer that sounds
funny. Therefore, feedback data may be ineffective
for further training accurate models: in some cases,
it can even degrade the accuracy of models trained
on small datasets labelled by expert annotators.

How to obtain effective training data labelled
with feedback is an interesting open problem. For
example, Rebbapragada and Brodley (2007) and
Sun et al. (2007) provide weights to the training
instances according to a mislabeling probability.
However, to the best of our knowledge, previ-
ous work used artificially generated datasets, e.g.,
by adding random uniform noise to labeled cor-
pora (Campos et al., 2020). This does not represent
the characteristics of real users’ generated traffic,
as the noise distributes differently with respect to
different questions (according to categories, seman-
tics, pragmatics, trends, etc.). Users have indeed
different attitudes and behaviors, and they may in-
teract differently with the responses of a QA sys-
tem. Approximating the error probability distribu-
tion of feedback is a main challenge, preventing
weighting methods to be effective.

To study this problem, we first collect and ana-
lyze a large-scale users’ feedback dataset (16M q/a
pairs) sampled from the traffic of a popular virtual
assistant. Then, we propose two effective solu-
tions to reduce the label noise and improve training
performance: (i) we use an automatic classifier,
trained on off-the-shelf answer selection data to
automatically grade the reliability of users. Then,
we select training examples using the most reliable
users. (ii) We cluster together similar questions so
that we compare the answer from different users
and again rank them based on how much they are
close to the majority judgments. Our experiments
show that both proposed methods improve state-
of-the-art models much more than using noisy and
unfiltered data.

2 Related work

Training QA systems with feedback data after mod-
els deployment received considerable attention in
the past years. Campos et al. (2020) for instance,
simulated a scenario where an initial deployed
machine reading model is continuously trained

through feedback responses, showing promising
sandbox performance. Authors simulated feed-
backs as positive whenever the answer span pre-
dicted by the system matches the gold span exactly,
and negative otherwise. A similar scenario was
considered by Li et al. (2022), where feedback was
collected through crowdworkers. The authors them-
selves pointed out the limits of these studies as the
results were based on artificial data distribution.

Other authors explored feedback such as ex-
planation of incorrect responses by chatbots (Li
et al., 2016; Weston, 2016). However, the feedback
in these studies is automatically generated using
heuristics. Similarly, Rajani et al. (2019) collected
human explanations for commonsense QA in the
form of natural language sequences, and used the
data to improve existing models with state-of-the-
art performance.

The main weakness of previous work is that most
of existing analyses (i) are based on artificially gen-
erated data (Campos et al., 2020; Li et al., 2022,
2016; Weston, 2016) or (ii) use crowdsourced work-
load (i.e., annotators) to simulate real feedback data.
As a consequence, these approaches are not suitable
for industrial scenarios since they do not consider
noise distribution of real users’ generated data. In
contrast, our work is based on real user data from
a virtual assistant, which provides answer using
a web-based QA system. Our results are general-
izable to most industrial scenarios targeting open
domain QA.

3 Operational setting

We consider the task of selecting the correct an-
swer sentence among a set of candidates extracted
from web-documents retrieved for a given question.
Formally, let Σ∗ be the set of strings (or general
sentences) and Q ⊆ Σ∗ be the set of questions
according to a certain input distribution. Given
an input question q ∈ Q and a set of k sentences
{si}ki=1 ∈ Σ∗k (e.g., returned by a search engine),
the answer selector can be defined as a function
r : Q × Σ∗ → R, which assigns a probability
score to each q/a pair, r(q, si), and returns the an-
swer associated with the highest ranked pair, i.e.,
argmaxi=1...k r(q, si). We use the state-of-the-art
model for answer sentence selection (Garg et al.,
2020; Lauriola and Moschitti, 2021), which imple-
ments r with a Transformer model. This encodes
an input pair (q, si) as [CLS] q [SEP] si [EOS] and
returns the associated score through a classification
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head on top of the [CLS] token.

3.1 Internal Feedback Dataset (IFD)

We use a popular virtual assistant to collect a large
internal dataset constituted by: (i) open domain
user questions, (ii) their answers selected from
web-documents by a QA system, and (iii) feed-
back provided by users to the answers. We first
pre-processed the data by de-identifying the users.
Then, we limited the sample to questions asked
in 2022. Finally, we removed questions asked by
users who provided feedback to less than 4 an-
swers. Overall, we collected a dataset, D, of 16M
tuples, (qi, si, fi, uj), where qi is an open-domain
question, si is the answer generated by the virtual
assistant, fi ∈ {−1,+1} is the binary feedback
returned by the user, and uj is the user id. In the
remainder of this paper, we refer this resource as
Internal Feedback Dataset (IFD).

Please note that, as the questions are from real
users, for several internal and external regulations,
we cannot release the resource for public research.
To improve replicability of our findings, we provide
empirical results on the impact of our approach and
data on public benchmarks.

4 Training with de-noised Feedback

The standard approach to de-noise training exam-
ples is to assign them different weights according
to their reliability. Finding these weights for indi-
vidual feedback instances is an open problem. We
propose two methods: The first is based on a com-
pletely new idea (to our knowledge): we observed
that different users have different accuracy in as-
sessing the correctness of answers. Since manually
labeling millions of users is not feasible, we use
an automatic answer selector classifier, trained on
off-the-shelf data. The second approach is based
on standard collaborative filtering applied to user
clusters, which are created by comparing questions
using state-of-the-art text similarity techniques.

4.1 User Relevance Score

We provide a Relevance Score (RS) to users in two
steps: First, we measure the agreement between
the user annotation and an automatic answer se-
lection model, r, which provides a probability of
correctness of the answers for the target questions.
More formally, the agreement/similarity between
the classifier score and the associated feedback is
r(qi, si)·fi, where r(qi, ai) ∈ [−1,+1] is the score

and fi ∈ {−1,+1} is the binary user feedback. In-
tuitively, the higher is the agreement the higher is
the probability that the feedback is correct.

In the second step, we computed RS of an user
as the average of the agreement scores computed
on all examples he/she gave a feedback. In short,
we assign RS to the user uj , defined as:

RS(uj) =

∑
(qi,si,fi,uj)∈Duj

r(qi, si) · fi
|Duj |

where Duj ⊂ D is the set of tuples for which
the user uj gave a feedback, i.e., Duj =
{(qi, si, fi, uk) ∈ D : k = j}.

Finally, to obtain accurate training data we con-
sider the annotation of only reliable users. These
are obtained by ranking users with RS and discard
those having a score below a certain threshold. We
build r using a state-of-the-art Electra-large model
trained for answer sentence selection as described
by (Garg et al., 2020).

4.2 Collaborative filtering
Our second filter is based on the intuition that users
have different knowledge and they may provide
accurate feedback to certain type of questions and
low quality feedback to others.

Broadly speaking, the feedback assigned by
other users to a given answer can provide some
insights on the quality of a target user. If a user
tends to disagree with the majority of feedback for
a given question, then we can filter out the user as
their judgment cannot be considered reliable.

Let X be user-question matrix where the ji-th
entry, i.e., X[j,i] ∈ {−1, 0,+1}, contains the feed-
back of the user j to the question i. +1 positive
feedback, −1 negative, 0 missing. By construction,
the i-th column, that is, X[:,i], contains all feedback
collected for a given question. We define the voted
feedback, f̄i, for the question, i, as the average of
non-missing judgments, which can be easily com-
puted as the ratio between the L1 and L0 norm of
the i-th column vector: f̄i =

∥X[:,i]∥1
∥X[:,i]∥0 . Eventually,

let f̄ be the voted feedback vector ([f̄1, f̄2 . . .]).
We define the reliability of the user j as the aver-
age proximity between its feedbacks and f̄ , that is,
X[j,:]f̄

⊤.
Similarly to the previous approach, we use this

reliability score to rank users and to filter those
with a score below a certain threshold.

The main issue with this approach is the sparsity
of the user-question matrix. Typically, questions
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are unique word sequences, and thus the amount of
questions with feedback from different users is low.
In order to overcome this limitation, we extend the
collaborative approach by aggregating questions
(i.e., columns), which are semantically identical or
at least similar. We define a cluster of questions, ck,
as the set of semantically equivalent questions, and
we represent the user-cluster interactions through
a matrix Xc. The jk entry of the user-cluster rela-
tions matrix, that is Xc

[j,k] contains the feedback of
the user j for a question in the k-th cluster. If a user
provides feedback to multiple questions belonging
to the same cluster we average the them.

We find question clusters using a standard k-
means algorithm, where the semantic distance be-
tween questions is computed with a Transformer
model. We used a RoBERTa-large model trained
on various semantic similarity tasks1 and further
fine-tuned on Quora Question Pairs, a popular
dataset for question-question similarity tasks. Ex-
amples are encoded as [CLS] question [SEP] an-
swer [EOS]. The representations developed in the
last Transformer layer associated with the [CLS] to-
ken are then used to compute the distance between
two questions. For simplicity, we used the standard
euclidean distance function.

During a preliminary experimentation phase, we
set the number of clusters to 50,000. This value
represents a good trade-off between quality of the
clusters (i.e., we do not have unrelated questions,
which look similar, in the same cluster) and the
amount of feedback per cluster. We observed that
more than 95% of the clusters have at least 100
pieces of feedback.

5 Empirical assessment

We divided our experiments in 3 groups: First,
we analyze the quality of our filtered data through
manual evaluation. Then, we show that the massive
amount of noisy feedback can improve the perfor-
mance of QA models already trained on large-scale
high-quality annotated data. Finally, we analyze
the impact of the de-noising strategies described in
the previous sections.

5.1 Qualitative evaluation

The first step of our analysis concerns the eval-
uation of the proposed filtering strategies. Both
filters rank the users according to their likelihood

1The checkpoint is available here https://huggingface.
co/sentence-transformers/all-roberta-large-v1

Sample top 10% bottom 10%
Random 0.49
Relevance filtering 0.73 0.36
Collaborative filtering 0.53 0.38

Table 1: MCC computed between expert annotators and
various samples of feedback, including random sample
and top/bottom 10% of the rank produced by our filters.

probability of being good annotators. Hence, users
in the top of the rank provide higher quality data
compared to users in the bottom of the rank.

To evaluate this assumption, we ranked all tuples
from IFD according to relevance and collaborative
scores and we randomly sampled 200 tuples from
the top and the bottom 10% of the ranks. Then,
we manually analyzed these samples to evaluate
and quantify the amount of label errors (noise).
We used expert annotators and the Matthews Cor-
relation Coefficient (MCC) (Chicco and Jurman,
2020) to measure the agreement between users’
feedback and annotators’ labels. This value ranges
between -1 (totally uncorrelated) and 1 (perfectly
correlated). The higher is the value of MCC on
the sample, the higher is the alignment between
feedback labels and annotators’ judgments (that we
consider as gold standard), and consequently the
quality of the feedback data. Compared to other
metrics, e.g., accuracy or F1, MCC is not affected
by class-skewness. We also computed the same
score on a random sample from the original unfil-
tered dataset for further comparison.

The results in Table 1 shows that, notwithstand-
ing the limits and simplicity of the proposed filter-
ing strategies, they are clearly able to correctly rank
tuples, placing noisy examples lower in the rank.
The samples annotated from the top 10% of the
ranks have indeed a higher MCC score compared
to the tuples sampled from the lower 10%. Also,
the relevance filtering seems to work better.

5.2 Training with noisy feedback
Datasets We consider two popular annotated
datasets for answer sentence selection tasks:
ASNQ (Garg et al., 2020) and WikiQA (Yang
et al., 2015). ASNQ is a large-scale resource de-
rived from Natural Questions (Kwiatkowski et al.,
2019). For each input question, candidate answer
sentences are extracted from a selected wikipedia
page. The dataset consists of 20M labeled q/a
pairs, making it one of the largest existing re-
sources for this task. WikiQA is a curated small
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Configuration P@1 MAP MRR
IFD 66.9 78.7 79.8
ASNQ 83.1 88.0 89.4
WikiQA 75.5 83.6 85.0
IFD ;WikiQA 81.9 88.0 89.1
ASNQ ;WikiQA 84.4 88.8 90.4
ASNQ ;IFD ;WikiQA 86.1 90.4 91.5

Table 2: Preliminary evaluation of IFD. Sequential fine-
tuning is denoted by ;. Models are tested on WikiQA.

resource consisting of 3,047 questions and 29,258
q/a pairs. Similarly to ASNQ, sentences were ex-
tracted from Wikipedia abstracts associated with
each input question. In our setting, we consider
(i) WikiQA as low-resource target domain, where
we test our models, (ii) ASNQ as large-scale anno-
tated resource to improve the QA performance on
WikiQA (as described by Garg et al. (2020)), and
(iii) IFD to study the impact of feedback data on
the target domain.

Model selection We start from an Electra-base
(110M parameters, 12 layers) public checkpoint.
During the training, we set (i) the batch size to
1024 q/a pairs, (ii) the max sequence length for the
input of the Transformer to 128 tokens, (iii) the
max training epochs to 5 for ASNQ and IFD, and
to 10 for WikiQA, and (iv) a constant lr schedule
with linear warm-up of 0.1 epoch. We used Wik-
iQA validation set to monitor the validation loss
after each epoch and, in case, terminate the train-
ing, and to select the optimal learning rate, with
values [1, 2, 5] × 10−[5,6]. We used ASNQ, IFD,
and WikiQA to train the models with different con-
figurations described in the next sections, and we
used the test split of WikiQA as final test set. For
each experiment, we train and evaluate models 3
times and average the final results computed on the
test set.

Training We evaluated the following training
strategies:

• 1-step training - We fine-tune a public Trans-
former checkpoint on IFD, ASNQ, or WikiQA and
test the models on WikiQA. This allows us to iso-
late and quantify the impact of large noisy data
(IFD), large high-quality data (ASNQ), and limited
but in-domain data (WikiQA).

• 2-steps training - Inspired by recent research in
answer sentence selection (Garg et al., 2020), we
first train models on large datasets, i.e., IDF or

ASNQ, and then we further fine-tune the models
on the target domain (WikiQA).

• 3-steps training - We sequentially fine-tuned
the model on (i) ASNQ, (ii) IFD, and (iii) Wik-
iQA. This experiment shows that, even in scenarios
where large amount of labeled data is available for
training, feedback helps the model and improves
the final accuracy.

The results of these experiments (see Table 2)
show multiple keypoints: First, large resources do
not necessarily improve the performance if their
quality is poor, e.g., small but high-quality in-
domain training data (WikiQA, 30k q/a pairs) per-
forms better than large noisy dataset (IFD). Second,
both ASNQ and IFD significantly improve the per-
formance on WikiQA when using sequential fine-
tuning approaches (lines 4-5). Not surprisingly, the
improvement of ASNQ is higher as it contains high-
quality annotations. Moreover, a last fine-tuning on
the target domain (WikiQA) always improves the
performance (lines 1-2 compared to 4-5). Finally,
the combination of high and low quality large re-
sources (line 6) further improves the performance.
Although IFD contains a considerable amount of
noise, it is still a valuable resource to improve the
performance of the model. Even thought a large
resource is available, i.e., ASNQ, feedback data is
still rather valuable.

5.3 Relevance and collaborative filtering
evaluation

We analyzed the impact of de-noising mechanisms
to improve the quality of data and consequently the
final performance. For each filter, relevance and
collaborative, we first compute the rank of users
as described in Section 4, then, we consider the
following filtered IFD versions:

Full We use the full set, regardless of the produced
ranks. This version of IFD represents the base-
line where the filtering is not used.

Top We use the top 10% of tuples from IFD ac-
cording to the rank of the filter. This allows
us to restrict the training to high-quality feed-
back.

Best We train models with 10%, 20%,
30%,. . . ,100% of IFD selected on top
on the rank of the filter. Then, we select the
model with lowest validation loss. This helps
finding an optimal trade-off between data
quantity and quality.
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Relevance f. Collaborative f.
Configuration P@1 MAP MRR P@1 MAP MRR
Full (100%) 80.4 86.2 87.7 80.4 86.2 87.7
Best (10-100%) 80.6 86.6 88.2 81.3 87.0 88.4
Random (10%) 78.2 85.1 86.7 78.2 85.1 86.7
Top (10%) 81.3 87.0 88.5 79.8 86.6 87.9
Full ;WikiQA 86.1 90.4 91.5 86.1 90.4 91.5
Best ;WikiQA 86.8 90.7 91.8 85.8 90.4 91.4
Ran. ;WikiQA 85.9 90.1 91.4 85.9 90.1 91.4
Top ;WikiQA 87.0 90.7 92.0 84.6 89.5 90.6

Table 3: Consistency and collaborative filtering - empirical results for the 4 sampling strategies. All models start
from a cehckpoint trained on ASNQ.

Random We use 10% of tuples from IFD ran-
domly sampled. This baseline emphasizes the
effect of the filter compared to the usage of
Top tuples. Both strategies indeed, Random
and Top, use the same amount of data.

For each subset and filter, we sequentially trained
an Electra-base on ASNQ and then on IDF (fil-
tered). Results in Table 3 show multiple key as-
pects: First, finding the optimal trade-off between
quantity and quality (Best) usually improves the
performance compared to the unfiltered IFD (Full),
suggesting that the filtering methods work as ex-
pected. The only exception occurs when using
collaborative filtering and fine-tuning models on
WikiQA. Note that this approach is computation-
ally expensive as we train a model for each possible
threshold (10%, 20%. . . ).

Second, using only the Top 10% of the data
further improves the results when adopting the rel-
evance filtering. This indicates that: (i) relevance
filtering works well and can be used to significantly
reduce the amount of data by a magnitude, while
improving the QA performance; (ii) collaborative
filtering shows some promising results only when
models are not fine-tuned on the target domain.
However, both approaches represent a solid base
for future research in this field. Note that these
results corroborate our manual analysis showed in
Table 1. Both experiments, manual rank evalua-
tion and models training, suggest that the relevance
filtering provides, compared to collaborative ap-
proach, a better rank and thus a better data filtering
and final performance.

6 Conclusion

Feedback data represents a huge and convenient
source of training data, which can be used to im-

prove the performance of deployed QA systems.
However, the noise affecting feedback can degrade
model performance. This paper introduces two
ML approaches to filter feedback data and to re-
duce the amount of noise. Our filters are based on
the assumption that users act differently from each
other. Thus, their behaviour induces different relia-
bility, which if modeled correctly can help to build
more effective training data. We used a large set of
question, answer, and feedback tuples (16M) sam-
pled from a commercial virtual assistant to validate
this hypothesis. Our extensive empirical assess-
ment clearly shows that filtered feedback can sig-
nificantly improve the performance of a deployed
QA system, even when the models are trained on
massive high-quality annotated resources.

Note that this work does not aim to compare dif-
ferent filtering methods to elect a superior approach.
We conjecture that the collaborative filtering can be
further improved, for instance by deeply analyzing
different clustering approaches or embeddings ex-
tractors. On the contrary, our goal is (i) to highlight
the importance and impact of using real feedback
data to improve the performance of industrial QA
models, and (ii) to provide insights for future re-
search directions. To the best of our knowledge,
this work represents the first analysis on real feed-
back data and its integration into model training.
These findings reveal promising directions to im-
prove deployed QA systems.

7 Limitations

This paper introduces two heuristic approaches to
filter noisy feedback data. Although we showed
that these simple methods improve the performance
of QA models, they have various limitations and
they represent only an initial step for future re-
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search on real feedback data.
The core of the relevance filtering is based on

the assumption that correct feedback occur when
the model and the user agree on the labels. This
approach may introduce a selection bias towards
tuples associated with "simpler" q/a pairs, which
are already well understood by the model and thus
potentially ineffective for training. Although the
model can easily discard q/a pairs whose feedback
are clearly different, the risk is that uncertain pairs
close to the classification boundary (i.e., model
score close to 0) are penalized and easily filtered
as they will receive a reliability score close to 0.

Regarding the collaborative approach, the main
limitation concerns the clustering strategy adopted
to aggregate questions. On one hand, we want to
reduce as much as possible the number of clusters
such that we have a sufficiently high amount of
feedback per cluster. This makes the proximity
computation between users and the voted feedback
vector robust.

On the other hand, the clustering may introduce
additional noise by aggregating different and non-
equivalent questions into the same cluster. This
aspect may reduce the reliability of the voted feed-
back vector.

Finally, as mentioned in the previous sections,
feedback data and q/a pairs used in this work come
from real users traffic. For this reason, we only de-
scribed the high-level approach of integrating feed-
back and we showed the impact on public bench-
marks. A harsh limitation is caused by the private
nature of the customer data, which cannot be re-
leased for public research.
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