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Abstract

We train language models (LMs) with fed-
erated learning (FL) and differential privacy
(DP) in the Google Keyboard (Gboard). We
apply the DP-Follow-the-Regularized-Leader
(DP-FTRL) (Kairouz et al., 2021b) algorithm
to achieve meaningfully formal DP guarantees
without requiring uniform sampling of client
devices. To provide favorable privacy-utility
trade-offs, we introduce a new client partici-
pation criterion and discuss the implication of
its configuration in large scale systems. We
show how quantile-based clip estimation (An-
drew et al., 2021) can be combined with DP-
FTRL to adaptively choose the clip norm dur-
ing training or reduce the hyperparameter tun-
ing in preparation for training. With the help of
pretraining on public data, we train and deploy
more than twenty Gboard LMs that achieve
high utility and p—zCDP privacy guarantees
with p € (0.2,2), with two models addition-
ally trained with secure aggregation (Bonawitz
etal., 2017). We are happy to announce that all
the next word prediction neural network LMs
in Gboard now have DP guarantees, and all fu-
ture launches of Gboard neural network LMs
will require DP guarantees. We summarize our
experience and provide concrete suggestions
on DP training for practitioners.

1 Introduction

FL and Gboard LMs. In cross-device federated
learning (FL), client devices collaboratively train a
model without directly exchanging their local data
(Kairouz et al., 2019). Google Keyboard (Gboard)
was an early adopter of FL to train models that im-
prove the user experience, following data minimiza-
tion principles (Bonawitz et al., 2021) to protect
users’ privacy from some risks. Language mod-
els (LMs) are trained with FL to support various
features in Gboard, including Next Word Predic-
tion (NWP), Smart Compose (SC), and On-The-
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Figure 1: Gboard features supported by language mod-
els: NWP for next word, SC for inline suggestion, and
OTF for candidates re-ranking.
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Fly rescoring (OTF). As illustrated in Fig. 1, NWP
(Hard et al., 2018) uses an LM to suggest a word,
which is triggered after a previous word is com-
mitted; SC provides longer inline suggestions to
accelerate typing, which can be triggered per char-
acter when the confidence is high; OTF is used
to re-rank the candidate words generated during
typing before a word is committed.

Models, metrics and tasks. We train LMs
with the same neural network (NN) architecture
described in (Hard et al., 2018): a one-layer
LSTM/CIFG of 670 hidden neurons, with in-
put and output word-based embeddings of dimen-
sion 96. OTF LMs use a larger vocabulary (~
30K words) compared to NWP LMs (~ 10-20K
words); the number of parameters for models with
a 10K/20K/30K vocabulary is 2.4M/4.4M/6.4M,
respectively. SC is a downstream task that reuses
NWP LMs without any retraining from data. We
train NWP LMs and OTF LMs from populations of
devices categorized by language and location. For
example, en-US NWP denotes the task of training
NWP model on data generated by devices using
English in the United States.

Federated Averaging (FedAvg) (McMahan et al.,
2017) and variants (Wang et al., 2021) are pop-
ular FL training algorithms in practice. In each
communication round, the server will orchestrate
a small subset of client devices for training and
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Figure 2: System overview of federated learning of Gboard language models with differential privacy and secure

aggregation.

aggregate the resulting model deltas to update the
global model. In a successful round, the system
guarantees the number of clients participating in
training is at least as large as the configured report
goal (Bonawitz et al., 2019). A model is typically
tested and deployed after training for several thou-
sands of rounds. Top-1 in-vocab accuracy is used
to track the utility during training and additional
metrics for A/B testing are introduced in Sec. 3.

DP and DP-FTRL. Differential privacy (DP) can
be combined with FL to provide a formal guar-
antee that the trained model will not memorize
specific users’ data, which provides stronger pri-
vacy protection by executing data anonymization
principles (Bonawitz et al., 2021; Wang et al.,
2021). Ramaswamy et al. (2020) applied DP-
FedAvg (McMahan et al., 2018; Geyer et al.,
2017), a variant of DP-SGD (Abadi et al., 2016)
for user/client-level DP, to train production LMs
in FL. Ramaswamy et al. (2020) demonstrated
anonymization via empirical auditing techniques
by Carlini et al. (2019) but did not provide a for-
mal DP guarantee. Achieving a strong formal DP
guarantee for DP-FedAvg would require privacy
amplification-by-sampling, which necessitates sam-
pling clients uniformly at random on each round.
However, a cross-device FL system has limited
control over client sampling as devices have to
satisfy local criteria such as being charging and
connected to an unmetered network to be eligible
for participation (Bonawitz et al., 2019; Balle et al.,
2020). In contrast, we deploy a recent algorithm,
DP-FTRL (Kairouz et al., 2021b), allowing us to
achieve strong privacy and utility for production
models without uniform sampling assumptions.

Contributions. We discuss our strategy and expe-
rience of training Gboard LMs with FL and DP. We
introduce an algorithm that enables adaptive clip-
ping (Andrew et al., 2021) in DP-FTRL (Kairouz
et al., 2021b) (Sec. 2.1), which can reliably esti-
mate the clip norm to reduce hyperparameter tun-
ing. We discuss the impact of scaling up computa-
tion and limiting client participation (Sec. 2.2), and
identify the algorithm and system configurations
for the regime of strong privacy and utility. We
also successfully apply pre-training (Sec. 2.3) to
improve privacy and utility, which is (to the best of
our knowledge) the first time pretraining is applied
to training a DP model directly from users’ data.

We combine DP-FTRL with secure aggrega-
tion (SecAgg) to further strengthen the data min-
imization properties of our approach (Sec. 2.4).
Fig. 2 provides a system overview of the techniques
for training Gboard language models with feder-
ated learning and differential privacy. Finally, we
summarize concrete suggestions for practitioners
training differentially private models to deploy in
production in (Sec. 2.5), and present and analyze
twenty Gboard LMs trained with formal DP guar-
antees (Sec. 3). We are happy to announce that
all the next word prediction neural network LMs
in Gboard now have DP guarantees, and all future
launches of Gboard neural network LMs will re-
quire DP guarantees.

2 DP FL in Practice

2.1 DP-FTRL and adaptive clipping

As described in Alg. 1, we apply DP-FTRL in FL.
by modifying the FedAvg algorithm: clip the model
update A, and add noise when updating the global
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Algorithm 1 Federated DP-FTRL with 'adaptive clipping

input : report goal m, learning rate for model weights on client 7. and on server 75, momen-
tum S = 0.9, noise multiplier for model delta za, total number of rounds 7', restart rounds

R = {128 + 1024i,i = 0,1,...}, quantile based norm estimation C” , target quantile v = 0.5 ,

learning rate for norm 7, = 0.2, noise stddev for clip estimation o}, = m /20

Initialize model #°, momentum buffer AY
clip norm Cy = C°
Initialize tree T with za, Cy, and T, with o
for eachroundt =0,1,2,...,7T do

Q! « (at least m users for this round)

for each user i € Q! in parallel do
(AL bY) « ClientUpdate(i, 6, 1., Cp, C?)
//Update model weights with noise addition
At = L PrivateSum ( 7y, > icok Ak ke,
At = A 4 AL g — 0 4 p A
//Estimate quantile-based norm

b* = LPrivateSum (Tor Dicor vF, k€0,

T~ m

CHH1 « CY - exp (—m(?)t - t’y))

B

1])

)

//Restart and |adjust clip norm
if t € R then
CH — Ct+1

Restart tree Ty and 7, with updated Cy

function ClientUpdate(z, 8y, 1, Cy, C)
0 «— 90
G < (user i’s local data split into batches)
for batch g € G do
0« 6—nVib;g)
A<+ 60— Ao
b Ljaj<o

A’ « A-min (1, HCTGH) //IClipping
return (A, b)
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Figure 3: DP training of the en-GB NWP model. Adap-
tive clipping performs similar to fixed clipping, while
achieves slightly weaker guarantees. Pre-training sig-
nificantly reduces the number of rounds to reach the
utility target, and achieves stronger guarantees.

model. Two additional hyperparameters are intro-
duced for DP: the clip norm C, which bounds the
norm of A, and the noise multiplier z, which de-
termines the standard deviation zC' for the added
Gaussian noise. We discuss clip norm in this sec-
tion and defer the discussion of noise multiplier and
other privacy related hyperparameters to Sec. 2.2.

Andrew et al. (2021) introduced an adaptive clip-
ping method that automatically adjusts the clip
norm each round by privately estimating the norm
of the model delta at a targeted quantile. How-
ever, adaptive clipping cannot be directly applied
to DP-FTRL as the tree-based noise addition in DP-
FTRL assumes a fixed clip norm across rounds. We
integrate adaptive clipping in DP-FTRL through
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restarts, where the quantile estimate C? is continu-
ally tracked but only becomes an active clip norm
Cy upon tree restarting. As both the aggregated
model delta A? and the quantile b* use tree-based
noise, we can directly use the privacy accounting
in (Kairouz et al., 2021b) by applying the noise
transformation in Thm. 1 in App. A.

In practice, Alg. 1 slightly inflates the noise for
the model from zC' to zoC and requires restarts
that complicate the privacy accounting for DP-
FTRL. Moreover, we find that a fixed clip norm can
achieve comparable or slightly better model utility,
and is more robust in experiments with large report
goal. For example, adaptive clipping for the de-DE
NWP model experiences catastrophic failure and
makes no progress in the first 1000 rounds.

Nevertheless, adaptive clipping can reduce hy-
perparameter tuning for many tasks when privacy
budget allows. Fig. 3 shows the evaluation accuracy
and corresponding clip norm for DP training the en-
GB NWP model with report goal 6500 and noise
multiplier 7. The adaptive clip curve starts from a
small initial clip norm to avoid catastrophic failure
due to large initial noise and eventually catches up
on accuracy. The estimated clip norm (quantile
v = 0.5) stabilizes and we can fix the clip norm
to 5 based on the estimated value. The clip norm
is relatively insensitive, especially when tuning to-



gether with the server learning rate. However, clip
norm can have a wide tuning range across tasks
and models, and quantile-based estimation is still
useful for estimating a clip norm to be fixed.

2.2 DP parameters and system configuration

The privacy guarantees of DP-FTRL (Kairouz et al.,
2021b) are affected by several factors: noise multi-
plier z, number of total rounds 7', max participation
(MaxP) of a client, and min separation (MinS) of
rounds between the participation of the same client.
The noise multiplier is a conventional parameter
for controlling privacy-utility trade-off: large noise
achieves strong privacy guarantees but can poten-
tially hurt the utility. Achieving the same utility
with smaller rounds 7' can significantly improve
the privacy guarantees. Next, we discuss the ef-
fect of MaxP and MinS, and the privacy-utility-
computation trade-off for system configuration.
Client participation. DP-FTRL achieves strong
privacy if each client only participates once dur-
ing training, or the number of client participation
is limited when a client can participate multiple
times. Two parameters are introduced to charac-
terize client participation for DP-FTRL: the maxi-
mum participations (MaxP) of a client in all train-
ing rounds and the minimum round separation
(MinS) between any single client’s two participa-
tions. MaxP and MinS are correlated as MaxP
is upper bounded by rounds 7" divided by MinS.
In general, for fixed rounds 7', decreasing MaxP
and increasing MinS can lead to stronger privacy
guarantees without changing utility. In addition,
Cho et al. (2023) suggests potential advantage of
increasing MinS for utility.

When using the worst-case MaxP estimated by
rounds 7' divided by MinS, Fig. 4c shows increas-
ing MinS can achieve stronger privacy measured
by smaller zCDP values. However, the maximum
MinS is limited by the population size divided by
the number of clients per round lower bounded by
the report goal. For example, when the report goal
is 6500 for small population of around 105, MinS
has to be smaller than 153 rounds, so strong privacy
guarantees are difficult to achieve when training for
3000 rounds. While we cannot measure the precise
population size in the FL system due to client dy-
namics, we estimate the population size of various
Gboard tasks as ranging from 0.8 million to 16.6
million in Tab. 1.

Report goal. We study report goal for privacy-

computation trade-off based on a hypothesis used
in (McMahan et al., 2018; Kairouz et al., 2021b;
Xu et al., 2022): for sufficiently large data, the
utility is approximately non-decreasing if the noise
multiplier and clients per round (lower bounded
by report goal) proportionally increase. We pro-
vide empirical justification to this hypothesis by
comparing the evaluation accuracy of two training
runs: one with a report goal of 500 and noise mul-
tiplier of 0.54, versus another of report goal 6500
and noise multiplier 7. On more than three Gboard
language tasks, we observed that the final utility
remains similar, or slightly better for larger report
goals. Moreover, using a larger report goal speeds
up learning at the beginning of training. Based on
the hypothesis, we plot Figs. 4a and 4b by linearly
increasing report goal and noise multiplier, and
assuming the MinS is set to the maximum possi-
ble value (population divided by report goal) for
strong privacy. Though a large report goal can
limit the MinS, it generally leads to stronger pri-
vacy guarantees for reasonable population size and
total rounds.

System configuration. According to Figs. 4a
and 4b, we choose a large report goal of 6500 sup-
ported by the large scale FL systems and aim for
maximum MinS for DP-FTRL. To control MinS in
practice, a timer is introduced on clients in the FL
system so that a client will only become eligible
to participate in training (again) after a certain pe-
riod of time has passed. McMahan and Thakurta
(2022) used a timer period of 24 hours to train
the es-ES NWP model, which led to an observed
MinS of 313. The MinS of es-ES is upper bounded
by 4.21M /6500 ~ 647 and can be potentially im-
proved by increasing the timer period. We increase
the timer period in the unit of 24 hours due to the
uneven diurnal participation pattern (Yang et al.,
2018; Zhu et al., 2022), and generally observe that
MinS can proportionally increase with the timer pe-
riod before reaching the possible maximum. How-
ever, there are many factors in the FL system that
may affect the wall clock training speed, which
makes it challenging to optimize the timer period
to maximize MinS.

2.3 Public pretraining

We explore pretraining on public data for produc-
tion models, which were shown to substantially
improve model utility in DP simulations (Li et al.,
2021; De et al., 2022; Xu et al., 2022; Wang et al.,
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Figure 4: The effect of population size, number of rounds, report goals, and min separation on DP-FTRL privacy
guarantees. For a fixed number of rounds to achieve utility target, increasing report goal and min separation can

achieve stronger guarantees measured by smaller zCDP.

2023). We pretrain a model for each Gboard lan-
guage task using the multi-lingual C4 dataset (Raf-
fel et al., 2019; Xue et al., 2020) collected from
public web pages. Fig. 3a shows that pretraining
can reduce ~ 1000 rounds to reach a given utility
threshold under the same noise multiplier, which
can significantly improve the privacy guarantees as
shown in Fig. 4.

We additionally observe that: (1) it is challeng-
ing to fine-tune from a pretrained model when the
word embeddings are shared for input and output
to reduce the parameter size of LMs for on-device
deployment; (2) the accuracy may decrease in the
first a few rounds of fine-tuning; (3) pretraining
helps with diminishing marginal returns: at some
point further pretraining does not necessarily im-
prove the final performance. Therefore, we use
models with separate input and output embeddings
and pretrain with half of the C4 dataset for Gboard
LM:s.

2.4 Combining with secure aggregation

Secure aggregation (SecAgg) (Bonawitz et al.,
2017) ensures that the central server can only ac-
cess the aggregated update from a large set of
clients, preventing inspection of individual client
updates. We combine SecAgg and DP-FTRL to
provide strong data minimization and anonymiza-
tion protection (Bonawitz et al., 2021). To avoid
the suboptimal privacy cost from the ¢ norm in-
crease of the discretized vector in SecAgg, we
follow the protocol of (Kairouz et al., 2021a) for
discretizing, flattening, and modularly clipping’
the client model updates—this introduces mini-
mal norm inflation later accounted in DP-FTRL.
The large report goal requirement for strong DP

'"Tn our current implementation, there is a very small
chance that modular operator in SecAgg will inflate the sensi-
tivity. The problem will be fixed by an additional element-wise
clipping of the flattened vector.

guarantees is challenging for SecAgg in practice,
which requires a slightly different system config-
uration. The SecAgg training speeds we observe
are still notably slower, and we leave for future
work potential improvements such as compression
for communication efficiency (Chen et al., 2022),
new DP methods to reduce report goal (Choquette-
Choo et al., 2022), and embedding compression to
reduce round time (Shu and Nakayama, 2017).

2.5 Recommended strategies and practices

We summarize our strategy for training Gboard
LMs with DP. (1) Pre-train the model on public
datasets if possible. (2) Choose the maximum noise
multiplier that meets the utility target based on
small report goal simulation experiments on pub-
lic datasets that is similar to the production task.
(3) Based on the target number of rounds and esti-
mated population, linearly increase the report goal
and noise multiplier to meet the privacy target, and
choose a large report goal supported by the system.
If the privacy target is unachievable, fix the report
goal to maximum, and increase the noise multi-
plier to target on a model with suboptimal utility.
(4) Estimate the possible maximum MinS based on
chosen report goal and estimated population, and
configure the timer period to approach the MinS;
use previous experience of model training speed if
applicable. (5) If the hyperparameters (e.g., learn-
ing rates) are known from previous experiments
or simulation on public datasets, apply DP-FTRL
with adaptive clipping (Alg. 1) without manual tun-
ing to try meet the privacy and utility goals. Note
that Alg. 1 needs to account the noise inflation and
restart for privacy guarantees. (6) If Alg. 1 fails or
stronger privacy and utility are desirable, we can
run a few small report goal experiments with Alg. 1
that tune quantile « and server learning rate 7, se-
lect the best learning rate, and fix the clip norm
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based on the estimation; and run DP-FTRL with
large report goals. (7) SecAgg can be used for all
experiments, and precise MaxP and MinS are com-
puted by post-processing for privacy accounting.

3 Deploying DP LMs

A/B test metrics. We introduce metrics in A/B test
to measure the utility of Gboard LMs. (1) Picked
Rate (PRate): the ratio of picked candidates among
the NWP predictions; or SC predictions when it is
triggered. (2) Accuracy (Acc): the ratio of candi-
dates matching the final committed words among
the NWP model predictions. (3) Trigger Rate: the
ratio of words with SC triggered among all com-
mitted words, which is an important metric when
PRate is fixed. (4) Word Modified Ratio (WMR):
the ratio of words being modified during typing or
after committed; improvement is shown by reduc-
tion. (5) Word Per Minute (WPM): the number of
committed words per minute.

Privacy guarantees. Same as (McMahan and
Thakurta, 2022), the zero-one device neighbor-
ing relationship ((Kairouz et al., 2021b, definition
1.1)) is adopted for DP. For user’s with a single
device, device-level DP corresponds directly to
user-level DP. Our privacy guarantee holds for all
well-behaved clients during training, and we do
not account for privacy cost of modest amount of
hyperparameter tuning. DP is measured by the
zero-Concentrated DP (zCDP) (Bun and Steinke,
2016) guarantee that has been used by US cen-
sus bureau (US Census Bureau, 2021), and can be
easily converted to (e, d)-DP. We use the privacy
accounting in (Kairouz et al., 2021b, appendix D)
implemented in Tensorflow Privacy (TFP Authors,
2022), and follow the guidelines outlined in (Pono-
mareva et al., 2023, Sec. 5.3) to report detailed
narratives of privacy guarantees in App. C.
Experimental setup. We use the implementation
in App. B, and apply the strategy in Sec. 2.5 to
train Gboard LMs with DP. We present NWP re-
sults in Tab. 1, and OTF results in Tab. 2. As
Smart Compose (SC) reuses NWP LMs, SC has the
same DP guarantees as NWP models by the post-
processing property (Dwork et al., 2014). Follow-
ing es-ES NWP model in (McMahan and Thakurta,
2022), we choose noise multiplier 7 and report
goal 6500 based on simulation in (Kairouz et al.,
2021b) on public StackOverflow dataset (TFF Au-
thors, 2022b). We pretrain the models on public
datasets and configure the timer period to control

client participation, separately for different tasks.
We use DP-FTRL with adaptive clipping and small
report goal 500 to tune server learning rate and
estimate the clip norm. Interestingly, we observe
the learning rate and clip norm to be consistent for
various Gboard LMs, and tuning seems to be unnec-
essary. DP-FTRL with fixed clip and large report
goal is used to run the final model for deployment.
Result analysis. All NWP and OTF models in
Tabs. 1 and 2 are trained with stronger guarantees
(smaller zCDP) compared to zCDP > 2.6 used by
US Census Bureau (US Census Bureau, 2021). For
five NWP models in Europe (DE, GB, FR, IT, PT),
the DP NN models significantly improve the utility
compared to previous N-gram models. On en-US,
pt-BR and en-IN, DP NN models also achieve com-
parable, or slightly better utility compared to their
non-private versions as the strong models. SecAgg
is successfully applied to en-US and es-ES, and
can achieve good privacy-utility trade-off with a
smaller number of rounds, likely due to the system
configuration that results in more clients per round.
However, SecAgg is also notably slower. There is a
general positive correlation between the estimated
population size and privacy guarantees.

However, only a few tasks approach the pos-
sible maximum MinS for strong privacy guaran-
tees, which highlights the challenge of both estimat-
ing population and controlling client participation.
Longer training rounds are often used for NWP
(compared to OTF) as the non-private NN baselines
are strong, and to improve the downstream SC per-
formance. As an example, we train es-ES NWP
for 1900 rounds with a pretrained model, while the
previous models (McMahan and Thakurta, 2022)
is trained for 2000 rounds without pretraining. Our
es-ES NWP model slightly improves the utility
measured by PRate and Acc, and improves the
zCDP bound from 0.81 to 0.35 due to the larger
MinS by timer configuration. We highlight that
our es-ES model at round 1240 already achieves
similar NWP utility and a strong privacy guarantee,
but the utility of SC keeps improving with train-
ing. Compared to the previous model in (McMahan
and Thakurta, 2022), our model improves the SC
trigger rate by 4.23% at round 1240, and 9.51% at
round 1900.

4 Concluding remarks

We discuss our experience and summarize our strat-
egy for training production Gboard LMs with FL
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Utilit Privac Est.

NWP | Rounds 5p %) }:Acc(+%) MinS/MaxP/Tin?er 2CDP | Pop. (M) | BaseModel
de-DE | 930 8.28 12.49 21274/ 48h 048 | 3.4

en-GB | 980 3.26 772 226/47172h 048 | 2.38

fr-FR | 1280 378 8.50 180/5/72h 089 | 279 N-gram

iIT | 1620 3.08 9.86 303/5/72h 071 | 332

ptPT | 530 3.99 782 5478748h 186 | 0.83

es-ES | 1900 0.29 0.48 526/3/144h | 035
es-ES* | 1750 0.32 0.56 349/4/144n | 052 | 21| ZCDPOS8I
en-US | 2800 20.39 0.11 371/7/48h 131 3
en-US* | 1360 -0.30 0.15 622/2/144h | 0.25 No.DP NN
ptBR | 3600 0.18 0.29 909/3/144h | 045 16.6

en-IN | 1290 0.19 0.40 170 /67 96h 14 | 772
essMX | 1980 20.15 0.29 34375/96h 064 | 9.96

es-AR | 640 0.25 3.50 90/5/96h 084 | 4.09 Mix

Table 1: Live A/B tests of DP NWP models. Utility shows the improvement from previously deployed models;
privacy shows the key parameters and corresponding device-level zCDP; all models are trained by DP-FTRL with
report goal of 6500 and noise multiplier of 7; en-US*/es-ES* are trained with SecAgg in addition to DP; the base

model in AR is a mix of N-gram and No-DP NN models.

Utilit Privac

OTE | Rounds |<5omary V}\]/PM(+%) MinS/MaxP/Timer zCDg DP-¢(5 = 10~ 10)
de-DE | 1170 1.01 0.59 206/ 5/ 48h 0.89 9.01
en-GB | 1220 1.99 0.38 206/5/72h 0.89 9.01

es-ES | 1280 1.03 0.60 197/5/48h 0.89 9.01

f-FR | 1300 1.83 0.67 290/4/72h 0.61 731

iIT | 1360 139 0.80 18875/ 48h 0.89 9.01
u-RU | 870 0.72 0.34 32773/ 48h 0.32 5.13

ptPT | 430 171 0.32 54777 48h 0.99 9.56

Table 2: Live A/B tests of DP OTF models. Utility shows the WMR decrease and WPM increase; privacy shows
the key parameters and corresponding zCDP bound; all models are trained with DP-FTRL with report goal of 6500
and noise multiplier of 7; estimated population for ru-RU is 6.63M and other tasks can be found in Tab. 1.

and DP. We propose an algorithm applying adap-
tive clipping (Andrew et al., 2021) in DP-FTRL
(Kairouz et al., 2021b) to reduce the hyperparamter
tuning. We discuss the impact on privacy and utility
of several important factors: the clip norm, report
goal, client participation, and pre-training. Our
study highlights the importance of system and algo-
rithm co-design for differential privacy in practice,
the challenges of tuning in FL systems, and op-
portunities to improve the scalability and stability
of FL with DP and/or SecAgg. More than twenty
LMs with formal DP guarantees are trained and
launched to support Gboard NWP, SC, and OTF
features, including en-US and es-ES NWP models
additionally with SecAgg. Our experience demon-
strates the possibility of training DP models for
practical applications when a large scale system is
available for large scale data. Therefore, Gboard is

introducing and enforcing a new policy: DP has to
be applied in all future training and launching of
Gboard LMs.

Acknowledgement

The authors would like to thank Stanislav Chik-
navaryan, Adria Gascon, Zachary Garrett, and Ti-
mon Van Overveldt for infrastructure configura-
tion support; Swaroop Ramaswamy, Om Thakkar,
Abhradeep Thakurta for early discussion on models
and algorithms; Jeremy Gillula for internal review
process; Xu Liu, Shumin Zhai, and Daniel Ramage
for leadership support.

References

Martin Abadi, Andy Chu, Ian Goodfellow, H Bren-
dan McMahan, Ilya Mironov, Kunal Talwar, and

635



Li Zhang. 2016. Deep learning with differential pri-
vacy. In Proceedings of the 2016 ACM SIGSAC con-
ference on computer and communications security,
pages 308-318.

Galen Andrew, Om Thakkar, H Brendan McMahan,
and Swaroop Ramaswamy. 2021. Differentially pri-
vate learning with adaptive clipping. Conference on
Neural Information Processing Systems (NeurIPS).

Borja Balle, Peter Kairouz, Brendan McMahan,
Om Thakkar, and Abhradeep Guha Thakurta. 2020.
Privacy amplification via random check-ins. Ad-
vances in Neural Information Processing Systems,
33:4623-4634.

Kallista Bonawitz, Peter Kairouz, Brendan McMahan,
and Daniel Ramage. 2021. Federated learning and
privacy: Building privacy-preserving systems for
machine learning and data science on decentralized
data. Queue, 19(5):87-114.

Keith Bonawitz, Hubert Eichner, Wolfgang Grieskamp,
Dzmitry Huba, Alex Ingerman, Vladimir Ivanov,
Chloe Kiddon, Jakub Kone¢ny, Stefano Mazzocchi,
Brendan McMabhan, et al. 2019. Towards federated
learning at scale: System design. Proceedings of
machine learning and systems, 1:374-388.

Keith Bonawitz, Vladimir Ivanov, Ben Kreuter, Anto-
nio Marcedone, H Brendan McMahan, Sarvar Patel,
Daniel Ramage, Aaron Segal, and Karn Seth. 2017.
Practical secure aggregation for privacy-preserving
machine learning. In proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communica-
tions Security, pages 1175-1191.

Mark Bun and Thomas Steinke. 2016. Concentrated
differential privacy: Simplifications, extensions, and
lower bounds. In Theory of Cryptography Confer-
ence, pages 635-658. Springer.

Nicholas Carlini, Chang Liu, Ulfar Erlingsson, Jernej
Kos, and Dawn Song. 2019. The secret sharer: Eval-
uating and testing unintended memorization in neu-
ral networks. In 28th USENIX Security Symposium
(USENIX Security 19), pages 267-284.

Wei-Ning Chen, Christopher A Choquette Choo, Peter
Kairouz, and Ananda Theertha Suresh. 2022. The
fundamental price of secure aggregation in differ-
entially private federated learning. In International
Conference on Machine Learning, pages 3056-3089.
PMLR.

Yae Jee Cho, Pranay Sharma, Gauri Joshi, Zheng Xu,
Satyen Kale, and Tong Zhang. 2023. On the conver-
gence of federated averaging with cyclic client par-
ticipation. arXiv preprint arXiv:2302.03109.

Christopher A Choquette-Choo, H Brendan McMa-
han, Keith Rush, and Abhradeep Thakurta. 2022.
Multi-epoch  matrix factorization mechanisms
for private machine learning. arXiv preprint
arXiv:2211.06530.

Soham De, Leonard Berrada, Jamie Hayes, Samuel L
Smith, and Borja Balle. 2022. Unlocking high-
accuracy differentially private image classification
through scale. arXiv preprint arXiv:2204.13650.

DP Team. 2022. Google’s differential privacy
libraries. https://github.com/google/
differential-privacy.

Cynthia Dwork, Aaron Roth, et al. 2014. The algorith-
mic foundations of differential privacy. Foundations

and Trends® in Theoretical Computer Science, 9(3—
4):211-407.

Robin C Geyer, Tassilo Klein, and Moin Nabi. 2017.
Differentially private federated learning: A client
level perspective. arXiv preprint arXiv:1712.07557.

Andrew Hard, Kanishka Rao, Rajiv Mathews, Swaroop
Ramaswamy, Francoise Beaufays, Sean Augenstein,
Hubert Eichner, Chloé Kiddon, and Daniel Ramage.
2018. Federated learning for mobile keyboard pre-
diction. arXiv preprint arXiv:1811.03604.

Peter Kairouz, Ziyu Liu, and Thomas Steinke. 2021a.
The distributed discrete gaussian mechanism for fed-
erated learning with secure aggregation. In Inter-
national Conference on Machine Learning, pages
5201-5212. PMLR.

Peter Kairouz, Brendan Mcmahan, Shuang Song,
Om Thakkar, Abhradeep Thakurta, and Zheng Xu.
2021b. Practical and private (deep) learning without
sampling or shuffling. In International Conference
on Machine Learning (ICML), pages 5213-5225.

Peter Kairouz, H. Brendan McMahan, Brendan Avent,
Aurélien Bellet, Mehdi Bennis, Arjun Nitin Bhagoji,
Kaylee Bonawitz, Zachary Charles, Graham Cor-
mode, Rachel Cummings, Rafael G. L. D’Oliveira,
Salim El Rouayheb, David Evans, Josh Gard-
ner, Zachary Garrett, Adria Gascén, Badih Ghazi,
Phillip B. Gibbons, Marco Gruteser, Zaid Har-
chaoui, Chaoyang He, Lie He, Zhouyuan Huo,
Ben Hutchinson, Justin Hsu, Martin Jaggi, Tara Ja-
vidi, Gauri Joshi, Mikhail Khodak, Jakub Konecny,
Aleksandra Korolova, Farinaz Koushanfar, Sanmi
Koyejo, Tancréde Lepoint, Yang Liu, Prateek Mittal,
Mehryar Mohri, Richard Nock, Ayfer Ozgiir, Ras-
mus Pagh, Mariana Raykova, Hang Qi, Daniel Ra-
mage, Ramesh Raskar, Dawn Song, Weikang Song,
Sebastian U. Stich, Ziteng Sun, Ananda Theertha
Suresh, Florian Tramer, Praneeth Vepakomma,
Jianyu Wang, Li Xiong, Zheng Xu, Qiang Yang, Fe-
lix X. Yu, Han Yu, and Sen Zhao. 2019. Advances
and open problems in federated learning. CoRR,
abs/1912.04977.

Xuechen Li, Florian Tramer, Percy Liang, and Tat-
sunori Hashimoto. 2021. Large language models
can be strong differentially private learners. arXiv
preprint arXiv:2110.05679.

Brendan McMahan, Eider Moore, Daniel Ramage,
Seth Hampson, and Blaise Aguera y Arcas. 2017.

636


https://github.com/google/differential-privacy
https://github.com/google/differential-privacy
http://arxiv.org/abs/1912.04977
http://arxiv.org/abs/1912.04977

Communication-efficient learning of deep networks
from decentralized data. In AISTATS, pages 1273—
1282. PMLR.

Brendan McMahan, Daniel Ramage, Kunal Talwar,
and Li Zhang. 2018. Learning differentially private
recurrent language models. In International Confer-
ence on Learning Representations (ICLR).

Brendan McMahan and Abhradeep Thakurta. 2022.
Federated learning with formal differential privacy
guarantees.

Natalia Ponomareva, Hussein Hazimeh, Alex Kurakin,
Zheng Xu, Carson Denison, H. Brendan McMahan,
Sergei Vassilvitskii, Steve Chien, and Abhradeep
Thakurta. 2023. How to dp-fy ml: A practical guide
to machine learning with differential privacy.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2019. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. Journal of Machine Learning Research.

Swaroop Ramaswamy, Om Thakkar, Rajiv Mathews,
Galen Andrew, H Brendan McMahan, and Francoise
Beaufays. 2020. Training production language mod-
els without memorizing user data. arXiv preprint
arXiv:2009.10031.

Raphael Shu and Hideki Nakayama. 2017. Compress-
ing word embeddings via deep compositional code
learning. arXiv preprint arXiv:1711.01068.

TFF Authors. 2022a. TensorFlow Federated. https:
//github.com/tensorflow/federated.

TFF Authors. 2022b. TensorFlow Federated Stack-
Overflow dataset. https://www. tensorflow.org/
federated/api_docs/python/tff/simulation/
datasets/stackoverflow.

TFP Authors. 2022. TensorFlow Privacy. https://
github.com/tensorflow/privacy.

US Census Bureau. 2021. Disclosure avoidance for the
2020 census: An introduction.

Boxin Wang, Yibo Jacky Zhang, Yuan Cao, Bo Li,
H Brendan McMahan, Sewoong Oh, Zheng Xu, and
Manzil Zaheer. 2023. Can public large language
models help private cross-device federated learning?
arXiv preprint arXiv:2305.12132.

Jianyu Wang, Zachary Charles, Zheng Xu, Gauri
Joshi, H Brendan McMahan, Blaise Aguera y Arcas,
Maruan Al-Shedivat, Galen Andrew, Salman Aves-
timehr, Katharine Daly, et al. 2021. A field guide to
federated optimization. arXiv:2107.06917.

Zheng Xu, Maxwell Collins, Yuxiao Wang, Liviu
Panait, Sewoong Oh, Sean Augenstein, Ting
Liu, Florian Schroff, and H Brendan McMahan.
2022. Learning to generate image embeddings
with user-level differential privacy. arXiv preprint
arXiv:2211.10844.

637

Linting Xue, Noah Constant, Adam Roberts, Mi-
hir Kale, Rami Al-Rfou, Aditya Siddhant, Aditya
Barua, and Colin Raffel. 2020. mt5: A mas-
sively multilingual pre-trained text-to-text trans-
former. arXiv preprint arXiv:2010.11934.

Timothy Yang, Galen Andrew, Hubert Eichner,
Haicheng Sun, Wei Li, Nicholas Kong, Daniel Ra-
mage, and Francoise Beaufays. 2018. Applied fed-
erated learning: Improving google keyboard query
suggestions. arXiv preprint arXiv:1812.02903.

Chen Zhu, Zheng Xu, Mingqing Chen, Jakub Kone¢ny,
Andrew Hard, and Tom Goldstein. 2022. Diurnal or
nocturnal? federated learning of multi-branch net-
works from periodically shifting distributions. In
International Conference on Learning Representa-
tions.


http://arxiv.org/abs/2303.00654
http://arxiv.org/abs/2303.00654
https://github.com/tensorflow/federated
https://github.com/tensorflow/federated
https://www.tensorflow.org/federated/api_docs/python/tff/simulation/datasets/stackoverflow
https://www.tensorflow.org/federated/api_docs/python/tff/simulation/datasets/stackoverflow
https://www.tensorflow.org/federated/api_docs/python/tff/simulation/datasets/stackoverflow
https://github.com/tensorflow/privacy
https://github.com/tensorflow/privacy

A Privacy accounting for adaptive clipping

Theorem 1 (Privacy Accounting for Adaptive Clipping (Andrew et al., 2021)). One step of DP-FTRL with
adaptive clipping using o, noise standard deviation on the clipped counts Y, bt and za noise multiplier
on the vector sums Yy, Al is equivalent to one step of non-adaptive DP-FTRL with noise multiplier z if we

set zp = (272 — (2ab)_2)_1/2.

B Implementation.

We use the open source implementation of DP-FTRL in Tensorflow Privacy (TFP Authors, 2022) integrated
with Tensorflow Federated (TFF Authors, 2022a) as a DP aggregator for federated learning. Conceptually,
DP-FTRL adds noise to the summation of updates across rounds, i.e., PrivateSum in Alg. 1. Instead
of tracking the noise and summation separately, PrivateSum is implemented to only track the noise and
updates g1 by adding the residual of noise between round ¢ and round ¢t — 1. This design makes it easy
to integrate with various optimizer choices, for example, momentum that is important for utility; and also
allows ephemeral access of model deltas without directly storing unnoised states.

C Reporting privacy guarantees

This section clarifies the nuances of the reported DP guarantees following the guidelines outlined in
(Ponomareva et al., 2023, Sec. 5.3)

1. DP setting. This a central DP guarantee where the service provider is trusted to correctly implement
the mechanism.
2. Instantiating the DP Definition

(a) Data accesses covered: The DP guarantee applies to all well-behaved clients” in a single training
run. We do not account for hyperparameter tuning in our guarantees. Public multilingual C4
data (Raffel et al., 2019; Xue et al., 2020) is used for pre-training.

(b) Final mechanism output: Only the final model checkpoint is released for production launches,
however the mechanism’s output is technically the full sequence of privatized gradients, and
so the guarantee also applies at this level, and hence all intermediate models are protected
(including those sent to devices participating in federated learning).

(c) Unit of privacy. Device-level DP is considered, i.e., the notion of adjacency is with respect
to arbitrary training datasets on each client device, and the device might have an arbitrarily
large local dataset containing arbitrary training examples. For user’s with a single device, this
corresponds directly to user-level DP; for devices shared with multiple users, this provides
a stronger notion of DP than user-level; for a user with multiple devices that happen to both
participate in training the model, the notion is weaker, but group privacy can be used to obtain a
user-level guarantee.

(d) Adjacency definition for “neigbouring” datasets: We use the zero-out definition (Kairouz et al.,
2021b). This is a a special form of the add-or-remove definition, where neighboring data sets
differ by addition/removal of a single client. In the absence of a client at any training step, we
assume that the client’s model update gets replaced with the all zeros vector. This assumption
enforces a subtle modification to the traditional definition of the add/remove notion of DP which
allows neighboring data sets to have the same number of records.

3. Privacy accounting details

(a) Type of accounting used: Both p—zCDP (Bun and Steinke, 2016) accounting, and PLD account-
ing (DP Team, 2022) for (e, §)—DP are used.
(b) Accounting assumptions : Each client only participates limited times during the training, and

there are at least a min-separation number of rounds between two consecutive participation of a

“Clients that faithfully follow the algorithm including participation limits. Due to the design of the algorithm, a mis-behaved
client does not adversely affect the DP guarantee of any well-behaved clients.
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(d)

client, i.e., MaxP and MinS as discussed in Sec. 2.2. Client participation is enforced by a timer
on clients in the cross-device FL system.

The formal DP statement: The launched Gboard LMs have p—zCDP range in (0.2, 2). We
also transform zCDP to (€, d)—DP by PLD accounting (DP Team, 2022): given § = 10719, the
smallest zCDP p = 0.25 corresponds to DP e = 4.49; the largest zCDP p = 1.86 corresponds
to DP € = 13.69.

Transparency and verifiability: We open sourced our core implementation code in TensorFlow
Federated and Tensorflow Privacy. Key portions of the cross-device FL system are also open
sourced.
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