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Abstract

Text-to-Image Synthesis (TIS) aims to gener-
ate images based on textual inputs. Recently,
several large pre-trained diffusion models have
been released to create high-quality images
with pre-trained text encoders and diffusion-
based image synthesizers. However, popular
diffusion-based models from the open-source
community cannot support industrial domain-
specific applications due to the lack of entity
knowledge and low inference speed. In this
paper, we propose Rapid Diffusion, a novel
framework for training and deploying super-
resolution, text-to-image latent diffusion mod-
els with rich entity knowledge injected and op-
timized networks. Furthermore, we employ
BladeDISC, an end-to-end Artificial Intelli-
gence (AI) compiler, and FlashAttention tech-
niques to optimize computational graphs of the
generated models for online deployment. Ex-
periments verify the effectiveness of our ap-
proach in terms of image quality and inference
speed. In addition, we present industrial use
cases and integrate Rapid Diffusion to an AI
platform to show its practical values. 1

1 Introduction

Text-to-Image Synthesis (TIS) is a prevalent multi-
modal task that aims to generate realistic images
based on textual inputs, which supports real-world
applications such as product appearance design and
art creation. Apart from Generative Adversarial
Network (GAN)-based approaches (Agnese et al.,
2020), recently, pre-trained diffusion models (Rom-
bach et al., 2022; Ramesh et al., 2022) have been

∗B. Liu and W. Lin contributed equally to this work.
†C. Wang and K. Jia are co-corresponding authors.

1The source code is publicly available in the EasyNLP
framework (Wang et al., 2022). URL: https://github.com/
alibaba/EasyNLP.

proposed to create artistic images with qualities
comparable to or better than those from humans.

Despite the exciting advancement, for industrial
domain-specific applications, we suggest that pop-
ular latent diffusion models from the open-source
community (such as the Stable Diffusion model
series2) are incapable of supporting those appli-
cations. The reasons are are twofolds. i) For
diffusion-based methods, a CLIP-based text en-
coder (or other similar models) is required to en-
code the input texts, providing conditional inputs
for the U-Net model (Rombach et al., 2022). As
entities (or objects) are usually the key elements for
generated images, CLIP models pre-trained over
text-image pairs collected from the Web may need
more abilities of concept understanding and are
challenging to capture the specific entity knowl-
edge required for realistic image generation (Ma
et al., 2022). ii) For industrial applications, the
model inference speed and the computational cost
are vital factors to be considered. The cumbersome
computation of the iterative diffusion process is
often the bottleneck of fast inference (Song et al.,
2021). Therefore, obtaining knowledgeable dif-
fusion models to generate high-resolution images
with moderate parameter sizes and optimized im-
plementations that support fast online inference is
desirable.

To address the above issues, we propose Rapid
Diffusion, a novel framework for the training and
deploying text-to-image diffusion models with rich
entity knowledge injected and networks optimized.
In Rapid Diffusion, a knowledge-enhanced CLIP
model is effectively trained for learning entity
knowledge from knowledge graphs (KGs). To

2https://stability.ai/blog/
stable-diffusion-public-release
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generate high-resolution images and avoid param-
eter explosion, we integrate an ESRGAN-based
network (Wang et al., 2018) after the diffusion
block for image super-resolution, instead of di-
rectly leveraging a large-scale hierarchical diffu-
sion model. For online deployment, an efficient
inference pipeline is designed with the neural archi-
tectures optimized based on FlashAttention (Dao
et al., 2022). The Intermediate Representation (IR)
of computational graphs built from the generated
models are further processed by a recently released
Artificial Intelligence (AI) compiler (Zhu et al.,
2021).

In the experiments, we evaluate the effective-
ness of Rapid Diffusion in terms of the qualities
of generated images from multiple application do-
mains and the model inference speed for online
deployment. We also provide industrial use cases
to show how our framework benefits real-world
applications. In addition, we have integrated the
proposed training and deployment workflows into
an industrial, cloud-native AI platform to facilitate
zero-code model training and elastic inference on
distributed GPU clusters. In summary, the major
contributions of this work are as follows:

• We propose the Rapid Diffusion framework
for the training and deployment of domain-
specific diffusion-based TIS models. Specif-
ically, a new knowledge-enhanced model
pipeline is designed for super-resolution TIS.
An efficient inference pipeline is further de-
signed to optimize the computational graphs
of our model for faster model inference.

• Experiments over multiple domains show the
effectiveness of Rapid Diffusion in terms
of both image quality and inference speed,
achieving an average FID score of 21.90 and
×1.73 acceleration ratio compared to all the
counterparties.

• We demonstrate the industrial use case and
the integration of Rapid Diffusion to a cloud-
native AI platform to show its practical values
for real-world applications.

2 Related Work

2.1 Text-to-Image Synthesis (TIS)

TIS is a multi-modal task of converting texts to
images with the same semantic meanings. In the
early years, traditional methods (Zhu et al., 2007)
mainly focused on analyzing the correlations be-

tween sentences and images but could not gen-
erate new images on the pixel level. Generative
Adversarial Network (GAN) (Goodfellow et al.,
2014) was proposed in 2014 and became the main-
stream approach in the image synthesis field (Ag-
nese et al., 2020). GANs and their variants (Reed
et al., 2016; Liu et al., 2022b) have proved their
effectiveness in TIS but still lack the ability to
generate high-resolution images. Diffusion mod-
els (Ho et al., 2020; Sohl-Dickstein et al., 2015)
have attracted the attention of researchers in recent
years. Leveraging large-scale text-image datasets,
pre-trained diffusion models (Rombach et al., 2022;
Ramesh et al., 2022) become competitive with hu-
man painters. However, these diffusion models
need help with the efficiency problem and more
knowledge for the generation process.

2.2 Efficient Methods for Diffusion Models

Diffusion models (Ho et al., 2020; Sohl-Dickstein
et al., 2015) typically add noise to images (or latent
tensors generated from images) and then learn to
denoise step by step. The number of steps while
training may be very large, making the sampling
time-consuming. To improve the sampling effi-
ciency, a recent study (Salimans and Ho, 2022)
introduces knowledge distillation to diffusion mod-
els. This acceleration method can reduce the steps
but requires additional training. Another family
of methods tries to construct new samplers with-
out further training. For example, DDIM (Song
et al., 2021) uses a deterministic generative process
to produce images much faster. Some numerical
solvers, including forward Euler and linear mul-
tistep method (Butcher, 2000), are leveraged to
reduce the steps (Karras et al., 2022). By using
a pseudo numerical algorithm to solve differen-
tial equations on manifolds, PNDM (Liu et al.,
2022a) further improves the generation quality
within a few given steps. The better implemen-
tation of attention algorithms can speedup the pro-
cess, which requires fewer IO accesses (Dao et al.,
2022). Colossal-AI (Bian et al., 2021) acceler-
ates the training speed of diffusion models and
reduces the GPU memory usage for deployment.
In addition, when diffusion models are deployed
online, the amount of computation can be reduced
with better-complied computational graphs of these
models. For example, TensorRT3 provides an in-
ference optimizer and runtime that achieves lower

3https://github.com/NVIDIA/TensorRT
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latency of model inference. In our work, we inte-
grate various techniques from both modeling and
engineering aspects to deliver better training and
inference experiences for diffusion-based, domain-
specific TIS applications.

3 The Proposed Framework

In this section, we formally present the techniques
of the proposed Rapid Diffusion framework in de-
tail. A brief overview of Rapid Diffusion is pre-
sented in Figure 1.

3.1 Model Architecture

As seen in Figure 1, our model converts input texts
to high-resolution images by modeling the trans-
formation and interaction between three represen-
tation spaces: i) knowledge-enhanced text embed-
ding space, ii) latent space, and iii) pixel space.

3.1.1 Knowledge-enhanced Text Embedding
Space

In this stage, we aim to encode the semantics of
input texts to text embeddings. A common prac-
tice is to leverage the text encoder of CLIP (Rad-
ford et al., 2021), which jointly learns textual
and visual representations in a unified space. Yet,
CLIP pre-trained over plain text-image pairs may
have weak representation power of entities. In
our work, we leverage the 100 million text-image
pairs from Wukong (Gu et al., 2022) as our multi-
modal pre-training corpus, as our real-world ap-
plications mostly focus on the Chinese language.
For entities, we leverage the largest Chinese KG
available to us, i.e., OpenKG4 (containing over 16
million entities and 140 million relation triples).
During the CLIP pre-training process, the input
representation of an entity token e appearing in
a sentence of the Wukong corpus is augmented
by: e⃗ = e⃗txt + e⃗kg where e⃗txt is the vanilla token
embedding of the entity e, and e⃗kg is the KG em-
bedding derived by the TransE algorithm (Bordes
et al., 2013) due to its effectiveness and simplicity.
Note that although we focus on the pre-training
of Chinese Knowledge-enhanced CLIP (CKCLIP)
models here, our method is language-invariant and
can be applied to other languages with minor mod-
ifications.

During the fine-tuning process of our domain-
specific TIS models, the parameters of the text

4http://openkg.cn/

encoder of our CKCLIP model are set to be train-
able to capture more domain-related semantics. We
further add some text prompts to the input text ac-
cording to the application scenario (e.g., “the photo
of [object]”, “the picture of [object]”) and obtain
its CLIP representation as the conditional input to
the next stage.

3.1.2 Latent Space
According to the given knowledge-enhanced text
embedding e⃗, we use a latent diffusion model to
generate image encoding with similar semantic
meaning in a latent space. The model architec-
ture is U-Net (Ronneberger et al., 2015) with a
cross-attention mechanism capturing the textual
conditioning information. In the training stage, the
image x is encoded into the latent space and then
we add Gaussian noise ϵ ∼ N (0, 1) to obtain xt,
where t = 1, . . . , T is the step in the diffusion pro-
cess. The loss function of image reconstruction is
formulated as follows:

LLDM = Ex,t∼U(1,...,T ),ϵ∼N (0,1)

(
||ϵ− ϵθ(xt, t)||22

)

(1)
The generation process is the reverse of the dif-

fusion process. Starting from the random Gaus-
sian noise xT , the latent diffusion model gradually
denoises the latent tensor and successively calcu-
lates xT−1, xT−2, . . . , x1. To improve the corre-
lation between the generated image and the input
prompt, we use the classifier-free guidance (Ho
and Salimans, 2021) to generate the corresponding
images. Additionally, to avoid the efficiency prob-
lem caused by too large step T , we employ PNDM
(Liu et al., 2022a) scheduler to reduce the steps.
In our work, we also pre-train the latent diffusion
model using the Wukong dataset (Gu et al., 2022)
and fine-tune the model using every downstream
dataset respectively.

3.1.3 Pixel Space
After generating the final latent x0, a KL-
regularized decoder D reconstructs the image from
x0 in the pixel space. In our design, the generated
images are not necessarily in high resolution. In-
stead, an ESRGAN-based network (Wang et al.,
2018) is applied after the decoder such that af-
ter a single forward pass, a corresponding high-
resolution image can be generated. An alternative
design choice is directly generating high-resolution
images using the diffusion model. However, this
setting can be sub-optimal to satisfy the require-
ments of moderate model size and fast inference
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Figure 1: An overview of the Rapid Diffusion framework.

speed. Consider a base 256× 256 diffusion-based
U-Net model that employed for the TIS task, where
one with a 256× 256 −→ 1024× 1024 diffusion-
based super-resolution U-Net model and the other
with an ESRGAN-based model. The former con-
tains more parameters and requires more steps for
inference, resulting in its inference time being sev-
eral times slower than the latter. Therefore, we
adopt an ESRGAN-based model to generate high-
resolution images efficiently.

3.2 Inference Speedup Designs

The inference process of the proposed model in
this paper consists of three main components. We
profile the inference speed of the original PyTorch
model in eager mode and observe that the bottle-
neck is primarily located in the loop of the U-Net
model, where the cross-attention computation dom-
inates the inference time. The profiling result can
be seen in Figure 2. To resolve this issue, we incor-
porate automatic slicing and compilation optimiza-
tion techniques to optimize the entire pipeline in
an end-to-end manner and introduce an IO-aware
attention implementation to enhance the inference
performance further.

3.2.1 Compilation Optimization
Our algorithm generates various low-level runtime
flows for models with dynamic shapes on spe-
cific devices. It is achieved by enhancing a set
of IR to create a complete dynamic shape repre-
sentation (Zhu et al., 2021). For the operations

（a）Entire Model Pipeline （b）U-Net

Figure 2: The profiling result of model inference in the
percentage of the entire CUDA time.

with intensive memory access, we fully utilized
shared memory to design larger-grained kernel fu-
sion strategies, effectively reducing the CPU/GPU
switches (Zheng et al., 2022). Optimal graph par-
titioning and kernel implementation selection are
performed for optimal inference speed. The opti-
mization has been applied throughout the comput-
ing module, resulting in a significant improvement
in inference speed.

3.2.2 Effective IO-Aware Attention
Based on the automatic compilation optimiza-
tion, we further utilize the FlashAttention tech-
nique (Dao et al., 2022) for the cross-attention op-
erator of U-Net, which is the core of the network’s
inference bottleneck. The technique is based on
the attention IO characteristics and performs tiling
operations on the attention calculation to reduce
memory read-write computation. We introduce dif-
ferent FlashAttention kernel implementations for
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various combinations of computing devices and
hardware architectures and dynamic inputs. The
technique mentioned in the previous section effec-
tively assists us in automatically finding the optimal
implementation. As a result, the cross-attention
calculation can be accelerated without deviation,
yielding a 1.9× speed-up for the U-Net module.

4 Experiments

4.1 Experimental Settings

We first pre-train the CKCLIP model in the follow-
ing experiments using the text-image pairs from
Wukong (Gu et al., 2022) and the OpenKG. After
that, the text encoder of CKCLIP and our diffu-
sion model are pre-trained using the same data
source. We fine-tune and evaluate the model over
three domain-specific datasets to show the values
of Rapid Diffusion in real-world applications. Im-
plementation details and parameter settings can be
found in the appendix.

4.2 Results of Three Application Scenarios

We report the performance of Rapid Diffusion over
three domain-specific scenarios (i.e., E-commerce5,
Chinese Painting (Li et al., 2021) and Cuisine,
which are closely related to our applications) in
terms of Frechet Inception Distance (FID) (Heusel
et al., 2017) score. Details of the three datasets,
together with the training/validation/testing splits,
are given in Table 4 in the appendix. We compare
our model with three popular open-source diffu-
sion models, namely Stable diffusion6, Stable diffu-
sion 27, and Taiyi Diffusion8 (which is the largest
Chinese diffusion model available so far). Note
that Stable diffusion and Stable diffusion 2 mainly
support English text inputs. Hence, we leverage
the Chinese-English translation model (Wei et al.,
2022) to translate our texts to English. The results
are shown in Table 1. It can be seen that Rapid Dif-
fusion outperforms all counterparties over the three
datasets, achieving the average FID score at 21.90.
The results indicate that our knowledge-enhanced
models over domain-specific scenarios understand
domain knowledge better and can generate more
realistic and varied images.

5https://tianchi.aliyun.com/muge
6https://huggingface.co/CompVis/

stable-diffusion-v-1-4-original
7https://huggingface.co/stabilityai/

stable-diffusion-2
8https://huggingface.co/IDEA-CCNL/

Taiyi-Stable-Diffusion-1B-Chinese-v0.1

Model E-commerce CP Cuisine Avg.
Stable Diffusion 48.32 70.31 26.89 48.51
Stable Diffusion 2 59.65 60.21 29.79 49.88
Taiyi Diffusion 42.43 59.56 24.08 42.02
Rapid Diffusion 22.72 29.79 13.20 21.90

Table 1: Performance of Rapid Diffusion and baselines
over the testing sets of three application scenarios in
terms of FID score. CP denotes “Chinese Painting”.

4.3 Effectiveness of Knowledge-enhanced
Chinese CLIP

As CLIP models aim to learn cross-modal repre-
sentations, we first intrinsically evaluate our model
by text-image retrieval. We compare the vanilla
Chinese CLIP model and our CKCLIP model us-
ing the same pre-training text-image corpus. Pre-
training details can also be found in the appendix.
For evaluation, we employ the standard split of
Flickr30K-CN (Lan et al., 2017), and then fine-
tune both models. Table 2 reports the text-to-image
and text-to-image retrieval results over the testing
set. Our CKCLIP model improves retrieval perfor-
mance by significant margin (especially for R@1
metric), showing its ability to learn cross-modal
representations. In addition, we provide some qual-
itative results from the Cuisine dataset to show how
more entity knowledge can lead to better represen-
tation and generation of the key objects in images,
as shown in Figure 3.

Model Text-to-image Image-to-text
R@1 R@5 R@10 R@1 R@5 R@10

CLIP 83.3 97.3 99.5 70.1 91.9 96.4
CKCLIP (ours) 90.0 98.7 99.7 75.0 93.6 96.5

Table 2: Performance of the knowledge-enhanced CLIP
for text-image retrieval in terms of Recall@1/5/10.

Strawberry Strawberry Strawberry
Ham Pizza Mixed Noodles Hamburger

Figure 3: Qualitative results of generated images with
entity knowledge injected during CLIP pre-training.
Note that the presented cuisines may not be existent
in the real world. “Strawberry” is the target entity.

4.4 Results of Inference Speedup
For the implementation of compilation optimiza-
tion, we employ BladeDISC (Zhu et al., 2021) as
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our underlying AI compiler, which is an end-to-
end dynamic shape compiler for machine learning
workloads. Results of the comparison between
our implementation and Torch Native (eager mode)
are displayed in Table 3. According to the re-
sults, U-Net inference takes the longest in the entire
process (in 1900ms), while the text encoder and
the image decoder take only 0.012ms and 0.04ms,
respectively. However, with the optimization by
BladeDISC, we speed up the inference time of the
text encoder, U-Net and the image decoder by ×3,
×1.91, and ×1.9 times compared to the eager mode.
Additionally, FlashAttention assists us in further
optimizing U-Net, which decreases the inference
time from 994ms to 759ms. Finally, we are able
to generate images more quickly. Note that the un-
derlying GPU used in the experiments is NVIDIA
A100 (80GB), and the scheduler runs 50 in steps.

Inference Setting CLIP
(ms)

U-Net
(ms)

Decoder
(ms)

ESRGAN
(ms)

Total
(ms)

Torch Native 0.012 1900 0.04 54.5 3129
Ours (w/o. FA) 0.004 994 0.02 - 2042
Ours (w/ FA) - 759 - - 1807
Acceleration ratio ×3 ×1.91 ×1.90 - ×1.73

Table 3: Inference speedup results of Rapid Diffusion.
FA denotes “FlashAttention”.

4.5 Results of Super-resolution

For image super-resolution, the ESRGAN-based
network can be efficiently leveraged to achieve up-
scaling results. We can directly use the ESRGAN-
based network following the latent diffusion model
because it has been pre-trained on common-used
image datasets such as DIV2K (Agustsson and Tim-
ofte, 2017). However, considering the uniqueness
and consistency of domain-specific images, we
conjecture that fine-tuning enables the model to
perform better. Experiments show that after fine-
tuning, the model beats the pre-trained model ac-
cording to our qualitative and quantitative results,
which achieves 23.1 in terms of Peak Signal to
Noise Ratio9, while the pre-trained model achieves
only 22.7. Figure 4 further compares images with
and without our pre-trained/fine-tuned models.

4.6 Case Studies

We provide more cases from each application do-
main to show how much our model outperforms
previous ones. Refer to Figure 5 in the appendix.

9https://en.wikipedia.org/wiki/Peak_
signal-to-noise_ratio

Original w/o. Fine-tuning w/ Fing-tuning

Figure 4: 256× 256 → 1024× 1024 super-resolution
on Chinese cuisine images. The first line is the sample
for the image generated from our model based on user-
defined text prompts and the second line is a sample
from the validation set. (Best viewed zooming-in.)

5 Applications

In this section, we demonstrate the practical values
of Rapid Diffusion by industrial use case and the in-
tegration to Alibaba Cloud PAI (Machine Learning
Platform for AI).

5.1 Industrial Use Case
Here, we briefly discuss two real-world use cases.
The first is a fashion design for e-commerce manu-
facturers. The inputs to our system consist of key-
words for multiple elements, such as trend, fabric,
color and style. An automatic prompt generation
process is called to provide TIS models natural-
language-like inputs. For a single request of fash-
ion design, a handful of prompts can be generated,
each associated with multiple generated images.
The images are then regarded as materials for de-
signers. The cuisine dataset described previously is
from our online food delivery and local life service
platform. Our diffusion model for cuisine genera-
tion provides the inspiration functionality to help
service providers to create innovative menus where
users can select or freely enter all kinds of food-
related keywords to generate images. Note that the
images will be marked as “AI-generated” before
they are sent to our applications.

5.2 Integration to AI Platform
To allow users to create their models, we have in-
tegrated Rapid Diffusion into a cloud-native AI
platform to facilitate zero-code model training and
elastic inference. For model training, after upload-
ing training/validation datasets and checking hyper-
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parameters, a training job is automatically submit-
ted to our deep learning container, where the train-
ing command and the docker image have already
been prepared. After the job is completed, the re-
sulting model is available for deployment. Based
on Query Per Second (QPS) requirements, our pre-
diction service can scale to an adjustable number of
machines in the cloud. We can call the TIS service
via a RESTful API by HTTP requests.

6 Conclusion and Future Work

We present the Rapid Diffusion framework for
the training and deploying knowledge-enhanced,
domain-specific, high-resolution, diffusion-based
TIS models. Experimental results show the effec-
tiveness of Rapid Diffusion in both image qual-
ity and inference speed, achieving an average FID
score of 21.90 and ×1.73 acceleration ratio com-
pared to all the counterparties. We further show its
practical values through industrial use cases and the
integration into an AI platform. In the future, we
will extend the functionality of Rapid Diffusion and
further increase the inference speed by advanced
compilation optimization techniques.

Ethical Considerations

The techniques for inference speedup presented in
this work are fully methodological. Hence, there
are no direct negative social impacts. However,
as the models automatically generate the images,
they may have some negative impacts, such as the
generation of toxic content and the existence of
social biases. We suggest that the produced models
should not be used to generate offensive or inappro-
priate images for people intentionally. Users should
carefully deal with the potential risks by filtering
out these images when the models are deployed
online.

Acknowledgements

This work was partially supported by Alibaba In-
novative Research Foundation (No. D8200510),
NSFC (Grant No. 61936003), the Program for
Guangdong Introducing Innovative and Enter-
preneurial Teams (No. 2017ZT07X183), Zhuhai In-
dustry Core and Key Technology Research Project
(No. 2220004002350), and by Alibaba Cloud
Group through Research Talent Program with
South China University of Technology.

References
Jorge Agnese, Jonathan Herrera, Haicheng Tao, and

Xingquan Zhu. 2020. A survey and taxonomy of ad-
versarial neural networks for text-to-image synthesis.
Wiley Interdisciplinary Reviews: Data Mining and
Knowledge Discovery, 10(4):e1345.

Eirikur Agustsson and Radu Timofte. 2017. Ntire 2017
challenge on single image super-resolution: Dataset
and study. In IEEE Conference on Computer Vision
and Pattern Recognition Workshops, pages 126–135.

Zhengda Bian, Hongxin Liu, Boxiang Wang, Haichen
Huang, Yongbin Li, Chuanrui Wang, Fan Cui, and
Yang You. 2021. Colossal-ai: A unified deep learn-
ing system for large-scale parallel training. CoRR,
abs/2110.14883.

Antoine Bordes, Nicolas Usunier, Alberto García-
Durán, Jason Weston, and Oksana Yakhnenko.
2013. Translating embeddings for modeling multi-
relational data. In Advances in Neural Information
Processing Systems 26: 27th Annual Conference on
Neural Information Processing Systems 2013, pages
2787–2795.

John C Butcher. 2000. Numerical methods for ordinary
differential equations in the 20th century. Journal
of Computational and Applied Mathematics, 125(1-
2):1–29.

Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra,
and Christopher Ré. 2022. Flashattention: Fast and
memory-efficient exact attention with io-awareness.
CoRR, abs/2205.14135.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza,
Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron
Courville, and Yoshua Bengio. 2014. Generative ad-
versarial nets. In Advances in Neural Information
Processing Systems, volume 27. Curran Associates,
Inc.

Jiaxi Gu, Xiaojun Meng, Guansong Lu, Lu Hou, Minzhe
Niu, Hang Xu, Xiaodan Liang, Wei Zhang, Xin Jiang,
and Chunjing Xu. 2022. Wukong: 100 million large-
scale chinese cross-modal pre-training dataset and A
foundation framework. CoRR, abs/2202.06767.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner,
Bernhard Nessler, and Sepp Hochreiter. 2017. Gans
trained by a two time-scale update rule converge to a
local nash equilibrium. Advances in neural informa-
tion processing systems, 30.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. 2020. De-
noising diffusion probabilistic models. Advances
in Neural Information Processing Systems, 33:6840–
6851.

Jonathan Ho and Tim Salimans. 2021. Classifier-free
diffusion guidance. In NeurIPS 2021 Workshop on
Deep Generative Models and Downstream Applica-
tions.

301



Tero Karras, Miika Aittala, Timo Aila, and Samuli
Laine. 2022. Elucidating the design space of
diffusion-based generative models. In Advances in
Neural Information Processing Systems.

Weiyu Lan, Xirong Li, and Jianfeng Dong. 2017.
Fluency-guided cross-lingual image captioning. In
Proceedings of the 25th ACM International Confer-
ence on Multimedia, page 1549–1557.

Dan Li, Shuai Wang, Jie Zou, Chang Tian, Elisha
Nieuwburg, Fengyuan Sun, and Evangelos Kanoulas.
2021. Paint4poem: A dataset for artistic visual-
ization of classical chinese poems. arXiv preprint
arXiv:2109.11682.

Luping Liu, Yi Ren, Zhijie Lin, and Zhou Zhao. 2022a.
Pseudo numerical methods for diffusion models on
manifolds. In International Conference on Learning
Representations.

Tingting Liu, Chengyu Wang, Xiangru Zhu, Lei Li,
Minghui Qiu, Jun Huang, Ming Gao, and Yanghua
Xiao. 2022b. ARTIST: A transformer-based chi-
nese text-to-image synthesizer digesting linguistic
and world knowledge. In Findings of the Association
for Computational Linguistics: EMNLP 2022, pages
881–888.

Haoyu Ma, Handong Zhao, Zhe Lin, Ajinkya Kale,
Zhangyang Wang, Tong Yu, Jiuxiang Gu, Sunav
Choudhary, and Xiaohui Xie. 2022. EI-CLIP:
entity-aware interventional contrastive learning for
e-commerce cross-modal retrieval. In IEEE/CVF
Conference on Computer Vision and Pattern Recog-
nition, pages 18030–18040. IEEE.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sas-
try, Amanda Askell, Pamela Mishkin, Jack Clark,
Gretchen Krueger, and Ilya Sutskever. 2021. Learn-
ing transferable visual models from natural language
supervision. In Proceedings of the 38th International
Conference on Machine Learning, pages 8748–8763.
PMLR.

Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey
Chu, and Mark Chen. 2022. Hierarchical text-
conditional image generation with clip latents. arXiv
preprint arXiv:2204.06125.

Scott Reed, Zeynep Akata, Xinchen Yan, Lajanugen
Logeswaran, Bernt Schiele, and Honglak Lee. 2016.
Generative adversarial text to image synthesis. In
International conference on machine learning, pages
1060–1069. PMLR.

Robin Rombach, Andreas Blattmann, Dominik Lorenz,
Patrick Esser, and Björn Ommer. 2022. High-
resolution image synthesis with latent diffusion mod-
els. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages
10684–10695.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox.
2015. U-net: Convolutional networks for biomedical
image segmentation. In Medical Image Computing
and Computer-Assisted Intervention–MICCAI 2015:
18th International Conference, Munich, Germany,
October 5-9, 2015, Proceedings, Part III 18, pages
234–241. Springer.

Tim Salimans and Jonathan Ho. 2022. Progressive dis-
tillation for fast sampling of diffusion models. In
International Conference on Learning Representa-
tions.

Jascha Sohl-Dickstein, Eric Weiss, Niru Mah-
eswaranathan, and Surya Ganguli. 2015. Deep un-
supervised learning using nonequilibrium thermody-
namics. In International Conference on Machine
Learning, pages 2256–2265. PMLR.

Jiaming Song, Chenlin Meng, and Stefano Ermon. 2021.
Denoising diffusion implicit models. In International
Conference on Learning Representations.

Chengyu Wang, Minghui Qiu, Taolin Zhang, Tingting
Liu, Lei Li, Jianing Wang, Ming Wang, Jun Huang,
and Wei Lin. 2022. Easynlp: A comprehensive and
easy-to-use toolkit for natural language processing.
In Proceedings of the The 2022 Conference on Em-
pirical Methods in Natural Language Processing,
EMNLP 2022 - System Demonstrations, pages 22–
29. Association for Computational Linguistics.

Xintao Wang, Ke Yu, Shixiang Wu, Jinjin Gu, Yihao
Liu, Chao Dong, Yu Qiao, and Chen Change Loy.
2018. ESRGAN: enhanced super-resolution gener-
ative adversarial networks. In Computer Vision -
ECCV 2018 Workshops, pages 63–79.

Xiangpeng Wei, Heng Yu, Yue Hu, Rongxiang Weng,
Weihua Luo, and Rong Jin. 2022. Learning to gen-
eralize to more: Continuous semantic augmentation
for neural machine translation. In Proceedings of the
60th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
7930–7944.

Zhen Zheng, Xuanda Yang, Pengzhan Zhao, Guoping
Long, Kai Zhu, Feiwen Zhu, Wenyi Zhao, Xiaoyong
Liu, Jun Yang, Jidong Zhai, et al. 2022. Astitch:
enabling a new multi-dimensional optimization space
for memory-intensive ml training and inference on
modern simt architectures. In Proceedings of the
27th ACM International Conference on Architectural
Support for Programming Languages and Operating
Systems, pages 359–373.

Kai Zhu, WY Zhao, Zhen Zheng, TY Guo, PZ Zhao,
JJ Bai, Jun Yang, XY Liu, LS Diao, and Wei Lin.
2021. Disc: A dynamic shape compiler for machine
learning workloads. In Proceedings of the 1st Work-
shop on Machine Learning and Systems, pages 89–
95.

Xiaojin Zhu, Andrew B Goldberg, Mohamed Eldawy,
Charles R Dyer, and Bradley Strock. 2007. A text-to-
picture synthesis system for augmenting communica-
tion. In AAAI, volume 7, pages 1590–1595.

302



A Generated Results of Case Study

We show more generated images from our model
and baselines, presented in Figure 5.

B Data Statistics

Table 4 shows the data statistics of our experiments.
We divide the E-commerce and Chinese Painting
datasets into training, validation and testing sets ac-
cording to the ratio of 80%, 10%, and 10%. For the
Cuisine dataset, we divide 10% for validation, 10
thousand images for testing and the rest for training.
Among these datasets, E-commerce and Chinese
Painting are public datasets, while Cuisine is an in-
house dataset provided by our online food delivery
and local life service platform.

Domain #Train #Valid #Test Sum
E-commerce 75973 9497 9497 94967
CP 71362 8921 8921 89204
Cuisine 804305 89367 10000 903672

Table 4: The statistics of three datasets used in the
experiments. CP denotes “Chinese Painting”

C Hyper-parameters Settings

For knowledge-enhanced CLIP pre-training, we
follow the hyper-parameter settings in (Gu et al.,
2022). For training the latent diffusion model, we
set the learning rate as 5× 10−5, the batch size as
80, and the image size as 256 × 256. The latent
dimension of the auto-encoder is 32 × 32. The
hidden dimension of the text-encoder is 768.

For fine-tuning the super-resolution model, we
obtain low-resolution images by down-sampling
high-resolution images using the bi-cubic kernel
function. Different from the original two-stage
training process, we directly employ the pre-trained
ESRGAN model as an initialization for the gener-
ator and the discriminator. We use Adam with
β1 = 0.9, β2 = 0.999. The batch size is set to 16
and the learning rate is set to 1× 10−4 and halved
at [50k, 100k, 200k, 300k] iterations.

During model training, all the experiments are
conducted on a single server with 8 NVIDIA A100
GPUs (80G).

C.1 Hyper-parameters of Model
Architectures

Table 5 shows the model sizes of all the experiment
models, including Stable Diffusion, Stable Diffu-
sion 2, Taiyi Diffusion and our Rapid Diffusion

model. Compared with the other three baselines,
Rapid diffusion is the most compact model with
better performance in our scenarios.

Model #Params
Stable Diffusion 1.37B
Stable Diffusion 2 1.29B
Taiyi Diffusion 1.35B
Rapid Diffusion 1.06B

Table 5: The numbers of parameters of all the experi-
ment models.

We further provide the detailed settings of the
entire Rapid Diffusion model pipelines in Table 6.

#Params Value
CLIP Text Encoder
context length 32
vocab size 21128
embedding dimension 768
layers 12
width 768
heads 12
Autoencoder
z-channel 4
resolution 256
in-channels 3
out-channels 3
channels 128
channel multiplier 1,2,4,4
U-Net
image size 32
in-channels 4
out-channels 4
model channels 320
attention resolutions 4,2,1
channel multiplier 1,2,4,4
context dimension 768
number heads 8
transformer depth 1
ESRGAN-Generator
type RRDBNet
in-channels 3
out-channels 3
hidden features 64
number blocks 23
grow channels 32
ESRGAN-Discriminator
type UNetDiscriminatorSN
in-channels 3
hidden features 64
skip connection True

Table 6: Detailed parameter settings of Rapid Diffusion.
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小炒黄牛肉
Stir-fried yellow beef

停车坐爱枫林晚，霜叶红于二月花
Stop the coach to enjoy the maple 

woods; frosty leaves are redder than 
the February flowers.

(ancient Chinese poem)

爆款冬季女士羽绒服
Best selling women's winter down 

jackets

Stable Diffusion Stable Diffusion 2 Taiyi Diffusion Rapid Diffusion

E-commerce

Chinese
Painting

Cuisine

18K玫瑰金女款时尚黄金项链
18K rose gold women's fashion 

golden necklace

夏季新款运动帆布鞋
New summer sports canvas shoes

千山鸟飞绝，万径人踪灭
From hill to hill no bird in flight, 
from path to path no man in sight.

(ancient Chinese poem)

接天莲叶无穷碧，映日荷花别样红
Green lotus leaves outspread as far as 

boundless sky, pink lotus blossoms 
take from sunshine a new dye.

(ancient Chinese poem)

鱼香肉丝米饭
Yuxiang shredded pork and rice

大杯烧仙草奶茶
Big cup of milk tea with grass jelly

Figure 5: Some examples of generated images from Rapid Diffusion and baseline models.304


