
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics
Volume 5: Industry Track, pages 149–158

July 10-12, 2023 ©2023 Association for Computational Linguistics

FashionKLIP: Enhancing E-Commerce Image-Text Retrieval with Fashion
Multi-Modal Conceptual Knowledge Graph

Xiaodan Wang1, Chengyu Wang2, Lei Li3, Zhixu Li1∗, Ben Chen2,
Linbo Jin2, Jun Huang2, Yanghua Xiao1∗, Ming Gao3

1 Shanghai Key Laboratory of Data Science, School of Computer Science, Fudan University
2 Alibaba Group, Hangzhou, China 3 East China Normal University, Shanghai, China

{xiaodanwang20,zhixuli,shawyh}@fudan.edu.cn
{chengyu.wcy,chenben.cb,yuyi.jlb,huangjun.hj}@alibaba-inc.com

leili@stu.ecnu.edu.cn, mgao@dase.ecnu.edu.cn

Abstract

Image-text retrieval is a core task in the multi-
modal domain, which arises a lot of atten-
tion from both research and industry com-
munities. Recently, the booming of vision-
language pre-trained (VLP) models has greatly
enhanced the performance of cross-modal re-
trieval. However, the fine-grained interac-
tions between objects from different modali-
ties are far from well-established. This issue
becomes more severe in the e-commerce do-
main, which lacks sufficient training data and
fine-grained cross-modal knowledge. To alle-
viate the problem, this paper proposes a novel
e-commerce knowledge-enhanced VLP model
FashionKLIP. We first automatically establish a
multi-modal conceptual knowledge graph from
large-scale e-commerce image-text data, and
then inject the prior knowledge into the VLP
model to align across modalities at the concep-
tual level. The experiments conducted on a pub-
lic benchmark dataset demonstrate that Fash-
ionKLIP effectively enhances the performance
of e-commerce image-text retrieval upon state-
of-the-art VLP models by a large margin. The
application of the method in real industrial sce-
narios also proves the feasibility and efficiency
of FashionKLIP. 1

1 Introduction

The explosive growth of multi-modal content on
the Web has promoted the research of various cross-
modal tasks. Image-text retrieval, which finds cor-
related texts (or images) for a given image (or text)
(Karpathy and Fei-Fei, 2015; Faghri et al., 2017),
is a popular cross-modal task with strong practi-
cal values in a wide range of industrial applica-
tions. Recently, the booming of vision-language

1All the codes and model checkpoints have been released
to public in the EasyNLP framework (Wang et al., 2022).
URL: https://github.com/alibaba/EasyNLP.

*Corresponding author.

Figure 1: Examples of image-text pairs in e-commerce.

pre-trained (VLP) models (Yao et al., 2021; Zeng
et al., 2021; Li et al., 2020c) has greatly improved
the representation learning across data of differ-
ent modalities, leading to significant performance
improvement.

However, in the field of e-commerce, the image-
text retrieval task has its own challenges. Here,
we suggest that image-text pairs of products have
unique characteristics that are different from the
general domain (such as MS-COCO (Lin et al.,
2014), Flickr30k (Young et al., 2014) and Concep-
tual Captions (Sharma et al., 2018)), with exam-
ples shown in Figure 1. 1) While most texts in
the general domain contain descriptions with com-
plete sentence structures, descriptions or queries
in e-commerce are usually composed of multiple
phrases, describing product details such as materi-
als or styles. 2) Images in the general domain usu-
ally have rich backgrounds; in contrast, a product
image mainly consists of a large commodity figure
in the center without a lot of background objects.
These unique domain characteristics make general-
domain models difficult to be directly adopted to
the image-text retrieval tasks in e-commerce.

Recently, several domain-specific VLP models
including FashionBERT (Gao et al., 2020), Kalei-
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doBERT (Zhuge et al., 2021), CommerceMM (Yu
et al., 2022), EI-CLIP (Ma et al., 2022) and
Fashion-ViL (Han et al., 2022) are proposed based
on e-commence image-text pairs, which greatly
improve the performance of e-commerce image-
text retrieval. Despite the success, the fine-grained
cross-modal alignment issue remains unsolved,
which may result in the inaccurate matching of
details between images and texts. Although some
e-commerce VLP models use fine-grained informa-
tion from either image perspectives (Han et al.,
2022) or patch-based image classification (Gao
et al., 2020; Yu et al., 2022), they are short of
semantic-level alignments across modalities. Some
other work (Ma et al., 2022; Zhu et al., 2021) fo-
cuses on entities in text modalities, but rarely con-
siders cross-modal interactions. In the general do-
main, fine-grained interactions could be achieved
with object detection (Li et al., 2020c; Tan and
Bansal, 2019), scene graph parsing (Cui et al.,
2021), or semantic analysis (Yu et al., 2021; Li
et al., 2020b). Unfortunately, these tools lose their
effectiveness in the e-commerce domain.

To improve the fine-grained alignment between
images and texts in e-commerce, this paper pro-
poses an e-commerce knowledge-enhanced VLP
model - FashionKLIP. Particularly, we first pro-
pose a data-driven strategy to construct a multi-
modal conceptual knowledge graph in e-commerce
(called FashionMMKG) from a large-scale e-
commerce image-text corpus, where the fashion
concepts are automatically extracted and organized
in the form of a semantic hierarchy, each associ-
ated with its representative images. The Fashion-
MMKG is later incorporated as the prior cross-
modal fashion knowledge in training a CLIP-style
model to support e-commerce image-text retrieval.
For model training, we learn the representation
alignment of image-text pairs across the two modal-
ities by contrastive learning, and further optimize
the alignment at the conceptual level. The con-
ceptual alignment is further obtained by matching
the text representations with the visual prototype
representations of the fashion concepts in Fashion-
MMKG.

Our contributions can be summarized as follows:

• We innovatively propose a data-driven ap-
proach to construct a multi-modal conceptual
knowledge graph in the e-commerce domain
named FashionMMKG without human inter-
vention.

• We construct an e-commerce knowledge-
enhanced VLP model called FashionKLIP,
which learns conceptual-level alignments
based on the prior knowledge in Fashion-
MMKG.

• We conduct experiments on a popular fashion
benchmark dataset FashionGen (Rostamzadeh
et al., 2018) and show that FashionKLIP out-
performs state-of-the-art VLP models in the
e-commerce domain.

• We also apply the method to real industrial sce-
narios and observe significant improvements
in image/text-to-product retrieval tasks.

2 Related Work

Vision-Language Pre-training. VLP models can
be categorized into single-stream models (Chen
et al., 2020; Li et al., 2020a; Gan et al., 2020),
which first concatenate multi-modal inputs for in-
teractions, and dual-stream models (Jia et al., 2021;
Radford et al., 2021; Yao et al., 2021; Li et al.,
2020b), which obtain the representations of the im-
age and text respectively and learn the alignment
afterwards. Although single-stream models may
lead to high retrieval accuracy due to the early fu-
sion of images and texts, the inference efficiency
is sacrificed to a certain extend. Recently, to focus
more on fine-grained semantic level interactions of
images and texts, some works improve the similar-
ity strategy by calculating between the image patch
and the text token (Yao et al., 2021) or leverage
fine-grained image information through object de-
tectors (Li et al., 2020c,b; Gan et al., 2020; Zeng
et al., 2021). Others introduces structured scene
graphs for semantic knowledge (Yu et al., 2021).
Despite their success in general domain, such meth-
ods are hard to be adopted to e-commerce data.
Fashion-based Retrieval. FashionBERT (Gao
et al., 2020) first adopts pre-training tasks such
as masking strategy to e-commerce images and
texts. KaleidoBERT (Zhuge et al., 2021) extracts a
series of multi-grained image patches for augmen-
tation to guide masking strategy for fine-grained
matching. CommerceMM (Yu et al., 2022) pro-
poses pre-training tasks to align uni-modal with
multi-modal features for more consistent align-
ment. EI-CLIP (Ma et al., 2022) defines the entity-
aware retrieval task from the linguistic perspective
by introducing a causal model to concatenate dif-
ferent meta-data as e-commerce entities. Lately,
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Figure 2: Model architecture of FashionKLIP with fashion images and texts as inputs.

Figure 3: The sub-tree structure with root concept “shorts”. The tree can be dynamically updated by inserting new
concepts, such as “cotton lounge shorts in navy”.

Fashion-ViL (Han et al., 2022) designs a flexible
architecture for various downstream tasks. How-
ever, current methods still suffer from insufficient
fine-grained semantic alignment, which may di-
minish the cross-modal understanding capability
of models at semantic level.

3 Methodology

This section introduces how FashionMMKG is
constructed and how FashionKLIP incorporates
conceptual-level interactions of cross-modal fash-
ion knowledge from FashionMMKG.

3.1 FashionMMKG Construction

Textual Modality. Instead of building an ontology-
based knowledge graph (Deng et al., 2022), we au-
tomatically construct FashionMMKG to alleviate
the gap with real-world user queries. The construc-
tion procedures include first determining the con-
cept set through mining massive fashion texts and
then matching each concept with its corresponding
images. Given a fashion dataset D{T, I} contain-
ing N image-text pairs, we first extract all the texts

T . We use the NLP tool spacy2 for sentence com-
ponents analysis and part-of-speech tagging.We
obtain multi-grained concept phrases by concate-
nating adjective modifiers with the key word. For
an input text “Heathered cotton lounge shorts in
navy. Elasticized waistband with drawstring clo-
sure”, we extract root concepts such as “navy”,
“waistband”, “closure” and “heathered”, as well
as more detailed phrases: “cotton lounge shorts”,
“cotton lounge shorts in navy”, “heathered cotton
lounge shorts in navy”, etc. Based on different
conceptual hierarchical granularities of extracted
results, we build up hypernym-hyponym (“is-a”)
relationships between concepts in the form of rela-
tion triplets by judging whether two concepts are
contained by each other, such as <"cotton lounge
shorts in navy", is-a, "cotton lounge shorts">.

After all the relation triplets are extracted, we
organize these fashion concepts in a hierarchical
structure. A sub-tree with the root node “shorts” is
shown in Figure 3. The construction process of the
hierarchical structure can be further implemented

2https://spacy.io/usage/linguistic-features
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Figure 4: Coarse-grained and fine-grained concepts with their matched images from FashionMMKG.

in a dynamic process. When previously unseen con-
cepts appear, we can add these new concepts into
existing hierarchical trees, as the newly updated
concept “short sleeve t-shirt in white” in Figure 2.

Visual Modality. For the visual modality, we adopt
a prompt-based image retrieval method for each
concept, and iteratively update the procedure in
the subsequent visual-linguistic training process.
Utilizing the generalization ability of a pre-trained
CLIP-style model, we retrieve product images from
the image set I , with the query formulated as "A
photo of {concept}" as in (Radford et al., 2021;
Yao et al., 2021; Gu et al., 2022). Based on the
cosine distance of the image and text features, a
naive approach is to select the top k images with the
highest similarities as the concept visual prototype.

The retrieval results of some concepts are shown
in Figure 4. We can see that the top k images
of coarse-grained concepts are usually visually di-
verse, while images tend to be more semantically
consistent when it comes to more specific concepts.
To ensure that both similarity and diversity of vi-
sual representations for each concept are consid-
ered, we slightly expand the range of image can-
didates (using a larger k), and employ the MMR
algorithm (Carbonell and Goldstein, 1998) to im-
prove the diversity of the selected images. It runs
in an iterative process until a sufficient number of
images are selected from the k candidates. Denote
C as the candidate image set and S as the collec-
tion of images that have been selected for concept

c. Each time, we choose an image vi by:

MMR(vi) = argmax
vi∈C\S

[λSim(c, vi)

− (1− λ)max
vj∈S

Sim(vi, vj)]
(1)

where Sim(·, ·) is the cosine similarity between
the corresponding text/image features, and λ is the
coefficient to adjust the relevance and diversity of
results. Here, we set λ = 0.8 by default.

3.2 FashionKLIP Training
During the model training, as shown in Figure 2,
we first extract concepts from the texts. If there are
new concepts, FashionMMKG is automatically ex-
panded. For parameter optimization, FashionKLIP
consists of two tasks: image-text contrastive learn-
ing (ITC) for matching images and texts globally,
and concept-visual alignment learning (CVA) for
conceptual-level cross-modal alignment.
ITC. We train a CLIP-style model to learn the
global representations of image-text pairs. For
b image-text pairs in each training batch, denote
LI
k and LT

k as the contrastive image-to-text and
text-to-image matching loss, respectively. The
ITC loss function can be expressed as LITC =
1
2

∑b
k=1(L

I
k + LT

k ), with LT
k to be defined as:

LT
k (x

T
k , {xIj}bj=1) = −log

exp(sTk,k)∑
j exp(s

T
j,k)

(2)

where the corresponding text of an image xIk is
xTk , and sTj,k is the cosine similarity between the
image/text features of xIj and xTk . LI

k is defined
symmetrically to LT

k .
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CVA. We further align concepts and visual proto-
types from the FashionMMKG. For an input text
xTk with image xIk, we obtain a multi-grained con-
cept set Con(xTk ), where hypernym concepts from
the tree are also introduced to avoid paying much
attention to fine-grained concepts but ignoring the
cross-modal understanding of high-level concepts.
For a concept ci ∈ Con(xTk ), we denote S(ci) to
be the collection of the selected similar yet diverse
images to represent the visual characteristics of the
concept (as described previously in Section 3.1).
We select q images with the highest scores with
image xIk in S(ci) for each ci ∈ Con(xTk ), for the
model to learn conceptual alignments. We com-
pute the weighted contrastive loss between each
ci and any conceptual image xI

k̃
∈ S(ci), together

with conceptual images generated from other texts
concepts within the same training batch:

LCT
k (Con(xTk ), {S(xTj )}bj=1) =

− 1

q

∑

ci

∑

xI
j̃
∈S(ci)

w(xI
k̃
, xIk)log

exp(sT
k̃,k

)
∑

j exp(s
T
j̃,k

)

(3)
Note that w(xI

k̃
, xIk) is the cosine similarity be-

tween concept image xI
k̃

and input image xIk, used
as the weight for loss calculation. This forces the
representation of a concept ci similar to its con-
ceptual images S(ci), but dis-similar to those of
conceptual images from other texts. Similarly, by
changing the loss function from text-to-image to
image-to-text, we have the symmetric loss LCI

k .
Thus, the loss function of CVA is expressed as:

LCV A =
1

2

b∑

k=1

(LCI
k + LCT

k ) (4)

Overall Loss. The total loss function is formulated
as: L = 1

2(LITC + LCV A). In addition, as the
representations of images are continuously updated
during model training, at the end of each epoch,
we leverage Faiss (Johnson et al., 2019) to retrieve
top-k images to update the visual prototype repre-
sentations of the matched concepts.

4 Experiments

We conduct comprehensive evaluations on Fash-
ionGen (Rostamzadeh et al., 2018) to show that
FashionKLIP outperforms SOTA methods.

4.1 Implementation Details

We first construct FashionMMKG with details
shown in Appendix A.1.

Model Training. The specific settings of models
are described in Appendix A.2. For training, we
conduct both domain-specific pre-training and fine-
tuning for base and large versions of FashionKLIP.
We initialize FashionKLIP from CLIP pre-trained
weights and continually pre-train the model based
on our in-house dataset for MMKG construction (as
described previously), only using the contrastive
learning process over image-text pairs. Specially,
the continual pre-training process is conducted with
the parameters of the image encoder fixed. Over-
all, we have four models: FashionKLIP-S (small),
FashionKLIP-M (medium), FashionKLIP-B (base)
and FashionKLIP-L (large).

Benchmark Dataset. We use a widely-used bench-
mark dataset (i.e., FashionGen (Rostamzadeh et al.,
2018)) for model evaluation. It contains 67,666
fashion items of 293,008 image-text pairs in 121
sub-categories, with 260,480 pairs for training and
32,528 for validation.

Evaluation. For image-text retrieval tasks, based
on a text query, we consider two settings for eval-
uation. 1) Strictly following (Gao et al., 2020;
Zhuge et al., 2021; Ma et al., 2022; Yu et al.,
2022), the model is required to pick the matched
image in 101 samples, including 1 ground-truth
image with 100 randomly selected images within
the same product sub-category (denoted as “Sam-
ple”). 2) As some recently published works (Ma
et al., 2022) also consider large-scale candidates on
the entire set, each query is compared with every
item in the full dataset (denoted as “Full”). The
settings for image-to-text matching are likewise.
Recall@1/5/10 is regarded as evaluation metrics
as previous works (Gao et al., 2020; Zhuge et al.,
2021; Yu et al., 2022).

Method Image-to-Text Text-to-Image
R@1 R@5 R@10 R@1 R@5 R@10

FashionBERT 23.96 46.31 52.12 26.75 46.48 55.74
KaleidoBERT 28.00 60.10 68.40 33.90 60.50 68.60

CommerceMM 41.60 64.00 72.80 39.60 61.50 72.70
CLIP 36.11 67.81 80.00 35.32 65.98 77.84

EI-CLIP 38.70 72.20 84.25 40.06 71.99 82.90

FashionKLIP-B 60.79 85.67 91.95 54.00 78.49 86.28

Table 1: Retrieval results on FashionGen (Sample).
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Model Image-to-Text Text-to-Image
R@1 R@5 R@10 R@1 R@5 R@10

CLIP 22.50 49.50 62.00 24.50 51.10 63.60
EI-CLIP 25.70 54.50 66.80 28.40 57.10 69.40

FashionKLIP-B 37.01 59.78 67.39 43.70 63.74 72.67

Table 2: Retrieval results on FashionGen (Full).

Model Image-to-Text Text-to-Image
R@1 R@5 R@10 R@1 R@5 R@10

FashionKLIP-S 14.58 34.28 44.14 17.59 36.74 47.20
FashionKLIP-M 23.21 45.45 54.98 28.42 49.95 59.74
FashionKLIP-B 37.01 59.78 67.39 43.70 63.74 72.67
FashionKLIP-L 47.16 69.27 75.39 54.60 75.06 81.39

Table 3: Retrieval results on FashionGen (Full) of Fash-
ionKLIP under different model sizes.

4.2 Experimental Results

Overall Retrieval Results. We conduct both “full”
and “sample” evaluation of FashionKLIP-B against
existing SOTA models. In addition, we report the
results of different FashionKLIP models on Fash-
ionGen using the full evaluation criteria, as shown
in Table 3. As the main experimental results shown
in Table 1, we can see that FashionKLIP model sig-
nificantly outperforms the existing SOTA models
by a large margin. In particular, on the R@1 metric,
FashionKLIP-B even greatly surpasses the methods
with multi-modal fusion encoders for more unified
representation learning such as CommerceMM (Yu
et al., 2022). On full evaluation results in Table
2, FashionKLIP-B shows a remarkable increase of
11-15% compared to EI-CLIP (Ma et al., 2022).
For smaller settings such as FashionKLIP-M, the
retrieval performance is also competitive and closer
to CLIP. As the “full” setting is closer to real-world
retrieval scenarios and more challenging as it aims
to select from a large candidate set, the perfor-
mance of FashionKLIP is significant, further prov-
ing that the framework can be generalized to wider
application scenarios. Based on the experimental
results on either setting, we can conclude the ef-
fects brought by fashion knowledge, and confirm
that more attention to cross-modal conceptual-level
interactions leads to an increase in e-commerce
image-text matching. 3

Ablation Studies. To further analyze the impor-

3Note that a few works (e.g., Fashion-ViL (Han et al.,
2022)) employ additional multi-modal fusion encoders and
uniform representation learning (that may be not suitable for
fast vector retrieval in real-world applications) and evaluate
their models on randomly sampled subsets of FashionGen.
Hence, their works are not directly comparable.

Method Eval. Image-to-Text Text-to-Image
R@1 R@5 R@10 R@1 R@5 R@10

Full Implement. Sample 60.79 85.67 91.95 54.00 78.49 86.28
w/o. CVA Sample 56.70 84.53 91.65 51.43 77.44 85.36
w/o. FDP Sample 58.90 84.87 91.35 52.57 77.14 84.87

Full Implement. Full 37.01 59.78 67.39 43.70 63.74 72.67
w/o. CVA Full 35.41 57.92 65.97 40.63 61.73 69.40
w/o. FDP Full 36.10 58.32 66.07 42.05 61.66 69.65

Table 4: Ablation studies on FashionKLIP-B, where
FDP represents fashion-domain pre-training.

tance of conceptual-level fashion image-text align-
ment, we present different variants of FashionKLIP
in Table 4 for two evaluation settings. We can see
from the results that both CVA and the FDP con-
tribute to performance improvement. Although the
retrieval results decrease slightly when not using
FDP, the removal of CVA will harm the retrieval
performance more heavily. Besides, the introduc-
tion of FDP and CVA at the same time boosts the
performance as “Full Implement.” shows, proving
the necessity to utilize fashion data for pre-training,
which helps establish a better mapping between
concepts and images as prior knowledge. More
importantly, the focus on fashion knowledge better
guides conceptual-level interactions and brings a
rise to the alignment between images and texts.

5 Industrial Application

In this section, we verify the effectiveness of Fash-
ionKLIP on our Alibaba global e-commerce plat-
form. Specifically, we apply it to product search
with two specific retrieval tasks including image-to-
product (I2P) and text-to-product (T2P) retrieval,
as shown in Figure 5.

Model Parameters RT QPS

CLIP 151M 61.26ms 16.32
FashionKLIP-B 151M 60.45ms 16.54
FashionKLIP-M 91M 42.69ms 23.43

Table 5: Average inference speed over 1,000 samples in
terms of Response Rime (RT) and the Query Per Second
(QPS) on a single GPU (NVIDIA V100).

For T2P, we employ a weighted scoring function
to compute the similarity score between a query
text and a product (with a title and an image) as fol-
lows: Scoret2p = α∗Scoret2t+(1−α)∗Scoret2i,
where 0 < α < 1, Scoret2t and Scoret2i refer to
the embedding similarity score between the query
text and the product title, together with the query
text and the product image. Similarly, for I2P, we
have Scorei2p = α∗Scorei2t+(1−α)∗Scorei2i.
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Figure 5: Example on image-to-product and text-to-product retrieval for e-commerce product search.

In total, the collected dataset contains 58,463 prod-
ucts (with images and titles) and 3,021 queries.

Model Image-to-Product Text-to-Product
R@1 R@5 R@10 R@20 R@1 R@5 R@10 R@20

CLIP 82.93 93.07 95.40 96.59 49.43 75.46 84.27 89.41
FashionKLIP-M 84.81 93.22 95.15 96.44 48.00 75.56 84.96 90.85
FashionKLIP-B 87.48 95.94 97.97 98.91 52.10 79.96 89.02 93.77

Table 6: Retrieval results on e-commerce image-to-
product and text-to-product retrieval.

We conduct zero-shot experiments for T2P and
I2P on FashionKLIP-B and FashionKLIP-M and
compare it with the baseline CLIP (Radford et al.,
2021), as shown in Table 6. For models of the
same size, we can see that FashionKLIP-B greatly
outperforms CLIP on Recall@1-20 and particu-
larly achieves an improvement of 3~5% on both
tasks for R@1. For our model in a smaller size,
FashionKLIP-M is still comparable, which mainly
reflects on the R@1 and R@5 results of I2P task
and the R@5 to R@20 results of T2P. However, the
inference of FashionKLIP-M is faster. In Table 5,
taking text-to-product as an example, we report the
Response Time (RT) and Query Per Second (QPS)
using different text encoders to encode user queries
on a single GPU (NVIDIA V100). We can see that
with similar performance (CLIP and FashionKLIP-
M), our model has much lower RT and higher QPS.
Hence, we confirm FashionKLIP’s feasibility on
multi-modal tasks in the industrial applications.

6 Conclusion and Future Work

This paper proposes a novel data-driven approach
to construct a multi-modal conceptual knowledge
graph in e-commerce namely FashionMMKG.
An e-commerce knowledge-enhanced VLP model
namely FashionKLIP is then constructed by learn-
ing the conceptual-level alignments from the prior
knowledge in FashionMMKG. Our empirical study

shows that FashionKLIP outperforms state-of-the-
art VLP models in the e-commerce domain. We
conduct experiments under industrial scenarios and
verify its practical value in real-world applications
and confirm the efficiency of FashionKLIP. In the
future, we will apply the knowledge-enhanced strat-
egy for general large-scale pre-training and bring
benefit to more multi-modal tasks.
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A Appendix

A.1 FashionMMKG
Full statistics of our FashionMMKG are shown in
Table 8, where we give both the total numbers (cnt)

of items such as the number image-text pairs and
concepts, and the average of some attributes (avg)
such as occurrence and concept length. As for the
data source, we extract fashion concepts from titles
of 900,000 product image-text pairs collected from
our global e-commerce platform. 4

A.2 Model Settings

We release models with various parameter sizes for
industrial applications. The specific hyperparame-
ters of different FashionKLIP models are shown in
Table 7.
Image Encoder We follow Vision Transformer
(ViT) (Dosovitskiy et al., 2020) closely as the im-
age encoder and the modifications of different mod-
els lie in the number of layer normalization and
the width of attention heads. The size of non-
overlapping image patches are also set to be differ-
ent. FashionKLIP-L adopts the ViT-L/14 as the im-
age encoder with 24 layers, while FashionKLIP-M
uses ViT with 12-layer 512 wide in 88M parameter
and the patch size is 32.
Text Encoder We adopts a Transformer (Vaswani
et al., 2017), utilizing the same architecture as de-
scribed in (Radford et al., 2019) as the text encoder.
For models in different sizes, we refer to (Turc
et al., 2019) to set the attention width and number
of attention heads of the text encoder.
Model Input Images are cropped uniformly to
224 × 224 pixels before entering the model. We
limit the maximum input length of the text to 77,
with a vocabulary of 49,408.

For a fair comparision, we utilize FashionKLIP-
B model to compare against other baseline models,
which uses ViT-B/32 (Dosovitskiy et al., 2020) as
the image encoder, and adopts a 12-layer 512 wide
Text Transformer as the text encoder as (Radford
et al., 2021), in 63M parameter with 8 attention
heads each layer.

A.3 Model Training

The batch size of pre-training is 1,024 per GPU
with 8 A100 GPUs (80G), for 20 epoches in total.
The learning rate is 5e-5. During dataset-specific
model fine-tuning, we retrieve top-20 images for
each concept in FashionMMKG and then select 5
images as the visual prototype based on the pro-
posed criteria. The batch size of fine-tuning is
32 per GPU, with a learning rate of 1e-5 on two
A100 GPUs. As smaller pre-trained CLIP weights

4https://www.alibaba.com/
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Model Embedding
dimension

Input
resolution

Vision Transformer Text Transformer
parameters layers width patch size parameters layers width heads

FashionKLIP-L 768 224 303M 24 1024 14 124M 12 768 12
FashionKLIP-B 512 224 88M 12 768 32 63M 12 512 8
FashionKLIP-M 512 224 40M 12 512 32 51M 8 512 8
FashionKLIP-S 384 224 22M 12 384 16 33M 8 384 6

Table 7: Hyperparemters of FashionKLIP in different model settings.

are not available, we initialize FashionKLIP-M
and FashionKLIP-S models from the pre-trained
FashionKLIP-B model by truncating the weights
of FashionKLIP-B to the size based on the set-
tings of smaller models. After that, we utilize the
contrastive learning process for continually pre-
training on the e-commerce in-house data. The
batch size during pre-training for FashionKLIP-M
and FashionKLIP-S is 256 per GPU on 8 GPUs
and the learning rate is 5e-5.

Item Name Statistics

Image-text pairs (cnt) 900,000
Root-concepts (cnt) 5,135
All concepts (cnt) 99,076

Nodes per tree (avg) 213.8 (1∼25600)
Concept length (avg) 3.4 (1∼21)

Occurrence (avg) 17.1 (1∼77250)
Images per concept (avg) 20

All images (cnt) 76,964

Table 8: Statistics of FashionMMKG.
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