An Efficient Conversational Smart Compose System

Yun Zhu, Xiayu Chen, Lei Shu, Bowen Tan, Xinying Song,
Lijuan Liu, Maria Wang, Jindong Chen, Ning Ruan
Google Inc.
yunzhu@google.com

Abstract

Online conversation is a ubiquitous way to
share information and connect everyone but
repetitive idiomatic text typing takes users a
lot of time. This paper demonstrates a simple
yet effective cloud based smart compose sys-
tem to improve human-to-human conversation
efficiency. Heuristics from different perspec-
tives are designed to achieve the best trade-off
between quality and latency. From the mod-
eling side, the decoder-only model exploited
the previous turns of conversational history in
a computation lightweight manner. Besides, a
novel phrase tokenizer is proposed to reduce
latency without losing the composing qual-
ity further. Additionally, the caching mech-
anism is applied to the serving framework.
The demo video of the system is available at
https://youtu.be/U1KXkaqr60g. We open-
sourced our phrase tokenizer in https://
github.com/tensorflow/text.

1 Introduction

Online conversations are happening in every corner
of the world in every second. People relies on dif-
ferent channels like daily chatting apps, e.g. Mes-
sages, WhatsApp, or online customer service to
communicate with friends, families, colleagues and
even acquaintance. Within conversational applica-
tions, efficient and smart assistant functions for
users are long-desired. Smart compose (Chen et al.,
2019) is a well-known smart writing feature that
actively predicts the next couple of words in real-
time to assist human writing. It saves user’s time by
cutting back on repetitive idiomatic writing. In this
paper, we build a smart compose system for chat-
ting applications to improve user’s communication
efficiency and enhance user experience. The out-
look of the demo is shown in Fig 1. We assume two
or multiple users are discussing some random topic
in a chat room. And smart compose is working un-
der the hood to suggest what to type next. The full
demo is in https://youtu.be/UTKXkaqréog.

2 1am doing well thank you for asking. Whas up?

Canlaskyouforafavor? | &

& speaker2

Yes, of course. How b>)

Figure 1: Demo of smart compose experiment. We
type in “How” in the input box, the smart compose sys-
tem suggests “can I help” in real time, which is based
on the conversation context.

To the best of our knowledge, although smart
compose is a well-known application, it has not
been well-designed for conversation scenarios.
One basic requirement of smart compose is the
low inference latency. If the next words are not
shown up in less than 100ms, users will likely type
them themselves. And there are two challenges
out of this. The first challenge is the conflict be-
tween latency and long conversation context. Dur-
ing the human-to-human conversation within the
chatting applications, there are multiple turns of
conversation from multiple users, making the con-
versation history informative. Attention over the
whole conversation history would bring too much
latency. However, simply ignoring the conversation
history or using an average embedding of history
to represent previous context (Chen et al., 2019)
is not exploiting the rich information within the
conversational flow between users. Therefore how
to effectively and efficiently extract information
from conversation history is the key consideration
for model designing. The second challenge comes
from the fact that users would prefer a longer sug-

456

Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics
Volume 3: System Demonstrations, pages 456—462
July 10-12, 2023 ©2023 Association for Computational Linguistics

https://youtu.be/U1KXkaqr60g
https://github.com/tensorflow/text
https://github.com/tensorflow/text
https://youtu.be/U1KXkaqr60g

gestion for conversation but generating a longer
sequence is likely to involve more latency. In the
auto-regressive generative model for example, the
decoding time is linearly growing with the decod-
ing steps. There is no clear solution on how to
avoid the extra latency on the longer suggestion.

In this paper, we proposed a new solution to
address above challenges and built an end-to-end
cloud based smart compose system for human-to-
human chatting applications. Our smart compose
system can achieve high exact match rate with low
latency (less then 100ms) under acceptable sugges-
tion length. Our contributions are three-fold.

* We designed a novel architecture based on
transformer-XL (Dai et al., 2019) ! to effec-
tively encode history and context information
for composing. Also, it incorporates conversa-
tional features like user id and local position
id to retrain the information effectively.

* We proposed a novel efficient tokenizer called
phrase tokenizer which can increase the sug-
gestion length for composing without sacri-
ficing the quality and latency. This tokenizer
can significantly reduce the latency of the sys-
tem. We open-source our phrase tokenizer
in https://github.com/tensorflow/text
as an extension of the TensorFlow text library.

* We designed the cloud serving mechanism
and addressed the practical issues such as
caching.

2 Related work

One of the most successful applications for smart
compose is Gmail (Chen et al., 2019), where the
title of the email, the previous paragraphs, and the
previous text of the current typing are combined
to predict the next words. Following this success,
similar models have also been used in other appli-
cations like document editing (e.g., Google Docs)
or input method (e.g., Gboard). Although this fea-
ture is not new, previous work mainly focuses on
general writing assist and not is specially designed
for conversation scenarios.

Approach wise, there are two major categories.
The first category is the dual encoder based model
(Gillick et al., 2018; Karpukhin et al., 2020; Yang
et al., 2019) which exploited contrastive learning:

'In practice, we found transformer based system has higher

quality compared to LSTM and thus we build our system with
Transformer.

the predefined whitelist is built in advance, and
the prefix tries to match the most possible one in
the list. This kind of solution is also widely used
in practical retrieval or recommendation systems.
Although the dual encoder is extremely fast, the
predefined whitelist limits the headroom for model
quality from smart compose.

The second category is language modeling, a fun-
damental and indispensable component of many
natural language processing. Recently it is be-
coming even more powerful with a larger model
size (Floridi and Chiriatti, 2020; Thoppilan et al.,
2022; Chowdhery et al., 2022). However, with the
latency requirement, models should be designed
smaller and more light-weighted for the smart com-
pose (Van et al., 2020; Ciurumelea et al., 2020;
Chen et al., 2019). Compared to dual-encoder, it
removes the dependency on the whitelist and could
achieve better matching accuracy. However, as it
is involved with the autoregressive decoding pro-
cess, the latency is generally higher and positive
relative to the number of decoding steps. Although
non-autoregressive based approaches (Zou et al.,
2021) could potentially reduce the latency for text
generation, it has been well-known to suffer from
quality regression.

Our smart compose system is more conversa-
tional oriented and can achieve the best trade-off
between quality and latency. Our model share the
benefit of higher quality with the language model-
ing, but keep the latency low with proposed tech-
niques.

3 Model Design

In this section, we will outline the modeling design.
Firstly, we will first introduce the conversational
inputs for the model and what features we are ex-
tracting from the conversation history. Then we
will go through the model architecture used to take
the conversational input and output the predicted
suggestions. Finally, we will discuss how the loss
is calculated during training and some implementa-
tion details.

3.1 Conversational Inputs

Our smart compose is based on conversational data,
and our data processing strategy is to process the
conversation with the sliding window of fixed size
N, which is the number of conversation turns (in
practice, we choose N equals 10). We tokenize all
N sentences and concatenate the N turns together

457

https://github.com/tensorflow/text

TeXt @

v (1) (1) (0 () 0L ()
Single-turn
position id: 1 2 3 1 2

Figure 2: Example of conversational features.

to make a single input. Since the conversation
could happen between multiple people, we also
introduce the user id into the model input. The
user id is associated with every token inside each
turn conversation. Besides, we make use of the
single turn position id. Different from the normal
position embedding (Vaswani et al., 2017), which
is calculated for all the input sequences, the single-
turn position id is only for a sub-section of the input
sequence. Furthermore, the NV single-turn position
id is concatenated together. The conversational
features are in Fig 2. We found that using the user
id and single-turn position id could achieve lower

perplexity.

3.2 Model Architecture

We use separate embedding matrices to process the
text id, user id, and single-turn position id. Specif-
ically, we have separate embedding matrices for
text-token, user-id, and single-turn position id. We
add embedded vectors together as the final input
embedding.

We feed this input embedding to our transformer
decoder. Our architecture is a decoder-only Trans-
former XL (Dai et al., 2019) model. Note that
the relative position is still in place, although we
have an extra single-turn position id. The overall
architecture is shown in Figure 3.

To reduce the latency, we adopted local attention
(Beltagy et al., 2020) instead of full attention. We
found that even with limited look-back length, the
prediction can be accurate enough. By joint using
Transformer-X1 and local attention, the transformer
architecture is able to perform with lower compu-
tation, and similar to LSTM it can pass the state
during processing the sequence. This helps capture
the context information with little overhead. More
details will be discussed in Section 5.

Predicted Suggestions

[Transformer XL J

T w)

Single-turn

User Emb Position Emb

Text emb

Figure 3: Model Architecture used for conversational
smart compose.

3.3 Loss and Training Framework

We right-shift the input as the target and use the
simple cross-entropy loss for the language model
training. To be aligned with our sliding window
data processing, we use a loss mask that only masks
on the "last" turn. This is to ensure we are re-
calculating the cross entropy for each turn. Our
training framework is based on Tensorflow Model
Gardens (Banna et al., 2021).

4 Phrase Tokenizer

Autoregressive decoding is the primary way of gen-
erating text with a Transformer decoder. One draw-
back of this mechanism is the latency issue: with N
output units, the model will forward pass N times
in a sequential manner. In this paper, we design a
token that is beyond a single word (a phrase with n-
gram) and a tokenizer that emits a group of units at
a time, with the fallback mechanism to emit a single
unit so that we can decrease the N (i.e., number of
output tokens) here to reduce the latency. Note that
the basic element of the phrase is a word following
the findings of (Chen et al., 2019) that the word-
based vocabulary can achieve better performance
for smart compose. Nevertheless, our approach can
also be applied to word-piece or sentence-piece
models.

4.1 Ngram phrase Tokens

We build the Ngram dictionary based on the text.
By definition, we treat P as the set of unigrams
with higher frequency. Likewise, to build P» we
collect all word bigrams that occur in the training
set with higher frequency (e.g., greater than a cer-
tain threshold) and augment this set of bigrams

458

with the P;. Moreover, we can build P3 and P
similarly.

4.2 Random Tokenizing Process

Once we have the Ngram phrase token set ready,
the intuitive solution for tokenization is to tokenize
the input text string from left to right to maximize
the current N in NGram. This greedy method, how-
ever, can not work well in the smart compose ap-
plication. The reason is that a user can stop at any
word. Using the example of the phrase “How are
you", if the model always treats this as a single
token during training, it can never make the right
next word prediction when the user types ‘“How
are". Therefore we should consider both phrase
and individual word simultaneously.

To solve this problem we designed a random
picking process when tokenizing the input text. The
main idea is whenever there is multiple way to tok-
enize a phrase or sentence, we randomly pick one
of them. We still enforce the left-to-right manner
here. To efficiently find all the possible phrase from
certain point, we leverage the Double Array Trie
(Yata et al., 2007), which provides the function of
iteratively finding the prefix match of a given text
string. We introduce the additional parameter prob
as input, which denotes the probability of choos-
ing the current prefix match as opposed to finding
a longer one. This randomness ensures that the
model can see both phrase tokens and single-word
tokens. We summarize our tokenization process in
Algorithm 1.

5 Serving System Design

We will discuss the serving system design and
heuristics in this section. Specifically, we will in-
troduce how we design the inference graph to take
advantage of the caching of conversation history.
Besides, we will illustrate the server-side compo-
nents of the system.

5.1 Inference Heuristics

To alleviate the burden of the server, we move com-
plicated logic into the inference graph and serve
this inside a standard servo. Specifically We put
both the phrase tokenizer and the greedy(beam)
search process inside the inference graph. We also
customized the greedy or beam search process. To
make sure <UNK> will not become the output, we
regard the <UNK> token as a <EOS> token and up-
date the log probability as the previous one when

Algorithm 1 Random-picking tokenization

Require: raw_input

Require: A Double Array Trie that contains all
phrases trie

Require: The prob of emitting the phrase prob

0: tokens =[]

0: wordlist = WhiteSpaceTokenizer(raw_input)

0: concat wordlist with space as input

0: len =len(input)

0: while doi < len

0 matches = trie.IteratePrefixMatches(input(i:))

0: for domatch € matches

0: if RandomGen() > prob then

0 i+ = match.length

0 tokens.append(match.id)

0 Break

0 end if

0: end for

0: end while

0: Output tokens =0

stopping at the <UNK>.

Since the conversation for chat is usually multi-
turn and short, we use Transformer XL to encode
the previous turns into model states and provide
two sub-inference graphs to handle the caching
and suggestions. The first sub graph takes in the
previous conversation history and encode the states
as

States = M odel(ConversationHistory) (1)

The States is tensors of the intermediate output
for TransformerXL. We will cache this States and
do compose for any current user input as.

Suggestions = M odel(CurrentInput, States) (2)

5.2 Serving Flow

The serving infra of smart compose consists of the
API front-end, prediction, and cache layers. The
front-end layer receives conversational data, trun-
cated according to sliding window size N, separated
into the conversation history storing the previous
conversation turns, and the current input storing
the current message being typed. Such data can
then be packed into sequential servo prediction re-
quests sent to the prediction layer for states and
suggestions. Furthermore, by adding the cache
layer, we can further store the value of states keyed
by their conversation history so that when multiple

459

smart compose suggestions are requested at various
keystrokes of the same current input message, the
prediction request for a state can be swapped by a
cache retrieval as the conversation history stays the
same, and hereby reduce the latency.

6 Experiments

6.1 Data and Model Setup

Our experimental data is based on conversational
data collected in existing conversational apps. We
use the previous 10 conversation as conversation
history and restrict the max sequence length as 256
tokens. For the model configuration, we used the
the transformer with 8 attention heads. The input
dimension as well as model dimension is set to
256 and the dimension of feed-forward network
is set to 1024. We did not find dropout useful, so
the models are trained without dropout. All the
models for experiments presented in this paper are
trained on 8x8 Dragonfish TPU with a per-core
batch size of 32 (effective batch size of 4096). The
learning rate schedule is ramped up linearly from
0 to 8.0e—4 during the first 10,000 steps, and then
it decays exponentially to zero till 500,000 steps.
We use CPU for serving. The total model size is
around SMB.

6.2 Results

We mainly use the exact match to measure the ac-
curacy of the model. For latency, the cpu based
servo load-test is used.

6.2.1 XL and Local Attention

We first evaluate how much XL and local atten-
tion could help in the smart compose tasks. In the
composing task, the latency is related to the num-
ber of decoding steps. Meanwhile, for the quality
side, the more decoding steps, the worse the exact
match.

Using local attention can effectively reduce la-
tency because of two reasons. First, it will have a
smaller payload for RPC requests, as the local at-
tention span decides the tensor size of model states.
Secondly, it reduces the model computation, espe-
cially the computation of self-attention. Table 1
compares the latency with different attention spans.
We found that local attention can effectively reduce
the latency by a large ratio. However using the lo-
cal attention does not give much penalty for exact
match. As shown in Table 2.

Server latency (ms) Total latency (ms)

full attn 19.3 23.4
attn=32 14.1 16.6
attn=8 12.6 13.4

Table 1: Comparison of Latency of transformer XL
with location attention to its counterparts. Attn means
the ”length of local attention".

DS=1 DS=2 DS=3 DS=4 DS=5
fullattn | 88.6 69.1 565 494 459
attn=32 | 88.5 69.0 565 494 458
attn=8 | 874 680 546 484 447

Table 2: Comparison of Exact Match of transformer XL
with location attention to its counterparts. "DS" means
"decoding steps".

6.2.2 Phrase Tokenizer

We evaluate the effectiveness of the proposed
phrase tokenizer in this section. To better illus-
trate the suggestion length, another critical factor
for smart compose, we will look at two more ad-
ditional metrics besides exact match. The first one
is average length, which measures the length of
the phrase (i.e., number of words) in the predic-
tion when it is a correct prediction. The second
one is effective length. This is also considering the
correctness when calculating the prediction length,
i.e., if the prediction is wrong, we will treat it as 0.
Please note that these two metrics only give partial
evidence of the composing quality.

For both the word level and phrase level tokens,
we use the vocabulary of 60,000 tokens. For phrase
level, we combine single words and phrases: we
pick 30,000 single-word tokens and 30,000 phrase
tokens which have 2-5 single words. We found that
combining them can achieve the best quality.

We compare two tokenizers using the same
model architecture, the word-based tokenizer, and
the phrase-based tokenizer. The results are sum-
marized in Table 4. For the word-based compose,
we decode up to 5 steps. While for phrase-based
compose, we only need to decode up to 2 steps.
When the phrase-based model decodes two steps,
and the word-based model decodes 4 or 5 steps,
they achieve similar prediction length and exact
match performance. In other words, with a phrase
tokenizer, decoding two steps has the same quality
effect as decoding 4-5 steps with a word tokenizer.

460

Prefix Phrase tokenization ‘ Steps ‘ Word tokenization Steps
Hi "How are you" 1 "How", "are", "you" 3
I would "like to thank you" 1 "like", "to", "thank", "you" 4
May I "know when you have", "time" 2 "know", "when", "you", "have", "time" 5
Don’t "worry about", "it" 2 "worry", "about", "it" 3
How "can I help you" 1 "can", "I", "help", "you" 4
We "have to", "send it", "to", "him" 4 "have", "to", "send", "it", "to", "him" 6
I'll be "more than happy to", "help you" 2 "more", "than", "happy", "to", "help", "you" 6
Can you "tell me", "what is", "wrong" 3 "tell", "me", "what", "is", "wrong" 5

Table 3: Case Study of Phrase tokenzier VS Word tokenizer. When using the phrase tokenizer, fewer decoding

steps is required to compose the same length as the word level tokenizer.

Metric Tokenization | DS=1 DS=2 DS=3 DS=4 DS=5
Word 874 680 546 484 447
Exact Match Phrase 672 462 -]]
Averaee Lenath Word 1 1991 2879 3692 443
verage Leng Phrase 2132 4384 - ; -
_ Word 0874 1345 1572 178 198
Effective Length | 5 e | 1432 2027 -]]

Table 4: Performance comparison between phrase tokenizer and word tokenizer. The phrase tokenizer can achieve
a similar composing length and exact matching rate with fewer decoding steps. "DS" refers to "decoding steps".

Latency (ms) / Steps
1 2 3 4
39175195 12.6

5
14.8

Table 5: Latency Per steps.

However, decoding only two steps can achieve sig-
nificantly lower latency, as shown in Table 5.

To illustrate how the phrase tokenizer behaves
differently from the word level tokenizer, we show
examples in Table 4. Our phrase tokenizer contains
common phrases for daily conversations, such as
“How are you”, “can I help you”, and “more than
happy to”. With these phrases as tokens, our so-
lution can largely reduce the decoding steps and
the latency. Furthermore, besides common phrases,
phrase tokenizer contains single words as tokens,
for example, “to”, “it”, “him”, “wrong”. These
single-word tokens extend the granularity and di-
versity of tokens and ensure composing quality.

6.3 Demonstration

In this section, we demonstrate how the conversa-
tional smart compose system works. More details
are described in the demo video. The user input

interface is shown in Figure 1. While a user can
type messages in the text box, the smart compose
model will provide real-time suggestions. If the
user is satisfied with the suggested text, the user
can accept this suggestion; if not, the user can con-
tinue typing, and new suggestions will be shown
along with user types. The lower latency comes
from the model architecture, phrase tokenizer, and
caching mechanism during serving.

7 Conclusion

In this paper, we demonstrate a simple and efficient
conversational smart compose system. Our model
is adopted from Transformer XL and effectively
encodes history and context information to be used
during composing. We proposed a novel and effi-
cient tokenizer called phrase tokenizer to reduce
latency for composing applications. Efficient serv-
ing heuristics and caching is also applied. With all
the merit above, our demo achieved long, accurate
and real-time typing suggestions for the conversa-
tion. We open-sourced the phrase tokenizer as a
part of tensorflow text library.

461

References

Vishnu Banna, Akhil Chinnakotla, Zhengxin Yan,
Anirudh Vegesana, Naveen Vivek, Kruthi Krish-
nappa, Wenxin Jiang, Yung-Hsiang Lu, George K
Thiruvathukal, and James C Davis. 2021. An ex-
perience report on machine learning reproducibility:
Guidance for practitioners and tensorflow model gar-
den contributors. arXiv preprint arXiv:2107.00821.

Iz Beltagy, Matthew E Peters, and Arman Cohan.
2020. Longformer: The long-document transformer.
arXiv preprint arXiv:2004.05150.

Mia Xu Chen, Benjamin N Lee, Gagan Bansal, Yuan
Cao, Shuyuan Zhang, Justin Lu, Jackie Tsay, Yinan
Wang, Andrew M Dai, Zhifeng Chen, et al. 2019.
Gmail smart compose: Real-time assisted writing.
In Proceedings of the 25th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery & Data
Mining, pages 2287-2295.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts,
Paul Barham, Hyung Won Chung, Charles Sutton,
Sebastian Gehrmann, et al. 2022. Palm: Scaling
language modeling with pathways. arXiv preprint
arXiv:2204.02311.

Adelina Ciurumelea, Sebastian Proksch, and Harald C
Gall. 2020. Suggesting comment completions for
python using neural language models. In 2020 IEEE
27th International Conference on Software Analysis,
Evolution and Reengineering (SANER), pages 456—
467. IEEE.

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Car-
bonell, Quoc V Le, and Ruslan Salakhutdinov.
2019. Transformer-xl: Attentive language mod-
els beyond a fixed-length context. arXiv preprint
arXiv:1901.02860.

Luciano Floridi and Massimo Chiriatti. 2020. Gpt-3:
Its nature, scope, limits, and consequences. Minds
and Machines, 30(4):681-694.

Daniel Gillick, Alessandro Presta, and Gaurav Singh
Tomar. 2018. End-to-end retrieval in continuous
space. arXiv preprint arXiv:1811.08008.

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick
Lewis, Ledell Wu, Sergey Edunov, Dangi Chen, and
Wen-tau Yih. 2020. Dense passage retrieval for
open-domain question answering. arXiv preprint
arXiv:2004.04906.

Romal Thoppilan, Daniel De Freitas, Jamie Hall,
Noam Shazeer, Apoorv Kulshreshtha, Heng-Tze
Cheng, Alicia Jin, Taylor Bos, Leslie Baker, Yu Du,
et al. 2022. Lamda: Language models for dialog
applications. arXiv e-prints, pages arXiv—2201.

Hoang Van, David Kauchak, and Gondy Leroy. 2020.
Automets: the autocomplete for medical text simpli-
fication. arXiv preprint arXiv:2010.10573.

462

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information process-
ing systems, 30.

Yinfei Yang, Daniel Cer, Amin Ahmad, Mandy
Guo, Jax Law, Noah Constant, Gustavo Hernan-
dez Abrego, Steve Yuan, Chris Tar, Yun-Hsuan
Sung, et al. 2019. Multilingual universal sen-
tence encoder for semantic retrieval. arXiv preprint
arXiv:1907.04307.

Susumu Yata, Masaki Oono, Kazuhiro Morita, Masao
Fuketa, Toru Sumitomo, and Jun-ichi Aoe. 2007. A
compact static double-array keeping character codes.
Information processing & management, 43(1):237-

247.

Yicheng Zou, Zhihua Liu, Xingwu Hu, and
Qi Zhang. 2021. Thinking clearly, talking fast:
Concept-guided non-autoregressive generation for
open-domain dialogue systems. arXiv preprint
arXiv:2109.04084.

