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This extended abstract discusses the opportu-
nities and challenges of studying intrinsically-
motivated agents for exploration in textual envi-
ronments.

Humans begin their life with very few skills, and
over the course of only a few years learn complex
motor coordination and locomotion capabilities, be-
gin mastering vocalization and language, and form
a rich model of their physical and social surround-
ings. One of the main drivers of this phenomenal
knowledge acquisition is intrinsically-motivated ex-
ploration (Oudeyer and Kaplan, 2007), for instance
through exploratory play (Chu and Schulz, 2020;
Davidson et al., 2022). The developmental perspec-
tive on AI tries to emulate this exploratory behavior
in artificial agents to achieve mastery of diverse
and complex repertoires of skills (Forestier et al.,
2017). When placed in open-ended environments,
a successful intrinsically motivated agent will ex-
plore the space of interesting and diverse outcomes,
ignoring random and unachievable subspaces of
the world, reusing its previously acquired skills
as stepping stones (Stanley and Lehman, 2015) to
discover new ones.

One possible implementation of exploration in
RL agents are so-called autotelic agents (Colas,
2021), that is, goal-conditioned Reinforcement
Learning (RL) agents operating in rewardless en-
vironments that are able to choose what goal to
pursue. In this case, the reward is given by a goal-
satisfaction function and not extrinsically by the
environment. Goal-conditioned policies have been
extensively studied in the case of extrinsic goals
(Schaul et al., 2015). In the case of intrinsically
chosen goals, the goal-selection mechanism allows
autotelic agents to form a self-curriculum, progress-
ing from easier to increasingly harder goals until all
achievable skills have been mastered. In this per-
spective, the goal representation is of paramount
importance. Most previous works (for instance
Andrychowicz et al. (2017)) have used concrete

end-state representations such as raw observations,
images or embeddings, which has some drawbacks.
A goal should be insensitive to changes in the envi-
ronment that are uncontrollable (such as the color
of the sky), to avoid the agent targeting impossi-
ble goals (for instance changing the sky color), or
to provide useful abstraction for goal achievement
(such as considering the goal of navigating to the
garden is satisfied regardless of sky color). Further-
more, the agent should ideally be able to combine
known goals into novel ones. Goals expressed as
language (Tam et al., 2022; Colas et al., 2020; Mu
et al., 2022) fulfill both conditions: they are at once
abstract and combinatorial (Szabó, 2020); they are
thus a prime way for autotelic agents to self-specify
goals to be executed in the environment.

1 A bridge between autotelic agents and
text environments

The main point of this essay is the relevance of
studying language autotelic agents in textual en-
vironments (Côté et al., 2018; Hausknecht et al.,
2020; Wang et al., 2022), both for testing explo-
ration methods in a context that is at once simple
experimentally and rich from the perspective of
environment interactions; and for transferring the
skills of general-purpose agents trained to explore
in an autonomous way to the predefined tasks of
textual environment benchmarks. We identify three
key properties, plus one additional benefit, of text
worlds:

1. Depth of learnable skills: skills learnable
in the world should involve multiple low-level ac-
tions and be nested, such that mastering one skill
opens up the possibility of mastering more com-
plex skills. Interactive fiction (IF) (Hausknecht
et al., 2020) games usually feature an entire narra-
tive and extensive maps, such that navigating and
passing obstacles requires many successful actions
(and subgoals) to be completed. While the origi-

59



nal TextWorld levels were not as deep as would be
desirable, other non-IF text worlds such as Science-
World feature nested repertoires of skills (such as
learning to navigate to learn to grow plants to learn
the rules of Mendelian genomics);

2. Breadth of the world: there should be many
paths to explore in the environment; this ensures
that we train agents that are able to follow a wide
diversity of possible goals, instead of learning to
achieve goals along a linear path. This allows us to
study generally-capable agents. Some IF games are
very linear, having a clear progression from start
to finish (e.g., Acorn Court, Detective; others have
huge maps that an agent has to explore before it
can progress in the quest (e.g., Zork, Hitchhiker’s
Guide to the Galaxy). Exploration heuristics are a
part of some successful methods for playing IF with
RL (Yao et al., 2020). ScienceWorld (Wang et al.,
2022) has an underlying physical engine allowing
for a combinatorial explosion of possibilities like
making new objects, combining existing objects,
changing states of matter, etc.

3. Niches of progress: real-world environments
have both easy skills and unlearnable skills. Our
simulated environments should mimic this property
to test the agent’s ability to focus only on highly
learnable parts of the space and avoid spending
effort on uncontrollable aspects of the environment.
In textual environments, high depth implies that
some skills are much more learnable than others,
already implementing some progress niches. The
combinatorial property of language goals allows
us to define many unfeasible goals, goals that an
autotelic agent has to avoid spending too many
resources on.

4. Language representation for goals: a
language-conditioned agent has to learn to ground
its goal representation in its environment (Harnad,
1990; Hill et al., 2020), to know when a given ob-
servation or sequence of observations satisfies a
given goal, or to know what goals were achieved
in a given trajectory. This grounding is made much
simpler in environments with a single modality;
relating language goals to language observations is
simpler than grounding language in pixels or im-
age embeddings. This allows us to study language-
based exploration in a simpler context.

2 Drivers of exploration in autotelic
agents

We identify three main drivers of exploration in
autotelic agents. Environments we use should sup-
port exploration algorithms that implement these
principles; the resulting agents then have a chance
to acquire a diverse set of skills that can be re-
purposed for solving the benchmarks proposed by
textual environments.

1. Goal self-curriculum: automatic goal se-
lection (Portelas et al., 2020) allows the agent to
refine its skills on the edge of what it currently
masters. Among metrics used to select goals are
novelty/surprise of a goal (Tam et al., 2022; Burda
et al., 2018), intermediate competence on goals
(Campero et al., 2020), ensemble disagreement
(Pathak et al., 2019), or (absolute) learning progress
(Colas et al., 2019). Progress niches in textual en-
vironments support such goal curriculum;

2. Additional exploration after goal achieve-
ment: after achieving a given goal, the agent con-
tinue to run for a time to push the boundary of
explored space (Ecoffet et al., 2021). The depth
of text worlds makes goal chaining relevant, such
that an agent that has achieved a known goal can
imagine additional goals to pursue. Random explo-
ration can also be used once a known goal has been
achieved. Agents exploring in textual environments
and choosing uniformly among the set of valid ac-
tions in a given state have a high chance of effecting
meaningful changes in the environment, making
discovery of new skills probable. This property is
relevant in any environment with high depth, and
both IF and ScienceWorld fit this description.

3. Goal composition: as mentioned above, this
means using the compositionality afforded by lan-
guage goals to imagine novel goals in the envi-
ronment (Colas et al., 2020). Goal-chaining is an
example of composition, but language offers many
other composition possibilities, such as recombin-
ing known verbs, nouns and attributes in novel
ways, or making analogies. This is relevant if there
exists some transfer between the skills required to
accomplish similar goal constructions (e.g., pick-
ing up an apple and picking up a carrot requires
very similar actions if both are in the kitchen). This
is at least partially true in textual environments
where objects of the same type usually have similar
affordances.
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3 Challenges for autotelic textual agents

Text worlds bring a set of unique challenges for
autotelic agents, among which we foresee:

1. The goal space can be very large. An agent
with a limited training budget needs to focus on
a subset of the goal space, possibly discovering
only a fraction of what is discoverable within the
environment. This calls for finer goal-sampling
approaches that encourage the agent at making the
most out of its allocated time to explore the environ-
ment. In addition, we need better methods to push
the agent’s exploration towards certain parts of the
space (e.g., warm-starting the replay buffer with
existing trajectories, providing linguistic common-
sense knowledge);

2. The action space is also very large in tex-
tual environments, making exploration (especially
methods based on random action selection) poten-
tially challenging.

3. Agents must be trajectory-efficient for a given
goal; complex goals might be seen only once;

4. Catastrophic forgetting needs to be alleviated,
so that learning to achieve new goals does not im-
pair the skills learned previously;

5. Partial observability means that agent archi-
tectures need to include some form of memory.

Agents trained in such environments will learn a
form of language use, not by predicting the most
likely sequence of words from a large-scale dataset
(Radford and Narasimhan, 2018; Brown et al.,
2020) but by learning to use it pragmatically to
effect changes in the environment. Of course, the
limits of the autotelic agent’s world will mean the
limits of its language; an interesting development
is to build agents that explore textual environments
to refine external linguistic knowledge provided
by a pretrained language model. This external
knowledge repository can be seen as culturally-
accumulated common sense, a perspective that is
related to so-called Vygotskian AI (Colas, 2021) in
which a developmental agent learns by interacting
with an external social partner that imparts outside
language knowledge and organizes the world so as
to facilitate the autotelic agent’s exploration.

To conclude, textual environments are ideal
testbeds for autotelic language-conditioned agents,
and conversely such agents can bring progress on
text world benchmarks. There is also promise
in the interaction between exploratory agents and
large language models encoding exterior linguis-

tic knowledge. Preliminary steps have been taken
in this direction (Madotto et al., 2020) but the full
breadth of drivers of exploration we identify has yet
to be studied. We hope to foster discussion, define
concrete implementations and identify challenges
by bringing together the developmental perspective
on AI and the textual environment community.
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