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Abstract

In recent years, false information such as fake
news, rumors and conspiracy theories on many
relevant issues in society have proliferated.
This phenomenon has been significantly ampli-
fied by the fast and inexorable spread of misin-
formation on social media and instant messag-
ing platforms. With this work, we contribute
to containing the negative impact on society
caused by fake news. We propose a graph neu-
ral network approach for detecting false infor-
mation on Twitter. We leverage the inherent
structure of graph-based social media data ag-
gregating information from short text messages
(tweets), user profiles and social interactions.
We use knowledge from pre-trained language
models efficiently, and show that user-defined
descriptions of profiles provide useful infor-
mation for improved prediction performance.
The empirical results indicate that our proposed
framework significantly outperforms text- and
user-based methods on misinformation datasets
from two different domains, even in a difficult
multilingual setting.

1 Introduction

The spread of misinformation on social media is a
growing problem that can hardly be tackled with-
out the help of AI-based detection methods due to
the large amount of data and its complexity. This is
evident in crisis situations such as the COVID-19
pandemic (Naeem and Boulos, 2021) or Russia’s
attack on Ukraine where a sheer flood of fake news
has exacerbated the situation causing great insecu-
rity and harm among the people.

Previous work has focused primarily on the veri-
fication of news content, taking into account user
profiles and propagation patterns in social networks.
However, in real life scenario, news articles are
not always freely available, and matching user-
generated content from social media to published
articles is often hard to accomplish (Shu et al.,
2017). Therefore, we propose a method for au-

tomatic fake news detection that is based only on
data available on social media. We introduce a uni-
fied framework with graph neural networks (GNNs)
that leverages short text messages, user profile in-
formation and social network properties. As a case
study, we train and evaluate our model on mono-
and multilingual social media content from Twit-
ter. To this end, we jointly model the heteroge-
neous graph structure of the data formed by users,
retweeters and their tweets, and cast the verification
task as a node classification problem. We exploit
self-defined profile descriptions from Twitter users
and retweeters as well as the tweets’ text to create
initial user and tweet node features. Unlike previ-
ous approaches which use pre-trained word embed-
dings to encode text features (Monti et al., 2019) or
learn word-level features during training (Lu and
Li, 2020), we utilize state-of-the-art context-aware
multilingual representations from Sentence-BERT
(Reimers and Gurevych, 2019). Since we avoid ex-
pensive fine-tuning of the text encoders, we make
our model efficient and easily applicable. Finally,
we train our system in an inductive setting, boost-
ing its capability to reliably predict new unseen
instances without the need of re-training.

2 Related Work

Text- or content-based fake news detection models
have been greatly enhanced by the advancement of
pre-trained language models (Hossain et al., 2020;
Kaliyar et al., 2021; Panda and Levitan, 2021; Tzi-
afas et al., 2021). Since GNNs leverage news prop-
agation patterns and user network information, they
are particularly suitable for social media data. How-
ever, GNNs have only recently been introduced
for the detection of false information in social net-
works.

Monti et al. (2019) collect news stories and Twit-
ter content, and are the first to employ a GNN ar-
chitecture to model text and user features together
with the social network properties for fake news
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detection. Lu and Li (2020) extract user and tweet
features, and model user propagation paths with
GRU- and CNN-based models. A graph convolu-
tional network (GCN) is used to learn interactions
among users who share the same content. Chandra
et al. (2020) independently train a text encoder for
news content and a graph encoder for modelling the
follower-following network of users spreading a
new articles. Han et al. (2020) cast fake news detec-
tion as a graph classification task, extract features
from Twitter’s user objects only and use GNNs to
compute the dissemination of news content among
multiple users. The authors tackle the problem of
new, unseen data by using techniques from contin-
ual learning. Finally, Dou et al. (2021) propose a
GNN-based method for user preference-aware fake
news detection which exploits historical user posts
for node generation and models propagation pat-
terns of news articles among respective retweeters.

Except for Lu and Li (2020) and Han et al.
(2020), the above-mentioned approaches incorpo-
rate extensive text content from news articles. We
follow the approach of Lu and Li (2020) by address-
ing the challenge of classifying short and noisy text
documents, but instead of applying GNNs to user
networks only, we propose a unified way of mod-
elling user interactions and user-created content
with a graph-based approach. Moreover, none of
the previous works address multilingual aspects of
social media messages and user origins. We show
that our approach significantly outperforms text-
and user-based baselines even in a multilingual set-
ting.

3 Methodology

3.1 Graph Representation

We model Twitter users, their social media posts
(tweets), and their interrelations by building a net-
work graph with nodes and edges. We denote the
set of user nodes by U and the set of tweet nodes
by T . We establish connections, i.e., graph edges,
between users and their tweets eT and between
tweets and users who re-posted (retweeted) a tweet
eR. For a given dataset, we construct a hetero-
geneous graph G = (V, E) with a set of nodes
V = {U ∪ T } and a set of edges E = {eT ∪ eR}.
We note that an explicit connection between users
and retweeters is not necessary, because these in-
teractions are learned by means of the depth of
our network. Likewise, the model can learn rela-
tions between tweets from users and retweeters if a

tweet-retweeter connection exists.

3.2 Tweet Nodes

Let ti ∈ T = {t1, t2, ..., tN} be a tweet in a
given dataset of size N . We generate the ini-
tial tweet nodes for our network graph by encod-
ing the tweet’s text with a pre-trained language
model. We preprocess the text by replacing URLs
with the ‘HTTPURL’ token, e-mail addresses with
the ‘EMAIL’ token and user mentions with the
‘@USER’ token. We also convert emojis into
their corresponding string shortcodes.1 We use
Sentence-BERT (SBERT) to generate a vector rep-
resentation vti of each processed tweet ti ∈ T .
Specifically, we test two multilingual embedding
models of different sizes from the SentenceTrans-
formers library2 trained in a teacher-student setting
(Reimers and Gurevych, 2020): 1. distiluse-
base-multilingual-cased-v1 which is
based on Multilingual Universal Sentence En-
coder (mUSE) (Chidambaram et al., 2019; Yang
et al., 2019) and a distilled version of mBERT
(Sanh et al., 2019). This model supports 15
languages and has an embedding dimension
dD = 512. 2. paraphrase-multilingual-
mpnet-base-v2, which was trained using
paraphrase-mpnet-base-v2 (Song et al.,
2020) as teacher and the base version of XLM-
RoBERTa (Conneau et al., 2020) as student model.
It supports 50+ languages and has an embedding
dimension dM = 768.

3.3 User Nodes

Each tweet ti is authored or retweeted by a user
uj on Twitter. The set of users in each dataset is
defined as U = {u1, u2, ..., uM}, where M is the
total number of unique users. M includes the num-
ber of authors and the number of retweeters. It
should be noted that a user uj can be the author
and retweeter of one or more tweets at the same
time. To initialize the user nodes in our network
graph, we generate a vector representation vuj of
the user’s description attribute contained in
the user object.3 Again, we use preprocessing and
the two pre-trained multilingual models from Sen-
tenceTransformers introduced in Sec. 3.2. To dis-
tinguish our systems with different initial tweet and

1https://pypi.org/project/emoji/
2https://www.sbert.net/
3https://developer.twitter.com/en/

docs/twitter-api/v1/data-dictionary/
object-model/user

https://pypi.org/project/emoji/
https://www.sbert.net/
https://developer.twitter.com/en/docs/twitter-api/v1/data-dictionary/object-model/user
https://developer.twitter.com/en/docs/twitter-api/v1/data-dictionary/object-model/user
https://developer.twitter.com/en/docs/twitter-api/v1/data-dictionary/object-model/user
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user node representations in our experiments, we
use the prefixes ‘Distiluse-’ and ‘Mpnet-’.

3.4 Model

Our proposed fake news detection framework has
a 2-layer GNN at its core and takes as input the
heterogeneous graph described in Sec. 3.1. We
initialize the user and the tweet nodes with their
corresponding embeddings vu ∈ Rd and vt ∈ Rd

which we do not fine-tune during training.
Next, we project the embeddings into a lower

dimensional space hvi ∈ R128 using a separate
fully-connected layer followed by a ReLU activa-
tion function for each node type vi ∈ V .

For computing the node representations, we im-
plement the GraphSAGE operator (Hamilton et al.,
2017) according to the PyTorch Geometric4 library,
add a ReLU non-linearity, and apply it to all edge
types specified in E (Sec. 3.1). One operation step
of the GraphSAGE convolution with the mean-
based aggregator at layer k is defined as:

h′
v = ReLU(Wk

1hv +Wk
2 ·meann∈N (v)hn)

where n ∈ N (v) is a node in the neighborhood
of v, hn its hidden representation, and Wk

1 and
Wk

2 are the weight matrices at the k-th layer. Ad-
ditionally, we ℓ2-normalize the output features of
each node and group the features generated by dif-
ferent relations by summation.

We test one variant of our proposed network by
replacing the SAGE operator with a graph attention
network (GAT) (Veličković et al., 2017). By em-
ploying a self-attention mechanism (Vaswani et al.,
2017), GAT learns different parameters for differ-
ent nodes in a neighborhood and has been utilized
in previous works (Monti et al., 2019; Chandra
et al., 2020).

For the final binary node classification of ‘real’
and ‘fake’ tweets, we feed the tweet representations
ht ∈ R128 learned by the GNN into a 2-layer feed-
forward network with a ReLU non-linearity after
the hidden layer and a logistic sigmoid function
after the final layer.

4 Experimental Setup

4.1 Datasets

We collect two published fake news datasets which
provide social media context: FakeNewsNet (Shu

4https://github.com/pyg-team/pytorch_
geometric

et al., 2020), and a multilingual dataset related to
COVID-19 (Alam et al., 2021b) which we refer to
as Covid-19-Disinfo.

FakeNewsNet is a popular dataset for automated
fake news detection which contains English news
articles from two fact-checking websites together
with related content from Twitter. For our study, we
use the ‘fake’ and ‘real’ tweets compiled from Poli-
tiFact5 available at the FakeNewsNet data reposi-
tory website.6 We hydrate the tweet objects via
Twitter’s API using tweepy.7 As many tweets
have been deleted since the date of the publication
of the dataset (Balestrucci and De Nicola, 2020),
we end up with a total size of 289,602 ‘real’ and
111,101 ‘fake’ (unique) tweets, which is 72.54%
and 67.38% of the original dataset size, respec-
tively. To prevent data leakage and bias during
training and evaluation, we remove similar tweet
objects from the dataset by normalizing the tweets’
text (incl. lowercasing, see Sec. 3.2) and applying
exact-duplicate filtering according to Alam et al.
(2021a).This results in a total number of 282,643
instances, with 233,071 tweets being annotated as
‘real’ and 49,572 as ‘fake’. In order to counteract
the impact of an unbalanced dataset, we randomly
sample 49,000 tweets from each class label. Finally,
we randomly split all instances into 70% train, 10%
validation and 20% test sets.

Covid-19-Disinfo is a multilingual Twitter
dataset related to the spread of false information
during the COVID-19 pandemic. The dataset was
compiled for fine-grained disinformation analy-
sis and contains various independent classification
tasks formulated in the form of questions. We
choose the binary classification task ‘Q2’ which
is designed for detecting false information. When
downloading the tweet objects via the Twitter API,
we face similar issues as mentioned above. From
the total number of 9,583 tweet IDs (Q2 task) we
were able to hydrate only 8,810 unique tweet ob-
jects from Twitter, resulting in a predefined train,
validation and test split of 6,462, 602 and 1,746
tweet objects, respectively.

We extend FakeNewsNet and Covid-19-Disinfo
with 73,722 and 57,966 unique retweeter objects,
respectively. Thus, we obtain a total number of
147,690 unique user objects for FakeNewsNet and
62,598 unique user objects for Covid-19-Disinfo.

5https://www.politifact.com/
6https://github.com/KaiDMML/

FakeNewsNet
7https://www.tweepy.org/

https://github.com/pyg-team/pytorch_geometric
https://github.com/pyg-team/pytorch_geometric
https://www.politifact.com/
https://github.com/KaiDMML/FakeNewsNet
https://github.com/KaiDMML/FakeNewsNet
https://www.tweepy.org/
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Model FakeNewsNet Covid-19-Disinfo
Mpnet-Tweet .8817 (.0025) .4101 (.0274)
Distiluse-Tweet .8618 (.0013) .3791 (.0243)
Mpnet-Tweet-User .8696 (.0010) .4135 (.0192)
Distiluse-Tweet-User .8650 (.0003) .3310 (.0228)
Mpnet-GAT .9241 (.0016) .4252 (.0193)
Distiluse-GAT .9351 (.0006) .3889 (.0325)
Mpnet-SAGE .9370 (.0008) .4868 (.0172)
Distiluse-SAGE .9467 (.0015) .4421 (.0055)

Table 1: Mean F1 scores (‘fake’ class) and standard
deviation (±) of 5 runs on the test sets of FakeNewsNet
(Politifact) and Covid-19-Disinfo. Bold: Best overall
performance for each dataset.

4.2 Baselines

We use two baseline models to compare the perfor-
mance of our proposed GNN model each with two
input feature variations.

Tweet Neural Network. We encode the tweets’
text adopting the same embedding models de-
scribed in Sec. 3.2. We then compute a predic-
tion for each instance with a 3-layer feed-forward
network similar to the prediction network in our
GNN model. We also use a hidden size of 128, but
add the tanh activation function (instead of ReLU)
after each layer.8 We refer to these baselines as
‘Distiluse-Tweet’ and ‘Mpnet-Tweet’, depending
on the embedding model.

Tweet-User Neural Network. We encode the
tweets’ text and the description attribute of
the user objects (see Sec. 3.3). We use two sepa-
rate 2-layer feed-forward networks to obtain the
hidden representations hu, ht ∈ R128 of user uj
who posted tweet ti in the dataset. Again, we use
the tanh activation function after each layer. Intu-
itively, the network should learn the interrelation
between users and their messages. We compute
h′ = hu ⊕ ht, where ⊕ is the concatenation opera-
tor, and use another fully-connected layer for the
final prediction. We denote this baseline by ‘Tweet-
User’ prepended by the embedding specifier.

5 Results and Analysis

For each model architecture, we report the mean
F1 of the positive class (‘fake’) of five runs with
different random seeds. The results are listed in
Table 1. Overall it can be observed that our pro-
posed GNN model outperforms all baselines on
both datasets, except for ‘GAT’ which is inferior
with initial ‘Distiluse’ features and only marginally

8In our preliminary experiments, the tanh activation func-
tion performed slightly better than ReLU.

better with ‘Mpnet’ on Covid-19-Disinfo. Specifi-
cally designed for inductive graph representation
learning, the SAGE module is more robust than
GAT and can generalize better on unseen test data
(Brody et al., 2021).

As for FakeNewsNet, Distiluse-SAGE outper-
forms all baseline architectures, Mpnet-SAGE
and our proposed GNNs with the GAT operator.
Among the baseline models, additional user infor-
mation (Tweet-User) only helps with ‘Distiluse’
embeddings. However, the best results are achieved
with ‘Mpnet’ representations. Since ‘Mpnet’ em-
beddings have a larger dimension, i.e., dM = 768
vs. dD = 512, they have the ability to capture more
information within shallower networks. Among the
GNN architectures initial ‘Distiluse’ nodes outper-
form their ‘Mpnet’ counterparts.

Regarding Covid-19-Disinfo, all ‘Mpnet’ mod-
els outperform the ‘Distiluse’ models. The larger
embedding size seems to be useful in scenarios
where little training data is available. For our pro-
posed approach, ‘Mpnet’ embeddings outperform
‘Distiluse’ representations by roughly 4 percentage
points in both setups, i.e., ‘GAT’ and ‘SAGE’. The
strongest model, Mpnet-SAGE, is more than 7 per-
centage points better than the strongest baseline,
Mpnet-Tweet-User.

Figure 1: t-SNE (van der Maaten and Hinton, 2008)
plot of Covid-19-Disinfo tweet embeddings (test set)
generated by the baseline Mpnet-Tweet model. Fake
tweets are in red.

In general, the results suggest that the Covid-
19-Disinfo classification task is much harder than
the FakeNewsNet task. Most likely this is due to
the lack of sufficient training and validation data,
since we use regularization methods to mitigate
overfitting. Other reasons could be the multilingual
character of the content and the domain-specific
vocabulary which is difficult to capture for the pre-
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Figure 2: t-SNE plot of Covid-19-Disinfo tweet features
(test set) generated by our Mpnet-SAGE encoder. Fake
tweets are in red.

trained language models. However, the final repre-
sentations of ‘fake’ and ‘real’ tweets generated by
our proposed GNN detection framework are more
distinct than the baseline features, and, therefore,
help to improve detection performance on both
datasets (see Figs. 1 and 2).

Although we use publicly available data in a
purely observational manner, we point out that our
model may learn a ‘semantic bias’ (Shah et al.,
2020) towards user-defined descriptions. Under
certain conditions, this bias could lead to question-
able results that are not intended.

Ablation Study In order to investigate the ef-
fect of the models’ input components to the re-
sults, we conduct a comparative study with the best
performing model on the corresponding dataset.
To this end, we either randomize tweet (‘SAGE
(rnd tweets)’) or user (‘SAGE (rnd users)’) node
features while keeping other model settings con-
stant. The results of 5 runs (Table 2) indicate that in
the balanced dataset scenario with sufficient exam-
ples (FakeNewsNet), pre-trained tweet nodes pri-
marily contribute to the performance of Distiluse-
SAGE. Yet, both node representations modelled
with our proposed GNN lead to the significant per-
formance gain. In the case of the more challeng-
ing Covid-19-Disinfo dataset, we observe for both
model variations a sharp drop in performance to al-
most equal F1 scores. This indicates that both input
components equally contribute to the performance
increase of our proposed model.

6 Conclusion

In this work, we present a simple, yet efficient GNN
approach for the detection of fake news on social

Model FakeNewsNet Covid-19-Disinfo
SAGE (rnd tweets) .6594 (.0138) .2964 (.0318)
SAGE (rnd users) .9102 (.0016) .3019 (.0387)
Mpnet-SAGE – .4868 (.0172)
Distiluse-SAGE .9467 (.0015) –

Table 2: Ablation results (mean F1 scores (‘fake’ class)
and standard deviation (±)) of best performing models
randomizing either tweet or user node features. Bold:
Best performance without random features.

media. Our model employs pre-trained language
models to encode text features of social media mes-
sages and user profile descriptions. By jointly mod-
elling the relations between users and their tweets
and between users who shared similar content, our
GNN architecture outperforms text-based models
as well as models which combine text and user
features from pre-trained language models. In ad-
dition, our model is able to apply its knowledge to
unseen data without the need of re-training. We
show that our approach has limitations in settings
with insufficient training data. But with the right
choice of initial node representations, the model
still outperforms all baselines. In future work, we
will investigate domain-adapted language models
for initializing graph nodes. Further, we plan to
evaluate our model on similar social media content,
such as Reddit (Sakketou et al., 2022).
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A Additional Training Configurations

We use PyTorch9 and the PyTorch Geometric li-
brary to build our models. We train our GNN
framework for 300 epochs with early stopping. We
optimize with Adam (Kingma and Ba, 2014) set-
ting the learning rate to 0.005 and weight decay
to 0.001. For regularization of the whole network,
we use dropout with p = 0.3 before the first fully-
connected layer, after each graph neural network
layer, and after the hidden layer in the prediction
network.

We train all baseline models for 100 epochs with
early stopping and a batchsize of 64. We set the
size of all hidden layers to 128. Again, we optimize
with Adam setting the learning rate to 0.005 and
weight decay to 0.001. We use dropout with p =
0.5 after the first hidden layer for regularization.
All experiments are run on NVIDIA GeForce RTX
3090 24 GB GPUs.

9https://pytorch.org/

https://pytorch.org/

