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Abstract

The ability to track fine-grained emotions in
customer service dialogues has many real-
world applications, but has not been studied
extensively. This paper measures the potential
of prediction models on that task, based on a
real-world dataset of Dutch Twitter conversa-
tions in the domain of customer service. We
find that modeling emotion trajectories has a
small, but measurable benefit compared to pre-
dictions based on isolated turns. The models
used in our study are shown to generalize well
to different companies and economic sectors.1

1 Introduction

While emotion recognition in conversations (ERC)
has recently become a popular task in NLP (Po-
ria et al., 2019b), its application potential to real-
life business-related settings remains understudied.
Our research focuses on applying ERC to the do-
main of customer service (CS), as it can be used to
model customer satisfaction, reduce churns, prior-
itize clients, and detect emotional shifts in clients
throughout CS interactions. Since the provision of
customer service is gaining ground in both public
and private chat channels, timely delivering high-
quality assistance is crucial in mitigating the effects
of negative word-of-mouth (van Noort and Willem-
sen, 2012) and creating relational bonds between
customers and brands (Deloitte Digital, 2020).

As emotion recognition is often implemented
on ‘artificial’, open-domain conversations (Busso
et al., 2008; Li et al., 2017), we worked on real-
world, domain-specific data that is more imbal-
anced and noisy. Moreover, we are the firsts to
tackle the ERC task in Dutch dialogues. To these

*Both authors contributed equally.
1Dataset and code are available at https://github.

com/SofieLabat/EmoTwiCS-data and https://
github.com/hadifar/DutchEmotionDetection,
respectively.

ends, we annotated emotion layers in a Dutch sub-
set of 9,489 conversations from the Twitter cor-
pus introduced by Hadifar et al. (2021), which we
called EmoTwiCS (‘Emotions in CS interactions
on Twitter’) (Labat et al., 2022b).2 These emo-
tion layers function as building blocks for emotion
trajectories, a term emphasizing that emotions are
dynamic attributes that can shift at each customer
turn in the conversation.

We report classification effectiveness for six pre-
diction tasks (focusing on cause, response strate-
gies, subjectivity, valence, arousal, and emotion
clusters). Besides subjectivity prediction which
is applied to the conversation level, the five other
tasks are run on isolated turns. To investigate the
portability of our trained models to future data and
other companies or sectors, we introduce three well-
chosen train-test segmentation scenarios. We then
zoom in on emotions and hypothesize that they fol-
low a trajectory throughout conversations, whereby
the operator tries to help the customer, thus de-
flecting negative emotions. To investigate whether
knowledge about recurring emotion transitions may
be useful for emotion prediction, we apply a Condi-
tional Random Field (CRF; Lafferty et al., 2001) to
the sequence of user turn encodings from a conver-
sation, to make a joint prediction for the emotions
in the conversation. We observe a weak, but con-
sistently positive effect with respect to the isolated
turn baselines in support of that premise.

2 Related work

Although emotion detection has often been ap-
plied to tweets (Mohammad et al., 2018) and chat
logs (Ma et al., 2005), the context-aware detec-
tion of emotions throughout conversations is a rela-
tively recent development in NLP. State-of-the-art
results for emotion detection on isolated texts are
achieved by fine-tuning large pretrained language

2We refer to Labat et al. (2022b) for a detailed inter-
annotator study and data analysis on EmoTwiCS.

https://github.com/SofieLabat/EmoTwiCS-data
https://github.com/SofieLabat/EmoTwiCS-data
https://github.com/hadifar/DutchEmotionDetection
https://github.com/hadifar/DutchEmotionDetection


107

models. For Dutch, there currently exist two such
models named BERTje (de Vries et al., 2019) and
RobBERT (Delobelle et al., 2020), although cross-
lingual language models such as XLM (Conneau
et al., 2019) can also be applied to Dutch texts.

In contrast to these ‘vanilla’ emotion detection
systems, recent work on ERC models additional
information such as the conversational context, the
temporal order of turns, and interlocutor-specific
attributes (Poria et al., 2019b). There exist two
approaches for ERC: we either view it as a se-
quence labeling task, or we predict emotions for
a turn given the previous (and, in some variants,
future) utterances. The latter approach was first
addressed by recurrence-based models such as
LSTMs (Poria et al., 2017), conversational mem-
ory networks (Hazarika et al., 2018), and attentive
RNNs (Majumder et al., 2019). Afterwards, graph-
based (Ghosal et al., 2019; Shen et al., 2021) and
knowledge-enriched transformer models (Zhong
et al., 2019; Zhu et al., 2021) were also investigated.
The sequence labeling approach was introduced
by Wang et al. (2020) who used information about
the emotional consistency in conversations. His
model combines a global context encoder (trans-
former) with an individual context encoder (LSTM)
into a CRF layer to jointly predict emotions for all
utterances. Guibon et al. (2021) implemented ERC
in a few-shot learning sequence labeling problem.
In our second experimental setup, we also tackle
emotion detection as a sequence labeling task.

All but the two previously mentioned models are
trained on publicly released datasets in English con-
taining open-domain conversations (Busso et al.,
2008; Poria et al., 2019a). There is only one small
Dutch dataset (Vaassen et al., 2012) with 11 conver-
sations and emotions rated on Leary’s Rose (Leary,
1957), a dimensional framework with two axes rep-
resenting the degree of control and agreeableness.
For ERC, the corpus is less suitable given its small
size, low agreement, fixed events, and uncommon
emotion model. Unlike standard sentiment anal-
ysis, the fine-grained task of ERC has not yet be-
come commonplace in CS departments. To our
knowledge, there exist only a few papers that apply
ERC to CS (Herzig et al., 2016; Maslowski et al.,
2017; Mundra et al., 2017; Guibon et al., 2021).

3 Experimental setup

After describing the EmoTwiCS corpus along with
its prediction tasks (Section 3.1), our data segmen-

tation strategies are introduced (Section 3.2), fol-
lowed by the models and their implementation de-
tails (Section 3.3).

3.1 EmoTwiCS task descriptions

We rely on a newly annotated corpus of emo-
tion layers called EmoTwiCS. The corpus contains
9,489 Dutch Twitter dialogues in the domain of
customer service that were collected for three eco-
nomic sectors: telecommunication, public trans-
portation, and airline industry. The conversations
were annotated for four emotion layers: conversa-
tion characteristics, cause, response strategies, and
customer emotions. Figure 1 illustrates how the
layers and sublayers are annotated on a conversa-
tion, while the remainder of this section provides
more details about each of them.

Figure 1: An English mock-up conversation to illus-
trate how conversations are annotated in the EmoTwiCS
corpus along four emotion layers (conversation charac-
teristics, cause, emotions, and response strategies).

Experiments were conducted for the following
classification tasks on our emotion layers:

Subjectivity – Detect whether the conversation
is subjective, which is the case if at least one cus-
tomer turn contains emotions. The task involves
classifying the concatenation of all customer turns.

Cause – Recognize the event that triggered cus-
tomers to start a conversation, as a multi-class clas-
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sification problem with eight classes (see Appendix,
Table 3). Since 99% of all causes reside in the first
customer turn, we use that as our model’s input.

Response strategies – Recognize one or more
response strategies operators applied in their re-
sponses. This is a multi-label prediction task over
eight response strategies (see Table 3). Response
strategies have only been annotated for subjective
conversations, but cannot be assumed absent in ob-
jective ones. We therefore restrict the prediction
task to subjective conversations only, and we use
single operator turns as input to our models.

Valence/Arousal – Given a customer turn, pre-
dict its valence/arousal score (integer from 1 to
5). While valence represents the sentiment of an
emotional state ranging from very negative to very
positive, arousal stands for the amount of activation
an emotion elicits and ranges from calm to excited.
We implement both as multi-class tasks.

Emotion clusters – Given a customer turn, pre-
dict the emotion clusters that it contains.3 While
annotators could assign multiple labels to a single
turn, we find that only 6.5% of the customer turns
received two or more annotations. We therefore
convert the task from a multi-label to a multi-class
detection task by assigning an order of importance
to the labels.4 To validate our heuristic, an external
annotator extracted the most prominent emotions
from 100 customer turns with multiple emotion
annotations. We find that the annotator and our
heuristic agree in 78% of the cases.

3.2 Data segmentation

To investigate the out-of-domain transferability of
our models on the different prediction tasks, we
work with three train-test segmentation strategies.
The size of the different splits is given in Table 4
in the Appendix.

Temporal split – 80-20 train-test split based on
the chronological order of the first tweet in each
conversation, stratified over companies. This way,
we want to demonstrate that prediction systems
trained on past data generalize well to unseen, fu-
ture data. The split is also used for the in-context
classification experiments (see Section 4.2).

Company splits – As telecom is the most fre-
quent sector in EmoTwiCS, we split the six com-

3We use the term clusters to remain consistent with the
EmoTwiCS data description paper. In that paper, 28 emotion
labels were grouped into 9 emotion clusters.

4Heuristic: Anger > Annoyance > Disappointment > Ner-
vousness > Gratitude > Relief > Joy > Desire > Neutral.

panies within this sector into three train-test splits,
with each four companies for training and two for
testing. Averaging the prediction results over these
splits gives an idea of the transferability of our
models to new companies within the same sector.

Sector splits – Given that EmoTwiCS has data
for three economic sectors, we create three cor-
responding train-test splits in which we train on
two economic sectors and evaluate on the third one.
Cross-validation over these splits will demonstrate
the transfer potential of our models to new sectors.

3.3 Models and implementation details

For the experiments on isolated tweets, we select
the following models: majority class baseline, Sup-
port Vector Machines (SVM; Cortes and Vapnik,
1995) with tf-idf features, BERTje (de Vries et al.,
2019), RobBERT (Delobelle et al., 2020), and
XLM (Conneau et al., 2019). For all pretrained
transformer models, we use their publicly avail-
able ‘base’ versions and place a single feedforward
layer on top to predict the classes. We only tune
the learning rate and number of epochs on 15% of
the train data for the temporal setup, and reuse the
same hyperparameters for the company and sec-
tor setups. For the second set of experiments, we
put a CRF layer on top of RobBERT to predict
the emotion trajectories of conversations (Lample
et al., 2016). Given a conversation and its sequence
of turns, we first extract the turn embeddings by
using the [CLS] token representations from the last
layer of the pretrained language model, which are
then given to a classifier to estimate emotion cluster
probabilities. These probabilities are subsequently
fed into a CRF layer to maximize valid emotion
sequence predictions.

4 Results and Discussion

We present the results of our models for six classifi-
cation tasks on isolated tweets across the different
train-test setups in Section 4.1. In Section 4.2,
we focus on the emotion trajectories, and cast the
detection of emotion clusters as a context-aware
sequence labeling task.The presented metrics are
micro and weighted F1 scores (Table 1), as well as
accuracy (Fig. 2) and individual class F1 (Table 2)
for emotion trajectories.

4.1 Experiments on isolated tweets

The results of our experiments for the six classifica-
tion tasks are shown in Table 1, while the standard
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Subjectivity Cause Response strat. Valence Arousal Emotion clusters
Setup Model F1micro F1w F1micro F1w F1micro F1w F1micro F1w F1micro F1w F1micro

Temporal Majority-class 55.4 29.6 46.6 23.2 41.1 38.2 54.3 48.7 63.0 34.9 51.4
SVM (tf-idf) 75.4 62.7 64.5 79.8 80.5 58.7 61.8 67.4 69.4 66.5 68.3
BERTje 82.0 70.0 70.4 87.6 87.7 65.6 65.2 74.2 74.9 71.6 72.0
RobBERT 83.4 71.1 71.7 86.9 87.1 67.8 67.7 74.0 74.6 72.8 73.7
XLM 83.4 70.9 71.6 87.5 87.6 68.1 68.0 74.4 75.2 72.7 73.4

Company RobBERT 83.0 71.1 71.4 84.4 84.8 66.7 67.0 73.1 74.5 71.2 72.7
XLM 76.3 71.3 71.5 80.9 81.9 65.7 66.4 72.8 74.1 68.4 71.4

Sector RobBERT 83.0 61.6 64.0 84.6 85.4 65.6 65.7 73.9 74.7 71.6 72.9
XLM 72.90 63.3 63.4 81.5 83.5 65.8 66.0 72.8 73.7 70.6 72.0

Table 1: Results for subjectivity, cause, response strategies, valence, arousal, and emotion clusters classification.

deviations on the results of the company and sector
setups are reported in Table 5. In the temporal setup
of Table 1, we see that the fine-tuned language mod-
els outperform the majority class and SVM base-
lines by a large margin. Upon comparing the two
Dutch language models RobBERT and BERTje, we
find that RobBERT outperforms BERTje on four
tasks (subjectivity, cause, valence, and emotion
clusters). Moreover, the multi-lingual XLM model
also achieves good results: it is the best baseline
for valence and arousal prediction, but achieves
second-to-best scores on all other tasks. As for the
company and sector setups, we report scores for
the two best-performing systems from the temporal
setup. We observe that the results for two latter
setups are less than, but still very comparable to the
temporal experiments. Our models thus generalize
well to other companies within the same domain,
and to other economic sectors. This generalizabil-
ity across sectors is significantly less outspoken for
cause detection, which illustrates that cause classes
are often linked to a specific domain (e.g., delay for
public transportation vs. breakdown for telecom).

4.2 Modeling emotion trajectories

We hypothesize that emotions follow recurring tra-
jectories that reflect the attempts of the CS operator
to mitigate negative customer emotions. This moti-
vated our reformulation of the emotion clustering
task as a sequence labeling task (see also Wang
et al., 2020; Guibon et al., 2021), modeled with a
CRF to make joint predictions for emotion clusters
in the conversation. As we work with joint pre-
dictions, we test our hypothesis on the subset of
subjective conversations with at least two customer
turns. We focus on subjective conversations, as
these contain a varied distribution of emotion clus-
ters. Figure 2 plots the results of our experiment

across the conversations with a given number of
customer turns. We notice a weak, yet consistent
trend in which the CRF model slightly outperforms
the isolated turn predictions. There is no clear indi-
cation that this effect is stronger for longer conver-
sations, although that is hard to measure due to the
low number of longer conversations. The improved
results of the CRF model are thus an indication
that there is some signal in modelling the sequence
of emotions, although not statistically significant,
given the size of the test set.
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Figure 2: Emotion accuracy for all test conversations
with at least two customer turns, calculated on the tem-
poral setup, for the RobBERT baseline without CRF
(wo CRF) vs. the one with the CRF (w CRF).

We further investigate the models’ performance
on individual emotion clusters in Table 2. We find
that for some classes there is too little support lead-
ing to very low scores (e.g., Relief, Nervousness,
and Desire). The F1 scores of both systems are gen-
erally higher for classes with more support. Nev-
ertheless, the CRF model outperforms the baseline
by a large margin on classes with lesser support
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(e.g., Anger, Disappointment, and Joy). Note that
the high scores for Gratitude may be due to the
rather standard lexicalization of it in the corpus.

Classes w CRF wo CRF Support

Anger 0.40 0.04 45
Annoyance 0.53 0.58 182
Desire 0.11 0.0 17
Disappointment 0.45 0.0 36
Gratitude 0.92 0.90 123
Joy 0.51 0.32 35
Nervousness 0.00 0.00 11
Neutral 0.73 0.73 230
Relief 0.00 0.00 8

Table 2: Results (F1) for individual emotion clusters.

5 Conclusion

We presented the first experiments on a newly col-
lected corpus of Dutch Twitter conversations an-
notated along four emotion layers. For our exper-
iments on isolated tweets, we find that the best
performance is obtained by fine-tuning pretrained
language models such as RobBERT and XLM. We
show that these two models transfer well across
(i) time, (ii) companies within the same sectors,
and (iii) across sectors. We also demonstrate that
the detection of emotion clusters slightly benefits
from knowledge about frequently occurring emo-
tion trajectories, especially for classes with lower
levels of support. In future research, we will extend
our approach to model emotion trajectories for the
purpose of real-time prediction (e.g., in chatbots),
thus having access to past utterances only. We will
also investigate emotion trajectories in longer con-
versations (e.g., on data collected through Wizard
of Oz experiments (Labat et al., 2022a)) and focus
on joint prediction tasks such as emotion-cause or
emotion-response strategy extraction.
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Appendix

Task Label set

Cause employee service; product quality; delays
and cancellations; breakdowns; product
information; digital design inadequacies;
environmental and consumer health;
no cause / other.

Resp. apology; cheerfulness; empathy; gratitude;
explanation; help offline; request information;
other

Emotion anger; annoyance; desire; disappointment;
gratitude; joy; nervousness; neutral; relief

Table 3: Label sets for the tasks cause, response strate-
gies (Resp.), and emotion clusters.

Subj-Cause Response strat. Cust. emotions
Setup Train Test Train Test Train Test

Temporal 7,587 1,902 6,477 1,489 10,272 2,443
Comp. 1 3,795 1,852 3,002 1,739 4,970 2,571
Comp. 2 3,670 1,977 2,962 1,779 4,802 2,739
Comp. 3 3,829 1,818 3,518 1,223 5,310 2,231
Sector 1 3,842 5,647 3,225 4,741 5,174 7,541
Sector 2 6,727 2,762 5,650 2,316 8,962 3,753
Sector 3 8,409 1,080 7,057 909 11,294 1,421

Table 4: Number of train-test instances for the classifi-
cation tasks across the different segmentation strategies
(temporal, company, sector). Subjectivity and cause
are grouped together as they have the same number of
train-test instances. The tag ‘customer emotions’ stands
for valence, arousal and emotion clusters which are also
grouped together for the same reason.

Subjectivity Cause Response strat. Valence Arousal Emotion clusters
Setup Model s F1micro s F1w s F1micro s F1w s F1micro s F1w s F1micro s F1w s F1micro s F1w s F1micro

Company RobBERT 0.6 1.5 1.8 0.4 0.3 1.1 1.3 1.8 1.8 1.9 1.8
XLM 9.7 2.0 1.8 1.2 1.2 1.4 1.4 2.1 2.1 2.5 2.2

Sector RobBERT 1.4 3.2 2.1 4.4 4.3 1.1 1.2 1.6 1.8 1.9 1.9
XLM 16.5 4.5 4.9 9.7 7.6 1.0 1.0 1.6 1.9 2.5 2.2

Table 5: Standard deviation (s) on the average performance reported in Table 1. Standard deviation is reported for
those setups that have several train-test splits (viz., company and sector setups).


