DFKI-MLT at WMT-SLT22
Spatio-temporal Sign Language Representation and Translation

Yasser Hamidullah and Josef van Genabith and Cristina Espafia-Bonet
{yasser.hamidullah, Josef.van_Genabith,cristinae}@dfki.de
German Research Center for Artificial Intelligence (DFKI)

Saarland Informatics Campus, Saarbriicken, Germany

Abstract

This paper describes the DFKI-MLT submis-
sion to the WMT-SLT 2022 sign language trans-
lation (SLT) task from Swiss German Sign Lan-
guage (video) into German (text). State-of-the-
art techniques for SLT use a generic seq2seq
architecture with customized input embeddings.
Instead of word embeddings as used in tex-
tual machine translation, SLT systems use fea-
tures extracted from video frames. Standard
approaches often do not benefit from tempo-
ral features. In our participation, we present a
system that learns spatio-temporal feature rep-
resentations and translation in a single model,
resulting in a real end-to-end architecture ex-
pected to better generalize to new data sets. Our
best system achieved 5+ 1 BLEU points on the
development set, but the performance on the
test dropped to 0.11 4= 0.06 BLEU points.

1 Introduction

Text-to-text machine translation (MT) is achiev-
ing a great success with even (close to) human
performance for some language pairs and do-
mains (Akhbardeh et al., 2021). However, the sit-
uation in sign language translation (SLT) is much
different. One important reason is that the SLT is
a low-resource scenario where one does not have
the same amount of data as in high-resourced text-
to-text to achieve a similar level of performance.
A more specific reason is that SLT involves two
modalities, text and video. Various problems arise
when dealing with these modalities. Besides data
scarcity, the lack of temporal boundaries in the in-
put videos is a challenge. To overcome the lack
of temporal boundaries, the most common solu-
tion tends to ignore or not benefit from tempo-
ral features. This approach relies on the Trans-
former (Vaswani et al., 2017) capabilities to learn
sequence-to-sequence tasks. The state-of-the-art
SLT technique (Camgoz et al., 2020) is practically
a normal Transformer but uses a custom embed-
ding layer for 2D features extracted from video

frames. In this approach, training a SLT system
requires a pre-extraction step to convert frame
features to vectors and train a Transformer sepa-
rately to translate the vectors into spoken language.
This type of approach has been widely used on a
very specific dataset, the weather forecast corpus
PHOENIX14T (Camgoz et al., 2018), where re-
searchers reported a relatively good performance in
terms of BLEU (~20) (Camgoz et al., 2020; Min
et al., 2021).

Despite its good performance on a specific
dataset, there is the doubt whether such type of
architecture generalizes to new data sets. In or-
der to build a more general technique, we focus
on fundamental SLT problems such as the design,
implementation and evaluation of a fully end-to-
end model and representation learning for sign lan-
guage videos. Having a fully end-to-end model fa-
cilitates the task of data collection and diminishes
the need for annotation (e.g. in terms of sign lan-
guage glosses), which is necessary to build larger
and richer datasets. It also allows training video
embeddings fully optimized for the translation task.
Text translation is one of the most mature areas in
natural language processing, and therefore we fo-
cus here on the sign language representation part of
the architecture and use an in-house state-of-the-art
Transformer for text generation.

This paper reports our approach for end-to-end
SLT used for the WMT-SLT translation shared task
from Swiss German Sign Language into German.
In the next sections we introduce our approach
(Section 2), experimental setup (Section 3), results
(Section 4) and conclusions & perspectives (Sec-
tion 5).

2  Our Approach

The main idea of our approach is to learn feature
representation and translation in a single model,
and be able to train them together. Figure 1(a)
sketches our general pre-processing pipeline and
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Figure 1: End-to-end architecture for sign language translation.

Figure 1(b) the architecture. The system architec-
ture consists of two connected blocks: the first
block made of CNNss is intended for vision and the
second one is for language which is Transformer
architecture.

Both the CNNs used for the video representa-
tions and the Transformers used for the text repre-
sentations come with large numbers of parameters.
As we are operating in a low resource scenario,
besides the combination of the two networks, we
experiment to find the best trade-off between data
size and number of parameters.

2.1 Visual feature representation

Our goal is to build a sentence embedding-like
model for the visual sign language encoder, as a
word/sign level-like representation is limited by
the lack of temporal boundaries in videos. We
hypothesize that a sentence embedding will still
contain and distinguish all the information given
by individual signs.

In the shared task, we use ResNet3D (Hara et al.,
2017) as our spatio-temporal visual feature repre-
sentation block. We prefer it instead of a normal 2D
with temporal convolutions (Wang et al., 2019) to
develop a fully end-to-end trainable model. There
are many available architectures in the literature,
but ResNet is unique in providing different models
with different scales. This gives us the possibility
to experiment with various sizes which help us to
weight the importance of each of the vision and
text blocks in our trade-off experiments.

Our visual encoding in the submitted system is
composed by the original 3D ResNet10 with output
conversion. The conversion creates a sequence of
vectors from the single output vector to adapt to the
transformer encoder input. We define the SWM
parameter (Sentence to Words Mapping), which is
the number of splits from the output vector. This

output is projected through a linear layer which
is connected directly to the language block. We
experiment with 3D ResNet10, 3D ResNet34 and
3D ResNet50 and show the comparative results in
Section 3.

2.2 Language representation

The language block is a normal language Trans-
former. Its training end-to-end with the visual
model can constrain the visual model and force
it to take into account the language representation
to build the visual embedding. This should result
in more specific visual representations for sign lan-
guage which has not yet been explored extensively
in SLT. For this shared task, we use the Transformer
for the language block with parameters shown in
Table 1. This choice is motivated by Camgoz et al.
(2020) which improved their previous results with
LSTMs and GRUs (Camgoz et al., 2018) by more
than 10 BLEU points. Furthermore, the Trans-
former makes the visual and language fusion more
intuitive and easier for SLT, because it can process
the whole sentence at the same time.

2.3 Loss and optimizer

In our experiments, we use a generalized loss. The
general loss is considering both vision and text as
a single model so the backpropagation starts from
the last layer of the language part to the first layer
of the visual one. We used the regular cross entropy
loss from (Vaswani et al., 2017), with smoothing
value = 0.1. Our optimizer has the following con-
figuration: Adam with beta values =(0.9, 0.98),
epsilon =1e-8, weight decay = 0.001.

978



Parameter Value Comments
Training corpus FN+SRF Remove sentences with >50 tokens
Batch size 10 Using few workers (<=5) on a single GPU
End of training criteria PPL Stop after 14 epochs without improvements
Language model Transformer "base" The number of encoder/decoder layers is 3 instead of 6
Visual model 3D ResNet Additional custom module that converts the
(outsize= 2048, depth=50) | output size to our Sentence to Words Mapping (SWM)
SWM 32 Numbof the splits.
Scheduler LambdalLR Using warmup=4000
Max. output length 50 Maximum decoder output size
Gradient accumulation step | 32 To get 320 sentences

Table 1: Main parameters used in training our primary submission DFKI-MLT.2.

Corpus Sentences | Vocab | Min/Mean/Max/Std
SRF+FN 17192 | 26250 | 1/13.62/168/7.33
SRF 7056 | 14573 | 1/14.29/126/7.29

FN 10136 | 16723 | 1/13.15/168/7.32
SRF+FN dev 420 2003 | 2/13.98/44/6.95

Table 2: Text corpus statistics in tokens.

Corpus Videos Min | Mean Max Std
SRF 29 | 1492.6 | 19359 | 2106.2 | 106.3
FN 197 | 209.8 | 3493 | 5714 | 64.1
SRF+FN dev 420 0.6 584 | 19.86 | 3.42

Table 3: Number of videos and video statistics in sec-
onds.

3 Setup and Experiments

3.1 Data description

For the submission, we use only the training and
validation data given for the shared task and made
up of FocusNews and SRF corpora, both paral-
lel in Swiss German Sign Language and German
text. SRF contains longer videos (approximately
30 minutes), FN contains more videos but shorter
ones (approximately 5 minutes). The statistics of
the German part of the corpus are summarized in
Table 2 and the video statistics in Table 3.

3.2 Data preprocessing and batching

Since the input videos are long and contain more
than one sentence (Table 3), we perform a subclip-
ping step as preprocessing. By reading the subtitle
files entries (srt in Figure 1(a)), we extract the time
intervals and the corresponding sentences. We use
ffmpeg to cut videos using these timestamps. We
save the resulting subclips and add paths with sub-
titles (sentences) in one single annotation file.

We resize our input images to 224x224 pixels to
leave a door open for pretraining approaches later.
The batching is done using the Videodataset class

(Wang et al., 2019). The depth is the number of
frames in a video, it constitutes the third dimension
in the 3D model. In our experiments, we initialize
it to 100. To make sure that the language model
keeps its original performance, we need to simulate
a higher batch size. However, only a small number
of videos can be placed in the same batch. We
use gradient accumulation and update every 320
sentences for this purpose.

We do not do any preprocessing for the German
textual data besides tokenization.

3.3 Experimental protocol

For the sake of reproducibility, we detail the setup
for our primary submission in Table 1.

3.4 Evaluation

We use the same automatic metrics used by the
shared task organisers in their preliminary auto-
matic evaluation results (Miiller et al., 2022). We
use SacreBLEU (Post, 2018) to calculate BLEU!
(Papineni et al., 2002) and chrF2++2 (Popovic,
2017). As semantic metric we use BLEURT? (Sel-
lam et al., 2020).

4 Results and Analysis

Our best model according to BLEU is obtained
with the largest 3D ResNet model and reaches 4.8
points on the development set, much higher than
the performance of any system on the official test
set. However, different metrics do not correlate,
and chrF2++ and BLEURT —which correlate bet-
ter with human judgments than BLEU— point to-
wards a different model. Table 4 shows how per-

"BLEUInrefs: 11bs:1000lseed: 12345Icase:mixedleff:nol
tok:13alsmooth:explversion:2.2.0

2chrF2++Inrefs: 11bs: 1000lseed: 12345lcase:mixedleff:yes|
nc:6lnw:2lspace:nolversion:2.2.0

SBLEURT v0.0.2 using checkpoint BLEURT-20
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VisualModel BLEU chrF2++ BLEURT
ResNet50_3D | 0.07 £0.02 | 8.07 £0.24 | 0.054 + 0.003
ResNet34_3D | 4.82+0.99 | 8.28 +0.60 | 0.075 = 0.007
ResNet10_3D | 2.83+1.41 | 11.85 £1.32 | 0.100 = 0.012

Table 4: Results from different 3D ResNet scales on the development set.

Submission BLEU chrF2++ BLEURT I
all SRF FN all SRF FN all SRF FN
UZH (Baseline) | 0.12+0.06 0.094+0.03 0.1940.11 | 4.7+04 4.5+0.5 5.0+0.7 | 0.1024+0.006 0.095+0.006 0.11040.009
DFKI-MLT.1 0.074£0.05 0.05£0.02 0.12£0.10 | 6.2+0.4 5.9+0.5 6.44+0.5 | 0.100£0.008 0.097+0.009 0.100+0.012
DFKI-MLT.2 0.11£0.06 0.08+£0.03 0.17£0.13 | 6.3+04 6.4+£0.6 6.1+0.6 | 0.083+0.008 0.074+0.008 0.091+0.013
DFKI-MLT.3 0.08+0.04 0.064+0.02 0.13+0.10 | 6.1£0.4 6.3+0.6 6.0+£0.6 | 0.0754+0.009 0.067+0.009 0.081+£0.014
DFKI-MLT.4 0.024+0.01 0.02£0.01 0.04+£0.02 | 3.9+0.2 3.7£0.3 4.14+0.3 | 0.066+0.004 0.063+0.004 0.070+0.008
DFKI-MLT.5 0.04£0.02 0.03£0.00 0.08£0.04 | 5.2+0.2 4.9+03 5.5+0.4 | 0.078+£0.004 0.074+0.005 0.080+0.007

Table 5: Automatic evaluation of our 5 submissions and the shared task baseline on WMT-SLT test set (all), the
SRF subset and the Focus News (FN) subset as provided by the organizers (Miiller et al., 2022). DFKI-MLT.2 is our

primary submission.

Reference

Die Diamantenschleiferei beschiftigt

63 Angestellte , davon 17 Behinderte ,

sowohl Rollstuhlfahrer als auch Gehorlose .
Man arbeitet von 2004 bis 2009
ausbildungstechnisch mit dem

Plussport Behindertensport Schweiz zusammen .
3 . Fiir die Sommer Deaf Olympics 2017
standen mehrere Stidte zur Auswahl ,

namlich Barcelona , Buenos Aires und Ankara .

Hypothesis

Die -.

Und .

Table 6: Sample outputs in the translation of the devel-
opment set by the DFKI-MLT.3 system.

formance varies depending on the size of the 3D
ResNet model. The smallest models seem to per-
form better across metrics and therefore we use
ResNet10_3D in our submissions.

The low scores obtained with all our models cor-
respond to a system that simply matches the most
frequent words like "Die", "Der", "Und" as illus-
trated in Table 6. The rest of the generated sentence
is a series of <UNK> tokens that are removed after
decoding. We observe that training passes through
some remarkable steps. It starts to output the most
frequent words repeatedly, 1-grams, and as train-
ing advances the system starts to predict higher
n-grams. In our experiments, the model stayed at
the 1-gram stage.

We submitted 5 runs to the shared task, three
of them using ResNet10_3D and the parameters
are provided in Table 1. DFKI-MLT.1 was created
with our main system using a checkpoint before
the end of the training, DFKI-MLT.2 is the best
checkpoint. We realized that both submissions had
encoding issues and contain <UNK> tokens. We

therefore sent a follow-up submission for DFKI-
MLT.2, DFKI-MLT.3, containing the corrected for-
mat and without <UNK> tokens. As its transla-
tion quality was not even 0.5 BLEU points in the
leaderboard, which may be less than a random walk
from the vocabulary, we sent random walk results
with repetitions (DFKI-MLT.4 and DFKI-MLT.5)
to compare the performance.

A preliminary automatic evaluation has been
made available by the organizers and it is shown in
Table 5. Our final submission reached 0.11 £ 0.06
BLEU, 6.3 £ 0.4 chrF2++ and 0.083 £ 0.008
BLEURT, where confidence intervals are at 95%
level. Results are therefore not statistically bet-
ter than the baseline at 95% level. Interestingly,
according to BLEURT, the random walk though
the vocabulary is not significantly worse than the
combination of 3D CNNs and Transformers.

In general, translation quality is always very bad,
but results are slightly better for the FocusNew sub-
set. FocusNews’ input videos are shorter and this
might imply a better alignment between videos and
subtitles, improving the training. Some of our test
outputs contain repetitions of (parts of) sentences
from FocusNew dataset. Since this subcorpus is
dominant in the final training (Table 2) the sys-
tem is biased towards its vocabulary and this also
explains the better performance in its subtest.

5 Conclusion

This paper presented an overview and some in-
sights on spatio-temporal sign language representa-
tion which were used in the DFKI-MLT submission
for the WMT-SLT 2022 shared task. To achieve our
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goal of building a fully end-to-end sign language
model, we worked closely on the representation
learning of visual features. Most of previous tech-
niques for SLT simplify the feature representation
by extracting spatial features and not benefiting
from temporal features. This choice is motivated
by the lack of temporal boundaries in sign language
videos. To extract spatio-temporal features one can
use 2D + 1D CNN approaches but this does not
allow a fully end-to-end training as it still requires
pretraining in another well-resourced task like ob-
ject classification. In order to construct a specific
representation model for SL and learn temporal
modeling in a single model, we choose 3D CNNs
and trained them from scratch simultaneously with
the textual counterparts.

The translations produced by this architecture
are very short and output only high frequency to-
kens; in few cases, full fluent and grammatical sen-
tences are constructed but their meaning unrelated
to the source. The generation of short sentences
might be a limitation of our approach that builds a
sentence representation with an output conversion
method that does not split a sentence in subunits
that can be weighted by the Transformer’s attention
mechanism to generate the output.

However, all the systems in this shared task’s
leaderaboard have translation scores close to zero.
This shows the extreme difficulty of SLT and how
bad current systems generalize to new data sets. We
believe that system comparisons with such a bad
translation quality do not allow to extract meaning-
ful conclusions. In our future work, we investigate
on different temporal modeling coupled with the
3D CNNs approach to further pursue the goal of
developing a high-quality end-to-end system.
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