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Abstract

Pre-trained language models (PLMs) often take
advantage of the monolingual and multilingual
dataset that is freely available online to acquire
general or mixed domain knowledge before
deployment into specific tasks. Extra-large
PLMs (xLPLMs) are proposed very recently
to claim supreme performances over smaller-
sized PLMs such as in machine translation
(MT) tasks. These xLPLMs include Meta-AI’s
wmt21-dense-24-wide-en-X (2021) and NLLB
(2022). In this work, we examine if xLPLMs are
absolutely superior to smaller-sized PLMs in
fine-tuning toward domain-specific MTs. We
use two different in-domain data of different
sizes: commercial automotive in-house data
and clinical shared task data from the Clin-
SpEn2022 challenge at WMT2022. We choose
popular Marian Helsinki as smaller sized PLM
and two massive-sized Mega-Transformers
from Meta-AI as xLPLMs.

Our experimental investigation shows that 1)
on smaller sized in-domain commercial auto-
motive data, xLPLM wmt21-dense-24-wide-
en-X indeed shows much better evaluation
scores using SACREBLEU and hLEPOR met-
rics than smaller-sized Marian, even though
its score increase rate is lower than Marian
after fine-tuning; 2) on relatively larger-size
well prepared clinical data fine-tuning, the
xLPLM NLLB tends to lose its advantage
over smaller-sized Marian on two sub-tasks
(clinical terms and ontology concepts) using
ClinSpEn offered metrics METEOR, COMET,
and ROUGE-L, and totally lost to Marian on
Task-1 (clinical cases) on all official metrics
including SACREBLEU and BLEU; 3) met-
rics do not always agree with each other
on the same tasks using the same model out-
puts; 4) clinic-Marian ranked No.2 on Task-1
(via SACREBLEU/BLEU) and Task-3 (via ME-
TEOR and ROUGE) among all submissions.

1 Introduction

Owing to the recent development of neural ma-
chine translations (NMTs) (Kalchbrenner and Blun-
som, 2013; Cho et al., 2014; Bahdanau et al., 2014;
Akhbardeh et al., 2021; Han, 2022a), especially
the self-attention based Transformer learning struc-
tures (Devlin et al., 2019; Vaswani et al., 2017), pre-
trained language models (PLMs) have been domi-
nant in natural language understanding (NLU) and
natural language processing (NLP) tasks. These
applications include Long-Short Term Memory
(LSTM) and BERT (Pre-training of Deep Bidi-
rectional Transformers) based models to text min-
ing (Dernoncourt et al., 2017; Wu et al., 2022),
question-answering (Dong et al., 2021), reading
comprehension (Schlegel, 2021), and summarisa-
tion (Perez-Beltrachini and Lapata, 2021), etc., in
addition to MT (Han et al., 2021a; Han, 2022b;
Han and Gladkoff, 2022).

PLMs often have a large amount of trainable
parameters for downstream applications. For in-
stance, in translation task, the popular Marian NMT
(Junczys-Dowmunt et al., 2018) pre-trained by Mi-
crosoft Translator team 1 on OPUS 2 (Tiedemann,
2012) multilingual corpus has 7.6 million param-
eters, which can still be fine-tuned on Google’s
Colab or AWS at virtually no cost. However, very
recent work has shown much larger PLMs that
have much more parameters than smaller models,
e.g. the multi-lingual Transformer model submit-
ted to WMT2021 shared task by Meta-AI research
group “wmt21-dense-24-wide-en-x”(WMT21fb)
(Tran et al., 2021), which has 4.7 billion parameters,
i.e. 618 times bigger than Marian, and does not fit
into regular GPUs. In this year, Meta-AI published
another model NLLB (NLLB Team et al., 2022)
that has 54.5 billion parameters and covers 200 lan-
guages in the full model. From now on, we name

1https://translator.microsoft.com
2https://opus.nlpl.eu
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both “wmt21-dense-24-wide-en-x” and NLLB as
Meta-AI’s Mega-Transformer models. Meta-AI’s
Mega-Transformer (WMT21fb) has claimed the
best performing system on 10 out of 14 language
pairs in WMT2021 shared task including winning
bilingual-trained models.

In this work, we raise the question whether extra-
large PLMs (xLPLMs) such as Meta-AI’s Mega-
Transformers have absolute superiority in NMT
tasks on domain-specific fine-tuning. We prepare
experimental investigation on two different data set
to answer this question. One is our specific auto-
motive domain in-house commercial data and the
other is clinical domain data from ClinSpEn2022
challenge task we attended which is affiliated with
WMT2022 3.

We set up the following hypothesis and research
questions. Our hypothesis is: xLPLMs do not ab-
solutely demonstrate superiority over smaller sized
PLMs in NMT fine-tuning and it shall depends
on specific tasks deployed including domain topic,
size of available in-domain data, and performance-
cost trad-off.

From this hypothesis we derive two research
questions (RQs): 1) Do xLPLMs always demon-
strate better performances in NMT over smaller
sized PLMs for domain fine-tuning? 2) if not, in
what situations?

To the best of our knowledge, this is the first
published work that has been carried out in the
field on fine-tuning Meta-AI’s extra-large multilin-
gual PLM Maga-Transformers, and in translating
specialised automotive and clinical data.

The rest of the paper is organised as below: Sec-
tion 2 introduces more details on related work to
ours including PLMs and fine-tuning in automotive
and clinical domains, Section 3 describes our initial
model settings including deployed baseline mod-
els, Section 4 presents our experimental evaluation
carried out on our in-house commercial automo-
tive domain data, Section 5 describes our system
submission to ClinSpEn Biomedical-MT challenge
task at WMT2022 on clinical data, and Section 6
gives our conclusion and future work plan.

2 Related Work

Fine-tuning PLMs has been in practice towards
different domain applications in recent years. For
instance, Wang et al. (2021) carried out experi-

3The 7th Conference on MT https://www.statmt.
org/wmt22/

mental investigation on fine-tuning PLMs for con-
versational recommendation system, Chakraborty
et al. (2020); Gu et al. (2021); Lee et al. (2019);
Alsentzer et al. (2019) built biomedical and clinical
domain pre-trained models using BERT structure
and PubMed data on scientific publications, and
then Wu et al. (2022); Han et al. (2022a) devel-
oped new machine learning structures using PLM
Transformer and BERT as encoders in concatena-
tion with statistical graph-based conditional ran-
dom fields (CRFs) as decoders for clinical text
mining.

However, aforementioned work did not deploy
extra-large PLMs in a scale as Meta-AI’s multilin-
gual Mega-Transformers. For example, the PLMs
(Transformer-CRFs) deployed by Wu et al. (2022)
as baseline have around 42 million of trainable pa-
rameters, which set is already relatively large, even
though it is still far from Mega-Transformers’ 4.7
billion and 54.5 billion parameters.

Regarding PLM applications in automotive do-
main, the only recent work we found is from
Romell and Curman (2022), who tested the Distil-
BERT and XLM-RoBERTa PLMs for text classifi-
cation task using Swedish truck manufacturer data,
instead of MT.

There are also researchers working on the
overview of model comparability, bench-marking,
and fine-tuning methodologies regarding larger
scale PLMs, e.g., from Aßenmacher (2021); Ruder
(2021).

Overall, none of the work mentioned before
has investigated into extra-large Mega-Transformer
level PLMs (xLPLMs) for NMT in automotive and
clinical domains, especially their comparisons to
smaller sized PLMs.

3 Initial Model Settings

To investigate into PLMs with fine-tuning for spe-
cialised domain NMT from different scales, we
firstly deploy two of such models in different sizes
from a multilingual setting. The first one is the pop-
ular Marian NMT model developed in C++ since
2018 using deep RNN and Transformer (Junczys-
Dowmunt et al., 2018). It is mostly maintained by
the Microsoft Translator team and features with
efficiency, fast training, and state-of-the-art NMT
architectures 4. This PLM has a smaller sized 7.6
million trainable parameters.

4available at https://marian-nmt.github.io
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The second one we use for fine-tuning is one of
the extra-large PLMs (xLPLMs) Meta-AI’s Mega-
Transformer “wmt21.dense-24-wide.En-X” (Tran
et al., 2021) developed for WMT2021 shared task
on multilingual MT, which was submitted to 14
language pairs and claimed the best on 10 of them
5. It has 4.7 billion trainable parameters, which
is super large in comparison to Marian model. In
the later section (5), we will explain another Mega-
Transformer Model NLLB developed in this year
by Meta-AI and deploy it for our ClinSpEn2022
shared task submission on clinical domain.

4 Model Fine-Tuning and Comparison on
Commercial Automotive Data

4.1 In-house Corpus and Hardware
At the development stage, we use our in-house
prepared domain-specific commercial corpus from
automotive field. We split our data set into 90%
vs 10% for fine-tuning and testing respectively and
make sure that the test data is not seen during the
fine-tuning / development stage 6. We use a larger
GPU from NVIDIA A100 with 80GB VRAM for
our experiments because of the much higher com-
putational powers the Mega-Transformer model
requires.

4.2 Our Evaluation Setup
BLEU (Papineni et al., 2002) has always been crit-
icised by researchers on its reliability. This in-
cludes very recent work by Freitag et al. (2021),
which demonstrates that BLEU has closer correla-
tion to lower quality crowd sourced human evalua-
tion then to expert based human evaluation, and by
Han et al. (2021a), which investigation on Chinese-
English NMT shows that BLEU score fails to re-
flect the real quality differences between NMT sys-
tems especially on translating multi-word expres-
sions (MWEs) and terms (Han et al., 2020).

Furthermore, BLEU scores can be very different
caused by configurations, such as tokenisation and
normalisation strategies applied to the reference
text which can lead to 1.8 margin of difference
reported by (Post, 2018). In light of these findings,
we adopt two alternative evaluation metrics, i.e.
SACREBLEU (Post, 2018) and hLEPOR (Han et al.,

5package “wmt21.dense-24-wide.En-X” available
at https://github.com/facebookresearch/
fairseq/tree/main/examples/wmt21

6Because this is a commercial corpus, we do not give much
details on it but this does not affect the experimental findings
we achieved

2013b; Erofeev et al., 2021; Han et al., 2021b) that
we will give further details about.

4.2.1 Revisiting SACREBLEU

SACREBLEU is developed by the work from Post
(2018) and is maintained online in its Python ver-
sion 7. The author discussed the uncertainty re-
garding reporting BLEU scores by MT researchers.
This is involved in many parameter settings when
using BLEU metric including number of references,
length penalty computation on multi-references,
maximum n-gram, and smoothing applied to 0-
count n-grams. Because of such variations, when
MT researchers report the BLEU scores from their
system, “the BLEU” score actually cannot be re-
produced in many cases due to lack of detailed
technical description of encoder, etc. .

To address these issues, SACREBLEU added
some constrains while using BLEU metric. These
include the applying of its own metric-internal
pre-processing for detokenised system outputs, the
avoiding of user handling reference set via auto-
matically downloading from WMT, and the export
of a summary on settings used.

4.2.2 Revisiting hLEPOR

hLEPOR is an augmented metric for automatic
MT evaluation which was firstly proposed in
WMT2013 Metrics shared task (Han et al.,
2013a,b) and was reported as one of the best per-
forming metrics at both system level (Macháček
and Bojar, 2013) and segment level (Graham et al.,
2015) 8. It is calculated via a weighted harmonic
mean of several main factors including sentence
length penalty, position difference penalty, pre-
cision, and recall. Furthermore, there are more
weighting parameters among all the sub-factors.
Let’s see the brief formulas below:

hLEPOR = Harmonic(wLPLP,

wNPosPenalNPosPenal, wHPRHPR)

where LP is the sentence length penalty factor and
is calculated as:

7available at https://github.com/mjpost/
sacrebleu

8The python version is available at https://pypi.
org/project/hLepor/ and the original Perl code at
https://github.com/poethan/LEPOR
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LP =





e
1− Lengthref

Lengthhyp if Lengthhyp < Lengthref
1 if Lengthhyp = Lengthref

e
1−Lengthhyp

Lengthref if Lengthhyp > Lengthref

Then, n-gram based position difference penalty
(NPD) is used to measure the word position and or-
der difference among matched words between sys-
tem output and reference translation (MatchNhyp

and MatchNref ).

NPosPenal = e−NPD

NPD =
1

Lengthhyp

Lengthhyp∑

i=1

|PDi|

|PDi|= |MatchNhyp −MatchNref |

Finally, the weighted harmonic mean of precision
and recall is calculated using this formula.

HPR =
(α+ β)PrecisionxRecall

αPrecision+ βRecall

Precision =
Alignednum

Lengthhypothesis

Recall =
Alignednum

Lengthreference

hLEPOR is an extended version of the original
LEPOR metric (Han et al., 2012; Han, 2014).
hLEPOR also has a latest customised version
named cushLEPOR which uses automatic hyper-
parameter optimisation framework Optuna (Ak-
iba et al., 2019) to achieve better and easier fea-
ture weights fine-tuning towards specific language
pairs and domains in practice. It was reported as
one of the best performing metrics in WMT2021
(Erofeev et al., 2021; Han et al., 2021b) on the
officially-ranked language pairs English-German
and Chinese-English on News domain, and English-
Russian on TED talk data (Freitag et al., 2021)
where human expert level evaluations were avail-
able. hLEPOR is also gaining popularity in other
NLP task evaluations, e.g. language generation
(NLG) (Novikova et al., 2017; Gehrmann et al.,
2021; Marzouk, 2021), language understanding
(NLU) (Ruder et al., 2021), text summarization
(ATS) (Bhandari et al., 2020), and searching (Liu
et al., 2021).

4.3 Evaluation Results

The evaluation scores using SACREBLEU and hLE-
POR are shown in Table 1 and 2 respectively. From
Table 1, we can see that the fine-tuning has suc-
cessfully improved each single n-gram precision
score in SACREBLEU for both Marian and Mega-
Transformer models, leading to an overall 150.14%
and 75.81% score increasing. Similarly, Table 2
shows that our in-domain fine-tuning improved
hLEPOR scores on Marian and Mega-Transformer
models via 32.16% and 26.01%.

Like BLEU, SACREBLEU is precision based
metric. The very large margin evaluation score in-
creases in SACREBLEU (150.14% and 75.81%) in-
dicates that according to reference translation, our
fine-tuned models produce more fluent output than
the baseline in this domain specific test set. Unlike
SACREBLEU, hLEPOR is an augmented metric
with comprehensive factors, including recall and
positional difference penalty, in addition to preci-
sion. The large margins of hLEPOR score increase,
i.e. 32.16% and 26.01% tell that the fine-tuned
models can also have more adequate translation
towards this domain, in addition to maintaining
higher fluency.

In summary, the fine-tuning of these two
PLMs has demonstrated evaluation score improve-
ment with large margins in commercial domain
data. xLPLM Mega-Transformer has much higher
SACREBLEU evaluation score than Marian before
fine-tuning, 39.12 vs 19.64, which indicates its
larger amount of knowledge acquired. However, af-
ter fine-tuning, the SACREBLEU scores of them are
much closer, 50.33 vs 45.20. This means that fine-
tuning of smaller sized PLM for this commercial
data is far more effective than the xLPLM Mega-
Transformer from computation and time cost point
of view, as well as the cost of computational power
itself, since supercomputer time is much more ex-
pensive.

This partially verifies our assumption that
xLPLMs do not always win smaller sized PLMs in
practical applications when computational cost is
in place and when time is constrained.

To further investigate our research questions, we
carry out another experimental evaluation on clin-
ical domain data via attending the ClinSpEn2022
shared task challenge which will be detailed in the
next section.
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Marian
uni-gram bi-gram tri-gram 4-gram BP Overall

Before fine-tuning 19.64 10.96 4.56 2.00 1.0 7.38
After fine-tuning 45.20 24.54 14.44 8.69 0.96 18.46 (↑150.14%)

Mega-Transformer (wmt21fb)
uni-gram bi-gram tri-gram 4-gram BP Overall

Before fine-tuning 39.12 18.81 9.78 5.23 1.0 13.93
After fine-tuning 50.33 30.14 19.47 12.85 0.99 24.49 (↑75.81%)

Table 1: SACREBLEU score comparisons on the MT test set: before vs after fine-tuning

Marian Mega-Transformer

Before fine-tuning 36.91 47.55
After fine-tuning 48.78 59.92

Rate(↑) 32.16% 26.01%

Table 2: hLEPOR score comparisons on the MT test set:
before vs after fine-tuning

5 Submission to ClinSpEn at WMT22

In this section, we introduce our system submis-
sions to Biomedical-MT task in WMT2022. In
this task, we attended the affiliated clinical domain
machine translation on Spanish-English language
pair (ClinSpEn) task 9, which is hosted in CodaLab
(Pavao et al., 2022) 10.

The aim of this task is to promote the develop-
ment of MT models on medical domain via three
sub-tasks: 1) Clinical Cases (CC): on 202 COVID-
19 clinical case reports; 2) Clinical Terms (CT):
using more than 19K parallel terms extracted from
biomedical literature and electric health records
(EHRs); 3) Ontology Concepts (OC): using more
than 2K parallel concepts from biomedical ontol-
ogy. The translation direction on these three sub-
tasks are EN→ES, EN←ES, and EN→ES respec-
tively.

5.1 Corpus Used

In addition to the official corpora prepared by the
ClinSpEn organisers, we used some external cor-
pora for our model fine-tuning. This is because
that neural-network based machine learning mod-
els are data dependent while the officially offered
parallel sample sentences are very limited. We

9https://temu.bsc.es/clinspen/
10https://codalab.lisn.upsaclay.fr/

competitions/6696

found useful biomedical Spanish-English corpora
described in (Névéol et al., 2018) from WMT11,
and MeSpEn corpora from (Villegas et al., 2018)12,
which include Spanish Bibliographical Index in
Health Sciences (IBECS), Scientific Electronic Li-
brary Online (SciELO), and U.S. National Library
of Medicine (PubMed and MedlinePlus). However,
due to the time restriction for this shared task, we
only managed to get 250,000 aligned pairs from
IBECS after careful preparation, which is a bibli-
ographical data collecting scientific articles from
different fields of health sciences, maintained by
the Spanish National Health Sciences Library.

5.2 Adaptations on xLPLM: NLLB

Two systems we submitted to ClinSpEn2022 are
clinic-Marian and clinic-NLLB (NLLB Team et al.,
2022). We reported our clinic-WMT21fb model
outputs in a followup work (Han et al., 2022b)
(also due to the time restriction). Some training
parameters and training logs for clinic-Marian are
listed below:

• batch size = 64

• gradient accumulation steps = 1

• weight decay = 0.01

• learning rate = 2e-5

• number of training epochs = 1

• number of examples = 225,000

NLLB (No Language Left Behind) is another
extra-large PLM model built by Meta-AI freshly in

11https://github.com/
biomedical-translation-corpora

12https://zenodo.org/record/3562536
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this year 13, which was targeting low-resource lan-
guages via knowledge transfer from high-resource
ones, and Spanish is among the high-resource lan-
guages covered by NLLB 14. NLLB-200 has a total
of 54.5 billion parameters in its full model as the
authors mentioned. In this shared task, we applied
the distilled version of NLLB, i.e. the “NLLB-
200-distilled-1.3B” which still has 1.3 billion train-
able parameters 15. As Meta-AI’s “wmt21.dense-
24-wide.en-X” model we used in the earlier sec-
tion, we call NLLB-distilled as one of their Mega-
Transformers.

Some fine-tuning parameters for NLLB-distilled
are listed below:

• batch size = 24

• gradient accumulation steps = 8

• weight decay = 0.01

• learning rate = 2e-5

• number of training epochs = 1

• encoder-decoder layers = 24+24

The fine-tuned clinic-NLLB model has rela-
tively apparent evaluation score increase using
SACREBLEU in comparison to baseline model on
both translation directions, as shown in Table 3,
for EN→ES and ES→EN in the upper and middle
parts of the table with increasing rate 11.74% and
9.70% respectively. This demonstrates that that
fine-tuning was successful.

Interestingly, if we fine-tune the model in one
direction and carry out the inference translation
in the opposite direction, the model performance
will have a big drop even though it is the same
language pair. This tells that pre-trained LMs lose
their generalisation after fine-tuning. For instance,
in the bottom of Table 3, we demonstrate that if the
model is fine-tuned in English-to-Spanish direction
and the inference test is carried out in Spanish-to-
English direction, the overall SACREBLEU score
has a 14.37% drop in comparison to without fine-
tuning. So, we carried out fine-tuning on both
translation directions for the system submission to
three sub-tasks at ClinSpEn2022.

13The project page https://ai.facebook.com/
research/no-language-left-behind/

14Models available at https://huggingface.co/
docs/transformers/model_doc/nllb

15https://huggingface.co/facebook/
nllb-200-distilled-1.3B

5.3 Official Evaluation Metrics

The official evaluation metrics used by Cin-
SpEn2022 shared task are METEOR (Banerjee and
Lavie, 2005), SACREBLEU (Post, 2018), COMET
(Rei et al., 2020), BLEU-HF (HuggingFace) (Pap-
ineni et al., 2002), and ROUGE-L-F1 (Lin, 2004).
Among these, METEOR is a metric using both pre-
cision and recall not only on word surface level but
also introducing paraphrasing features. COMET
was proposed recently by taking advantage of cross-
lingual PLMs using knowledge from both source
and target languages. ROUGE was originally de-
signed for text summarisation evaluation using
n-gram co-occurrences, while ROUGE-L added
the Longest Common Sub-sequence (LCS) feature
from translation study.

5.4 Evaluation Scores on Three Tasks

We present the MT evaluation scores using five
official metrics through CodaLab platform on the
three sub-tasks in Table 4, for translating clinical
cases, clinical terms, and ontology concepts. The
two fine-tuned models are clinic-Marian and clinic-
NLLB (one of the Mega-Transformers). From this
shared task evaluation outcomes, the xLPLM clinic-
NLLB starts to lose its comparisons to far smaller-
sized clinic-Marian in Task-2 (CT) and 3 (OC),
especially on METEOR and ROUGE-L scores but
also on COMET (OC). What is very noticing is that
clinic-Marian has an overall win on Task-1 (CC)
via all evaluation metrics.

From the evaluation results on Task 2 and 3, i.e.
CT and OC, we can see that the evaluation met-
rics do not agree with each other always. For in-
stance, clinic-Marian wins METEOR and ROUGE-
L on Task 2 but loses on other metrics, while
clinic-NLLB wins SACREBLEU and BLEU-HF
on Task 3 but loses on other metrics. This phe-
nomenon is very interesting which tells that varia-
tion metrics from BLEU including BLEU-HF and
SACREBLEU tend to not agree with other met-
ric families including METEOR, COMET, and
ROUGE-L. Furthermore, the same metric does not
always agree with itself on different tasks, or the
two MT models perform differently across tasks.
For instance, COMET score says clinic-Marian and
clinic-NLLB wins Task 3 (0.9495) and 2 (1.0290)
respectively. Due to the time restriction from this
shared task and the limited computational resource
we have, our second model (clinic-NLLB) was sub-
mitted after the official deadline.
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English-to-Spanish (tune+test)
uni-gram bi-gram tri-gram 4-gram BP Overall

Before fine-tuning 65.93 45.51 33.71 25.44 1.0 40.05
After fine-tuning 70.25 50.58 38.78 30.17 0.99 44.75 (↑11.74%)

Spanish-to-English (tune+test)
uni-gram bi-gram tri-gram 4-gram BP Overall

Before fine-tuning 65.36 42.54 30.58 22.60 1 37.23
After fine-tuning 68.51 46.27 34.07 25.76 1 40.84 (↑9.70%)

English-to-Spanish (tune) & Spanish-to-English (test)
uni-gram bi-gram tri-gram 4-gram BP Overall

Before fine-tuning (es2en) 65.36 42.54 30.58 22.60 1 37.23
After Reverse fine-tuning 58.17 36.48 25.85 18.84 1.0 31.88 (↓14.37%)

Table 3: SACREBLEU score comparisons using NLLB: baseline vs fine-tuned in clinical domain.

This experimental investigation shows that with
carefully prepared and larger amount of domain
specific data for fine-tuning, the xLPLMs tend to
lose its advantage over smaller sized PLMs using
several automatic metrics. Thus it further verifies
our hypothesis and research questions.

5.5 Comparisons to Other Teams

In the officially valid submissions (before the
shared task deadline ended) for three tasks, there
are four teams for Task-1 and Task-3 including
Avellana Translation, DtranX, Optum and ours 16.
In addition to these four teams, Task-2 has an-
other team Huawei, making it in-total five teams.
Optum and Huawei have both multiple submis-
sions/runs while other teams submitted one run.
Our submission clinic-Marian ranked number 2 in
both Task-1 and Task-3 via SACREBLEU/BLEU
and METEOR/ROUGE respectively, as in Table 5
underlined. There are four runs from Optum team
for both Task-1/3 and single submission by other
teams. Table 5 includes the best submission from
Optum. There is a little difference in the last digit
of the evaluation scores between our own record
(Table 4) and the official record (Table 5), which is
because that we rounded the last digit scores while
the official ones did not. This result shows that
metrics tend to not agree with each others in many
cases. For instance, on Task-3, our clinic-Marian
has very similar score to DtranX on METEOR
(0.6261 vs 0.6275) only from the third digit which
is a metric using paraphrase and semantic similarity

16https://statmt.org/wmt22/biomedical_
results.pdf

features; however, the score difference on BLEU is
so large (39.10 vs 58.24) via SACREBLEU which
rises the issue again on the credibility of BLEU
metric. There are not many teams submitting their
results into this clinical domain machine translation
task in comparison to the traditional news domain
MT task, which indicates that it is still a relatively
new domain and calls for more attentions from MT
researchers in the future.

6 Discussion and Future Work

In this work, we carried out experimental investi-
gations on if extra-large pre-trained language mod-
els (PLMs) always demonstrate superiority over
much smaller-sized PLMs using two domain spe-
cific data. The first experimental results using Mar-
ian vs “wmt21.dense-24-wide.En-X” shows that
even though xLPLM still perform better evalua-
tion scores in comparison to much smaller sized
Marian, their score difference is much smaller after
fine-tuning and the xLPLM costs more than smaller
PLM from performance-cost trade-off point of view
in practical applications, e.g. for language service
providers (LSPs). The second experimental results
using clinical data show that with carefully pre-
pared certain amount of fine-tuning data (250k sen-
tence pairs), the xLPLM NLLB even loses with
its evaluation score in comparison to smaller PLM
Marian in Task 1 “clinical cases” over all automatic
metrics used, and in Task 2 “clinical terms” and 3
“ontology concepts” on partial of the automatic eval-
uation metrics officially used by ClinSpEn2022. Fi-
nally, our system submission clinic-Marian ranked
the second place using SACREBLEU/BLEU for

914

https://statmt.org/wmt22/biomedical_results.pdf
https://statmt.org/wmt22/biomedical_results.pdf


clinic-Marian
MT SACREBLEU METEOR COMET BLEU-HF ROUGE-L-F1

Task-I: clinical cases 38.18 0.6338 0.4237 0.3650 0.6271
Task-II: clinical terms 26.87 0.5885 0.9791 0.2667 0.6720

Task-III:clinical concepts 39.10 0.6262 0.9495 0.3675 0.7688
clinic-NLLB (Mega-Transformers)

MT SACREBLEU METEOR COMET BLEU-HF ROUGE-L-F1

Task-I: clinical cases 37.74 0.6273 0.4081 0.3601 0.6193
Task-II: clinical terms 28.57 0.5873 1.0290 0.2844 0.6710

Task-III: ontology concepts 41.63 0.6072 0.9180 0.3932 0.7477

Table 4: Evaluation Scores using Official CodaLab Platform from ClinSpEn2022 Benchmark on Fine-tuned Models.
italic scores indicate winner on the specific task using the specific metric (last digit rounded).

Task-1: Translating Clinical Cases
Teams SACREBLEU METEOR COMET BLEU ROUGE

DtranX 41.06 0.6633 0.4610 0.3926 0.6490
Logrus-UoM (ours) 38.17 0.6337 0.4237 0.3650 0.6270

Optum(run4) 38.12 0.6447 0.4425 0.3642 0.6285
Avellana Translation 36.64 0.6637 0.3920 0.3519 0.6333

Task-3: Translating Ontology Concepts
Teams SACREBLEU METEOR COMET BLEU ROUGE

DtranX 58.24 0.6275 1.2496 0.5724 0.7839
Optum(run4) 44.97 0.5880 1.1197 0.4396 0.7479

Logrus-UoM (ours) 39.10 0.6261 0.9494 0.3674 0.7688
Avellana Translation 31.72 0.5707 0.3841 0.3042 0.7621

Table 5: Comparisons on Task 1 and 3 across teams (ranked via SACREBLEU chosen by the organisers).

Task-1, and using METEOR/ROUGE for Task-3
among all teams who submitted on-time before the
shared task deadline.

We looked into the translation outputs from
clinic-NLLB for error analysis, and it shows that
some of the translation errors come from very lit-
eral translation, and others come from gender re-
lated mistakes. In conclusion, our two stage ex-
perimental investigations verify our hypothesis and
RQs from different aspects.

We also doubt if the official automatic metrics
used for ClinSpEn challenge can correctly distin-
guish the NMT systems because mostly they do
not really measure the translation output quality
but the similarity to the gold standard single refer-
ence. Therefore, domain specific automatic evalua-
tion metrics or metrics better measuring semantic
similarities might be needed.

In the future work, we plan to carry out more ex-

perimental investigations from qualitative aspects
looking into translation errors using human experts
and classifying them into possible categories with
examples and statistics, especially from clinical
domain. This will allow us to validate automatic
metrics with professional human judgements for
this domain.

We will continue to fine-tune our models towards
different domains and languages and use more of
the available corpus for current clinical domain
challenge task. We also plan to try different state-
of-the-art pre-trained language models for evalua-
tion.
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Appendix

More training logs from clinic-Marian:

• global step = 3516

• training loss = 1.2236216656855212

• train runtime = 1945.9989

• train samples per second = 115.622

• trian steps per second = 1.807

• total flos = 2947034863632384.0

Parameters reported by SACREBLEU:

• lowercase = Ture

• tokenize = 13a
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