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Abstract

This paper describes the Samsung Research’s
Translation system (SRT) submitted to the
WMT22 biomedical translation task in two
language directions: English to Spanish
and Spanish to English. To improve the
overall quality, we adopt the deep transformer
architecture and employ the back-translation
strategy for monolingual corpus. One of the
issues in the domain translation is to translate
domain-specific terminologies well. To address
this issue, we apply the soft-constrained
terminology translation based on biomedical
terminology dictionaries. In this paper, we
provide the performance of our system with
WMT20 and WMT21 biomedical testsets.
Compared to the best model in WMT20
and WMT21, our system shows equal or
better performance. According to the official
evaluation results in terms of BLEU scores,
our systems get the highest scores in both
directions.

1 Introduction

Neural Machine Translation (NMT) has shown
rapid growth with an encoder-decoder framework,
especially Transformer (Vaswani et al., 2017), in
recent years. Most of the research focuses on
general-purpose translation models since there are
a lot of parallel data available. On the other
hand, domain-specific translation, which lacks rel-
atively high-quality parallel corpus available, is
one of the challenges that need to be solved in
the NMT task. To address this issue, there have
been several approaches such as finetuning general-
purpose models with in-domain data and utiliz-
ing in-domain monolingual corpus through back-
translation (Yeganova et al., 2021).

In the domain translation, one of the issues is
the terminology translation. In the case of domain-
specific terms, translation results are often poor be-
cause they are relatively infrequent. Yeganova et al.

(2021) also mentioned that some domain-specific
terms including abbreviations were not translated
correctly in previous shared tasks. Moreover, when
new terms are introduced such as COVID-19, it
is difficult to obtain the correct translation results
as they are not in the training data. To handle
this issue, we adopt the soft-constrained termi-
nology translation proposed by Molchanov et al.
(2021), which provides the terminology constraints
of the target language as input to our system with
source sentences like a hint. These terminology
constraints can be obtained from in-domain dictio-
naries.

In addition, as many domain translation stud-
ies, the back-translation strategy (Sennrich et al.,
2016) is applied to generate synthetic parallel data
from in-domain monolingual corpus. To improve
the overall performance of our system, we also
employ the Deep Transformer architecture (Bapna
et al., 2018) and the ensemble strategy (Sutskever
et al., 2014). Moreover, to find better transla-
tion results, noisy channel modeling (Yee et al.,
2019) and discriminative reranking (Lee et al.,
2021) are attempted. Our experiment shows that
deep transformer and data augmentation by the
back-translation strategy improve the overall per-
formance while the performance is not improved
with reranking methods.

The rest of this paper is organized as follows.
Section 2 describes the training and test data used
in our system, and Section 3 explains our systems
including deep transformer and soft-constrained
terminology translation. Section 4 describes the de-
tails of our training and experimental results of our
system; Section 5 presents the official evaluation
results. Section 6 is the conclusion of our work.

2 Data

In this section, we present general-domain (out-of-
domain) corpus, in-domain corpus, and in-domain
terminology dictionaries used as the training data
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En2Es Es2En
General-domain Parallel Corpus 518M
In-domain Parallel Corpus 3.47M
In-domain Target-side Monolingual Corpus 2.5M 13.9M
In-domain Dictionaries 132K
Validataion Data 4,520
Test Data 921 897

Table 1: Data statistics of the training data, validation data, and test data used in our system.

in our system. For training, all data are tokenized
by SentencePiece (Kudo and Richardson, 2018);
the vocab size is 32K for each lanaugage. The
validation and test data are also described in this
section. The statistics of our data are listed in Table
1.

2.1 General-Domain Parallel Corpus

We collect general-domain parallel corpus for
English-Spanish from several sources. Some are
from WMT News translation task. The data list
is as follows: ParaCrawl1, CommonCrawl2, Eu-
roparl3, News Commentary4, and Tatoeba5.

We also consider two datasets that are provided
by organizers: United Nations (UN) Parallel Cor-
pus6 and UFAL Medical Corpus7. The UN Corpus
consists of official records and other parliamen-
tary documents of the UN that are in the public
domain. In UFAL Medical corpus, it contains not
only medical-domain data but also general-domain
data; we consider the general-domain data of UFAL
as a general-domain parallel corpus in our system.

2.2 In-Domain Parallel Corpus

We use the in-domain data provided by the WMT22
biomedical task organizers.

• Medline Corpus: It contains titles and ab-
stracts of scientific publications. They pro-
vide three groups of English-Spanish parallel
data: WMT16, WMT19, and WMT22. In
WMT16 and WMT19 data, all sentence pairs
are already aligned, so we use them without

1https://paracrawl.eu/
2https://www.statmt.org/wmt13/training-parallel-

commoncrawl.tgz
3https://www.statmt.org/wmt13/training-parallel-

europarl-v7.tgz
4https://www.statmt.org/wmt13/training-parallel-nc-

v8.tgz
5https://tatoeba.org/en/downloads
6https://conferences.unite.un.org/UNCorpus
7https://ufal.mff.cuni.cz/ufal_medical_corpus

preprocessing process. However, in WMT22
data, all sentences of one abstract are written
in one line; thus, after splitting sentences with
the sentence splitter provided by Moses8, only
data that matched the number of sentences in
both languages are considered as in-domain
parallel corpus.

• UFAL Medical Corpus: As we mentioned in
Section 2.1, it consists of a general-domain
and medical-domain data. The parallel data
tagged as the medical-domain are considered
in-domain parallel data.

• MeSpEn Corpus: It is the resource for
English-Spanish Medical Machine Transla-
tion and Terminologies (Villegas et al., 2018).
It provides several biomedical and clinical
literature data such as IBECS, SciELO, and
Pubmed. This corpus contains titles and ab-
stracts from several records. Since all sen-
tences of each abstract are written in one line
such as WMT22 Medline corpus, we conduct
the same process to extract the parallel corpus.

2.3 In-Domain Monolingual Corpus

In the in-domain parallel corpus, some data are
excluded because the number of sentences is not
matched between two languages as we menteiond
in Section 2.2. In this paper, we use this excluded
data as in-domain monolingual data.

Moreover, for the English monolingual corpus,
we extract only English data from other language
pairs’ dataset in Medline corpus and UFAL Medi-
cal corpus.

2.4 In-Domain Terminology Dictionary

As we mentioned in Section 1, it is important to
translate domain-specific terminologies well in the
domain translation. So, we also collect in-domain

8https://github.com/moses-smt
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terminology dictionaries from MeSpEn Glossaries9

and ClinSpEn-CT10. Both are translated by pro-
fessional medical translators. MeSpEn glossaries
contain 125,645 English-Spanish term pairs and
CinSpEn-CT sample set includes 7,000 term pairs.
We not only utilize in-domain terminology dictio-
naries as the training data but also use them in the
soft-constrained terminology translation.

When the dictionary data is used as the training
data, all data in dictionaries is used as it is. How-
ever, for the soft-constrained terminology transla-
tion, data refinement is required since there are
redundant data. It will be described in detail in
Section 3.3.

2.5 Vadlidation data
For the validation data, we use the Khresmoi de-
velopment data. WMT17, WMT18, and WMT19
testset are also used as the validation data.

2.6 Test data
We consider WMT20 and WMT21 "OK" aligned
testset as the test data in our system to evaluate the
translation quality for the final submission.

3 System Overview

In this section, we describe our system which is
based on Transformer architecture (Vaswani et al.,
2017). The training details are described in Section
4.1.

3.1 Deep Transformer
Peters et al. (2018) have shown that deeper lay-
ers could efficiently extract syntactic and semantic
information that could improve the overall perfor-
mance. Bapna et al. (2018) also have explored
deeper encoders for Transformer to improve the
translation quality. Several teams that participated
in the biomedical shared task last year (Yang et al.,
2021; Wang et al., 2021b) have adopted the deep
transformer, especially deeper encoders. In this
paper, we also adopt the deep transformer archi-
tecture which contains 30 encoder layers and 6 de-
coder layers based on TRANSFORMER-BIG setting
(Vaswani et al., 2017).

3.2 Data Augmentation
To augment the in-domain parallel corpus, we
adopt back-translation (Sennrich et al., 2016),

9https://github.com/PlanTL-GOB-
ES/MeSpEn_Glossaries

10https://zenodo.org/record/6497373#.YxHGtXZBz-j

where the synthetic parallel corpus is generated
by translating target-side monolingual data into the
source language. Back-translation is one of the
effective methods to utilize monolingual data.

In this paper, we first train base models of each
direction with the combination of general-domain
and in-domain parallel corpus; then, we utilize
these trained models to generate source-side sen-
tences from target-side monolingual data.

Moreover, Wang et al. (2021a) present that
the overall performance is improved when the in-
domain dictionaries are appended to the training
corpus. We also consider in-domain terminology
dictionaries as the training data.

3.3 Soft-Constrained Terminology
Translation

The common approach for the terminology trans-
lation is constrained decoding (Hokamp and Liu,
2017), where the translation results are forced to
contain pre-specified subsequences, such as the
terminology, at decoding time. Since it is the
hard-constrained method, it can aggravate the trans-
lation quality. Moreover, constrained decoding
methods increase the complexity of the decoding
process. To address these problems, Dinu et al.
(2019) and Molchanov et al. (2021) propose the
soft-constrained methods, where pre-specified ter-
minologies are given as input with the source sen-
tence. Although there is no guarantee that trans-
lation results always contain these pre-specified
terminologies, it can learn a copy behavior at train-
ing time without compromising the overall perfor-
mance.

In this paper, we adopt the soft-constrained strat-
egy of Molchanov et al. (2021) for the terminol-
ogy translation; that is, we add the desired transla-
tion result of the terminology as input with special
tokens such as <term_start>, <term_end>, and
<term_trans>. Figure 1 presents the example of the
revised source sentence including the desired trans-
lation result with special tokens. For this, the train-
ing corpus should be revised to reflect this input
format. First, N%11 sentence pairs of the training
data are randomly extracted and both source and
target sentences are tokenized by SpaCy12 which
not only supports tokenization but also provides
neural network models for part-of-speech tagging.
To obtain the word alignment information between

11This is a heuristic value. In this paper, we set it to 15.
12https://github.com/explosion/spaCy
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Source sentence: Patient had a MI or CVA in last year, or has unstable cardiovascular disease.
Terminology in the source sentence: MI
Desired translation result: IM

New source sentence: Patient had a <term_start> MI <term_end> IM <term_trans> or CVA in last
year, or has unstable cardiovascular disease.

Figure 1: Example of the revised source sentence for the soft-constrained terminology translation

source and target sentences, the word-aligner13 is
applied. Among aligned words, we only consider
Nouns as candidates of pre-specified terminologies.
In each sentence pair, up to three14 candidates are
randomly selected to provide the desired transla-
tion result. Finally, the source sentence is revised
by adding a subsequence of the target sentence that
is aligned to the selected candidate of the source
sentence with special tokens.

For the inference of test data, the biomedical
terminology dictionaries described in Section 2.4
are utilized to provide pre-specified terminology
information. As we mentioned, terminology dictio-
naries should be refined. We first remove duplicate
terminologies; for instance, if one terminology in
the source language is matched with multiple ter-
minologies in the target language, it should be re-
moved since we don’t know which of them is the de-
sired translation result. Moreover, if the frequency
of the terminology is high in general-domain data,
we don’t need to consider it. Thus, dictionaries are
filtered based on the frequency in general-domain
data. For test data, the desired translation results
which are from refined dictionaries are added to
each source sentence for up to three terminologies,
such as the training corpus. If the source sentence
in test data doesn’t contain any term which is in re-
fined dictionaries, we just input the original source
sentence.

3.4 Ensemble

From several NMT studies (Sutskever et al., 2014;
Garmash and Monz, 2016; Firat et al., 2016), it has
been already shown that ensembling methods can
improve the overall performance. In this paper, we
conduct the ensemble strategy with the top three
models based on our testset for the final submis-
sion.

13eflomal, https://github.com/robertostling/eflomal
14This is a heuristic value. Based on our training data, we

decide this value.

3.5 Reranker
The current NMT system utilizes the beam search
approach to generate the final translation result.
However, since it is the auto-regressive model, it
considers only a limited target context to get the
probability of a target token. To address this issue,
there are several reranking methods that generate
several different hypotheses from the NMT model
and rerank them. Since reranking models can con-
sider the entire target context, it can improve the
overall performance over the beam search (Lee
et al., 2021).

In this paper, we adopt two reranking methods:
noisy channel modeling (Yee et al., 2019) and dis-
criminative reranking (Lee et al., 2021). Noisy
channel modeling is based on Bayes’ rule; it gener-
ates translation results based on a backward model
and a pre-trained target-side language model. We
use a translation model in the opposite direction as
a backward model and train transformer language
models for the target-side language model. The dis-
criminative reranking model is a transformer archi-
tecture that takes the source sentence and the n-best
list of output hypotheses as input. It also includes
position embeddings and language embeddings for
representing two different languages’ inputs. As in
Lee et al. (2021)’s work, we use XLM-R (Conneau
et al., 2020) which is a transformer-based multi-
lingual masked language model as the pre-trained
model.

4 Experiments

In this section, we present training details and ex-
perimental results of our systems.

4.1 Training details
The baseline models are trained based on
TRANSFORMER-BIG setting (Vaswani et al., 2017)
which contains 6 encoder layers. We first train base-
line models with only general-domain corpus and
incrementally train them using in-domain parallel
corpus to confirm the effectiveness of in-domain
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System Data En2Es Es2En
WMT20 WMT21 WMT20 WMT21

Best Offiical 20 (Bawden et al., 2020) 0.4672 0.5075
Best Official 21 (Yeganova et al., 2021) 0.5117 0.5382

Baseline
GD 0.4761 0.5134 0.4952 0.5148
GD+ID 0.4956 0.5305 0.5060 0.5183

Deep Transformer GD+ID 0.5174 0.5485 0.5186 0.5360
+ Data Augmentation GD+ID+BT+IND 0.5151 0.5523 0.5236 0.5346

+ Ensemble GD+ID+BT+IND 0.5169 0.5524 0.5255 0.5332
+ SC Terminology Translation GD+ID+BT+IND 0.5158 0.5450 0.5216 0.5362
+ Noisy Channel Modeling GD+ID+BT+IND 0.5143 0.5454 0.5110 0.5255
+ Discriminative Reranking GD+ID+BT+IND 0.5159 0.5481 - -

Table 2: BLEU scores on the WMT20 and WMT21 OK aligned test set.

corpus. The deep transformer models which con-
tain 30 encoder layers are trained with the combi-
nation of the general-domain and in-domain paral-
lel corpus; based on them, the synthetic data are
generated from in-domain monolingual data. Fi-
nally, we train the deep transformer models on
all corpus: general-domain (GD) and in-domain
(IN) parallel corpus, synthetic data (BT), and in-
domain dictionary (IND) information. The soft-
constrained (SC) terminology translation models
are also trained based on deep transformer models
with revised training corpus described in Section
3.3. In addition, the ensemble strategy and rerank-
ing methods explained in Section 3.5 are applied.
For the implementation, we use Fairseq15, and all
models are trained using 8 A100 GPUs. Adam
optimizer is used. The batch size is 4K tokens,
and the frequency of parameter update is 20. The
learning rate, the dropout, and the label smoothing
are set to 0.0007, 0.1, and 0.1, respectively. For
the inference, the beam size is set to 8. The BLEU
scores are calculated using the mt-eval script from
Moses (Koehn et al., 2007).

4.2 Experimental results

The experimental results of English to Spanish
(En2Es) and Spanish to English (Es2En) directions
are shown in Table 2. The baseline models show
that the in-domain corpus improves the overall per-
formance in the domain translation. We then ap-
ply the deep transformer with the general-domain
and in-domain data and it achieves a significant
improvement over baseline models. With data aug-
mentation by back-translation of monolingual in-

15https://github.com/facebookresearch/
fairseq

En2Es WMT20 WMT21
Plain Testset 0.5158 0.5450
Revised Testset 0.5325 0.5505
Es2En WMT20 WMT21
Plain Testset 0.5216 0.5362
Revised Testset 0.5294 0.5472

Table 3: BLEU scores of soft-constrained terminology
translation models on plain testsets and revised testsets
with soft-constrained terminologies.

domain data and in-domain dictionaries, there is
a slight improvement on average; even though the
performance drops slightly in the WMT20 testset
of En2Es and WMT21 testset of Es2En, it improves
more in other testset of each direction.

The ensemble models show better performance
than a single model in general.

In the soft-constrained terminology translation,
the performance is slightly improved in one test-
set while the performance is decreased in the
other testset in each direction. Since the soft-
constrained terminology translation models are
trained with revised corpus, the testset also should
be revised by adding desired translation results
with special tokens in order to evaluate the per-
formance accurately. Table 3 shows BLEU scores
of soft-constrained terminology translation models
on plain testsets and revised testsets which con-
tain desired translation results. We observe that
soft-constrained terminology translation models
are more effective when the desired translation
results of some terminologies are given such as
training corpus.

As we mentioned in Section 3.5, two reranking
methods are adopted, but as a result, the overall
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System En2Es Es2En
Best Official 0.5235 0.6045
SRT run1 0.5214 0.5954
SRT run2 0.5196 0.5943
SRT run3 0.5235 0.6045

Table 4: Official BLEU scores of our submissions for
WMT22 biomedical task.

performance is not improved. (The discriminative
reranking is experimented only on En2Es.)

Since there is no improvement with two rerank-
ing methods, we exclude their results in our final
submissions. Our final submissions are results of
data augmentation, ensembling models, and soft-
constrained terminology translation.

5 Official Evaluation Results

The official evaluation results of our submissions
(SRT) for WMT 2022 biomedical translation task
are shown in Table 4. All our submissions show
the best BLEU scores.

6 Conclusion

This paper presents the Samsung Research’s Trans-
lation system (SRT) for the WMT22 biomedi-
cal translation shared task in two language di-
rections: English to Spanish and Spanish to En-
glish. We perform experiments with several strate-
gies such as deep transformer, data augmentation,
soft-constrained terminology translation, ensem-
bling models, and reranking methods. Our experi-
ments show the effectiveness of each strategy. The
deep transformer, data augmentation, and ensem-
ble strategies improve effectively the overall per-
formance in the domain translation. Moreover, we
present that the soft-constrained terminology trans-
lation is a reasonable method to achieve good per-
formance in the domain translation. Our systems
show the best BLEU scores in the official evalua-
tion results.
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