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Abstract

For the most part, NLP applications operate at
the sentence level. Since sentences occur most
naturally not on their own but embedded in doc-
uments, they must be extracted and segmented
via the use of a segmenter, of which there are a
handful of options. There has been some work
evaluating the performance of segmenters on
intrinsic metrics, that look at their ability to re-
cover human-segmented sentence boundaries,
but there has been no work looking at the ef-
fect of segmenters on downstream tasks. We
ask the question, “does segmentation matter?"
and attempt to answer it on the task of machine
translation. We consider two settings: the in-
ference scenario, where sentences are passed
into a black-box system whose training seg-
mentation is mostly unknown, and the train-
ing setting, where researchers have full control
over the process. We find that the choice of
segmenter largely does not matter, so long as
its behavior is not one of extreme under- or
over-segmentation. For such settings, we pro-
vide some qualitative analysis examining their
harms, and point the way towards document-
level processing.

1 Introduction

Contemporary machine translation assumes a
sentence-level paradigm. However, data doesn’t
exist naturally at the sentence level, requiring the
use of automatic segmenters to split the data at
both training and inference time. Training data
is prepared with the use of sentence segmenters, '
which are preprocessing steps that occur prior to
alignment and bitext creation. At test time, de-
ployed models also require the use of a segmenter.
Many times, for downloaded models, especially,
this inference-time application must be made with-
out knowing what segmenter was used to train the
model, introducing a potential misalignment or dis-
crepancy and resulting performance degradation.

'Sometimes called sentence breakers.

Sentence segmentation itself has received only a
little attention in the research literature, although
there has been a recent uptick (Moore, 2021; Wicks
and Post, 2021). But to our knowledge, no work
has been done investigating the effects of segmenta-
tion on machine translation. In fact, most research
papers do not deal with the question at all, rely-
ing as they do on pre-segmented parallel data for
both training and test time. This is a practical prob-
lem for deployment scenarios, where segmentation
must be considered. It is also a deeper problem,
since segmentation is ultimately a modeling deci-
sion that should be noted and made available with
any published models, such as is done for other
modeling decisions affecting input text, such as
normalization, tokenization, and subword process-
ing.

To understand whether and to what extent seg-
mentation matters, we ask a series of questions: (1)
What segmenter is best used at inference time? (2)
When training a model, how important is the choice
of segmenter? We break down this last question
into two settings: (i) the standard training proce-
dure in which sentences from parallel documents
are aligned (Gale and Church, 1993), and (ii) more
recent “mining” approaches, which use sentence
representations to find sentence pairs without re-
gard for document boundaries.

We find that

* for two black-box models trained with un-
known segmentation, inference-time segmen-
tation largely does not matter;

* when training new models, more aggres-
sive segmentation generally produces better
models, but these models are less robust
to training-/inference-time segmentation mis-
match;

* Global bitext mining approaches generally
outperform document-based alignment tech-
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niques, but the latter is more robust to under-
segmented data at inference.

2 Evaluation

Our research questions address two scenarios. In
the first, a researcher has downloaded a shared
model and wishes to use it to translate new data. In
many instances—perhaps most—the providers of
the model have neither shared nor reported what
segmenter they used. Likely the model was trained
on “standard” provided datasets such as those from
WMT. We would like to have some understanding
of the effect of different segmentations when we
don’t have control over the training segmentation.
Alternatively, we have a “glass box” model. In
this setting, we are training the model, and have
full flexibility over the choice of segmentation. By
reconstructing the entire NMT pipeline with seg-
mentation as the first step of dataset preprocessing,
the researcher has complete control over the result-
ing model. This settings provides us with a more
granular look at the effect of segmenter choice.

2.1 Metric Settings

In order to evaluate in either of these settings, we
need to address a difficulty: automatic metrics
for machine translation, whether source-based or
reference-based, compare the machine translation
output for sentences on a pre-segmented. For ex-
ample, the WMT20 en-de test set (Barrault et al.,
2020) has 1,418 pre-segmented sentences,”. In or-
der to evaluate the effect of segmenters, we need to
run three steps:

1. Remove the provided segmentation
2. Re-segment and translate

3. Align the translation outputs to the original
references

This alignment step is necessary because metric
scores cannot be compared across different refer-
ence segmentations. And it is complicated because
we have no guarantee that the new segmentation
will line up cleanly with the existing one.

We address this problem with three different
alignment approaches.

Preserve keeps the provided segmentation, skip-
ping step (1) above. Segmenters are applied to each
sentence separately. It is easy to restore the original

In en—de the “sentences" are typically several sentences
to promote document translation

segmentation by simply keeping track of the num-
ber of sub-splits that were created with each line.
On the downside, it does not allow the segmenter
its full flexibility.

Document is possible when the sentences of a
test set are grouped into documents. In this setting,
step (1) above is done, but only at the document
level. The segmenter is applied to the sentences in
each document. Step (3) is undertaken by treating
each document as a single line. Because of this,
the number of references changes, and numbers
computed from this approach cannot be compared
to the other two.

Realign provides full flexibility to each seg-
menter. For step (3), we concatenate all outputs,
and then align its words to the original reference
segmentation using a search algorithm described in
Section 2.2.

As many of the test sets originate from news
articles and include header information (which typ-
ically includes a designated line break), we addi-
tionally insert sentence-final punctuation where it is
not provided. This allows all segmenters to recover
this segmentation.

2.2 Aligning outputs to references

Assume a source sequence (S) comprising tokens
(s1, 82, 83, ...Sn ), Which aligns to reference r; and
a subsequent source sequence (1') comprised of
(t1,12,13, ....tm), which aligns to reference ;. In
the released test set, there exists an explicit seg-
mentation between s,, and ¢1. If we maintain this
segmentation, the realignment of the translated to-
kens is obvious: any sub-sequence spawned from
S aligns to r; and we can re-concatenate the trans-
lations for scoring.

However, in production, there isn’t an explicit
segmentation between these tokens. Therefore,
to give the segmenters the full degree-of-freedom
that one would find in production, we must re-
move these segmentations. In this scenario, a seg-
menter may create the subsequences of (s, 2, $3),
(S4,...8n,t1,t2), and (t3,t4,...t,,). Translation
can also re-order tokens which makes the re-
alignment non-obvious.

The realignment can be reduced to a search prob-
lem. To limit the search, we can impose hard con-
straints on the alignment based on subsequence
matching. The field of Biomedical Engineering
has a similar problem when trying to align two
similar (but not identical) DNA sequences. We
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Reference:

[This is an example sequence .][While this is a following sentence j [Where will this align ?]

Sub-search over {I';}

Input stream:| Here Il give an example sentence , but there is a next sentence . How will we align this ?
Hard B I & r, B B B r, r, r, r, r, B oo
Constraints: ) U W N _

Sub-search over {rl,rz)

Sub-search over {I'y} Sub-search over (l‘z, I3} Sub-search over {I'3}

Figure 1: Example of the realignment method. Top row indicates the reference with grouped tokens each belonging
to r1, 2, and r3. The hard constraints are determined via longest subsequence matching (indicated with underlines).
Note that not all matching surface forms may be determined as hard constraints based on token ordering. These hard
constraints fix certain alignment points so the search algorithm (described in Section 2.2) has a limited reference set.

use an off-the-shelf capability® which maximizes
subsequence matching length. This aligns some
tokens to references so we search between the al-
ready aligned tokens. This is further illustrated in
Figure 1.

Between a start and end token (¢; and ; respec-
tively) that are aligned to two references (r, and
ry), we search for the best alignment of all interme-
diate tokens (t; such that 7 < k < j) to a reference
(r, such that x < z < y). Plainly, this maintains
a monotonicity: subsequent tokens can only be
aligned to the same or a future reference.

We additionally require alignments to be con-
secutive sequences—no produced alignment to a
reference can be a subsequence of an alignment to
a different reference.

We optimize the alignment via the following
costs:

* Length-Ratio: An optimal alignment should
be the same length as the reference. This fea-
ture is the ratio of the shorter sequence to the
longer sequence.

* Final Punctuation: A binary feature that de-
termines if the aligned sentence and the origi-
nal reference both end in punctuation.

* N-gram Probability: For unigrams and bi-
grams, the p(tx|r,) or p(tx—1, tx|r.), respec-
tively.

 Start Word: A binary feature that determines
if the aligned sentence and the original refer-
ence both start with the same word.

* End Word: A binary feature that determines
if the aligned sentence and the original refer-
ence both end with the same word.

*https://biopython.org

* Initial Capitalization: A binary feature that
determines if the aligned sentence and the
original reference both start with a capitalized
word.

We let the alignment cost be:

k
ay = Z a; + Z wj * fj(alignment of tj,)
=0 j

where w; is an associated weight on feature f;. We
perform a beam search with these features, expand-
ing with each token .

We use this methodology to re-align translations
to references when the original segmentations are
not maintained. We also note that this technique
and toolkit can be used to reproduce alignments in
other fields when the model’s segmentation is not
identical to that of the test sets as one might see in
speech translation.

3 Experimental Setup

We focus on our investigation on English and Ger-
man. We make this choice because this language
pair has sufficient document-level information in
datasets released by WMT. For many language
pairs, datasets with true document pairs do not
exist. A wider consideration of language pairs
is not possible without further work to cultivate
document-pair datasets.

Given document pairs in German and English,
we extract sentences with a variety of segmenters
and apply a typical document-based aligner to cre-
ate bitext. Each segmenter creates a unique training
set which we use to train a neural machine transla-
tion model.

Traditional alignment methodologies assume
true document pairs. A search through both the
source and target assumes alignments will be found
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in roughly sentence order. Vecalign (Thompson
and Koehn, 2019) is an example of one of these
document-based aligners. This method has the
benefit of being capable of recovering erroneous
segmentation because over-segmented sequences
will still be consecutive during the search.

The growing field of bitext alignment has created
new trends that search for sentence pairs outside the
context of a document. One method of extracting
sentences from all documents and searching glob-
ally for a sentence pair has created massive datasets
such as CCMatrix (Schwenk et al., 2021b), Wiki-
Matrix (Schwenk et al., 2021a), and CCAligned
(El-Kishky et al., 2020). To compare the effects
of segmentation in conjunction with both align-
ment techniques, we train models on data produced
from all segmenters using both a document-based
alignment method and a global, context-less based
aligner.

3.1 Data

German-English has three datasets that preserve
document-level boundaries in German-English—
Europarl v10.* News Commentary v16.°> and
DGT® available through OPUS (Tiedemann, 2012).
We find these datasets sufficient to train NMT mod-
els without other supplementary data.

Europarl comes from proceedings of the Euro-
pean Parliament. Aligned sentences are released
as well as document IDs. The aligned sentences
are roughly sentence-level. News Commentary is
similarly produced from news articles.

DGT is a set of manually produced transla-
tions released by the European Commission’s
Directorate-General for Translation (DGT) from
their translation memory. This dataset has substan-
tial over-segmentation where one clause or phrase
may be segmented onto its own line.

We use the Workshop on Machine Translation
2020 (WMT20) news task test sets and sacre-
BLEU (Post, 2018) to score.

The sizes of the data before and after segmenta-
tion are available in Table 6 in the Appendix.

3.2 Segmentation models
We compare the following segmenters:

*https://www.statmt.org/europarl/v10/
training/

Shttps://data.statmt.org/
news—commentary/v16/training/

*https://opus.nlpl.eu/DGT.php

"We considered COMET (Rei et al., 2020) as an alternative
but did not find significant differences in trends

* ORIGINAL: The provided segmentations.

* ALWAYS: An over-segmentation approach
that treats every piece of potentially sentence-
ending punctuation as unambiguous.

e ERSATZ: A neural model that uses context

windows to produce segmentations (Wicks
and Post, 2021).

* MOSES: Always splits on punctuation, un-
less the previous token is in a pre-defined list
of acronyms and abbreviations (Koehn et al.,
2007).

* PUNKT: An unsupervised approach that uses
thresholding to produce segmentations based
on features such as casing, token length, and
word frequency (Kiss and Strunk, 20006).

* SPACY: A “Rule-based” technique that varies
on language.®

* PAIRS: The DGT dataset is oversegmented,
and many lines contain less than one whole
sentence. Lines must be merged in order to
have complete sentences. In this setting, we
merge the original bitext (instead of insert-
ing segmentations). To implement, we simply
combine every two lines together and treat as
one “sentence." This merging also adds many-
to-many sentence alignments for training in
the Europarl and News Commentary datasets.
We only consider this "segmentation" method
at training as the test data is sufficiently un-
dersegmented.

4 Segmentation at Inference with a Black
Box System

In order to replicate a real-world use-case, we use
an off-the-shelf pre-trained model. Datasets used
to train these models are reported, but for the most-
part, segmentation is unknown. We consider test
sets in a variety of language pairs’ for comprehen-
siveness. For model consistency, we chose a multi-
lingual NMT model. We use the Prism (Thompson
and Post, 2020) as a blackbox translation model,
After applying the segmentation methods de-
scribed in Section 2, we translate with Prism.

8y2.3.5, https://spacy.io
9cs—en, de—-en, en-cs, en-de, en-pl, en-ru,
en—zh,pl-en, ru—en, zh—-en
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PRESERVE REALIGN DOCUMENT

PRISM PRISM PRISM

ORIGINAL 27.1 27.5 28.9
ALWAYS 28.7 29.1 30.5
ERSATZ 29.0 29.4 30.8
MOSES 29.0 29.5 30.8
PUNKT 29.0 29.4 30.8
SPACY 28.7 29.3 30.6

Table 1: PRESERVE maintains original segmentations
before applying the segmenter and aligns all produced
sentences to the original corresponding reference. DOC-
UMENT removes segmentations from the original source
before applying segmenter and aligns all translations to
a single reference sentence (the entire document). RE-
ALIGN removes original segmentations and applies the
alignment technique in Section 2.2 before scoring. Note
that columns are not directly comparable. Differences
between segmenters are not statistically significant.

We report results in Table 1 by averaging BLEU
scores across the languages. As shown in the ta-
ble, different segmenters are consistent within each
alignment technique. The original test sets from
some language pairs (namely cs-en, en-cs,
de-en, and en—de) were undersegmented in the
release to encourage document-level MT. For this
reason, the average with the ORIGINAL segmenta-
tion is lower—the Prism model trained primarily
on sentence-level data does not generalize as well
to multiple sentence inputs. PRESERVE and RE-
ALIGN have the same number of references while
DOCUMENT doesn’t. PRESERVE and REALIGN
are more directly comparable but REALIGN still
may introduce realignment errors. DOCUMENT
is used as an additional score to contextualize the
performance. More about the realignment method-
ologies is in Section 2.

5 Segmentation at Training with a Glass
Box System

Segmentation occurs at an early stage in the NMT
pipeline, so it is intuitive to think it could have a
large effect: Incorrect segmentations can lead to
incorrect alignments; incorrect alignments lowers
the quality of the training data; and low quality
training data will produce worse models.

In order to study the effects on training, we recre-
ate the NMT pipeline by segmenting documents
and aligning bitext to train models. We apply each
segmenter to the training data resulting in a new
unique set of “sentences" for each segmenter. We
can then align these sentences to create a unique

dataset.

5.1 Document-based Alignment

The standard training paradigm for machine trans-
lation identifies bilingual document pairs, segments
the sentences on both sides, and then aligns. The
alignments are ideally one-to-one, but often many-
to-one (or one-to-many) alignments are also permit-
ted. The product of this is (ideally) tens of millions
of sentence pairs that can be used to train machine
translation models.

To replicate this, we take monolingual datasets
that we know to contain parallel documents. The
document alignment is known and labelled. Using
these document alignments, we segment and manu-
ally re-align the sentences using a document-based
aligner.

The document-based aligner we use is Ve-
calign (Thompson and Koehn, 2019) which uses
LASER!? (Artetxe and Schwenk, 2019) sentence
embeddings to compute alignment and also consid-
ers many-to-one or one-to-many alignments. This
system is a document aligner because it aligns
within document context—considering surround-
ing sentences for many-to-one (or one-to-many)
alignments and also constrains the search to align-
ments along the diagonal (i.e., sentences aligned to
each other should occur within a similar placement
within their documents).

The number of sentences recovered from the
alignment, as well as the average length of source
and target in the resulting dataset is shown in Table
2. The difference in size of the resulting datasets is
important to note and likely explains the differences
in models.

5.2 Global Search Alignment

Recent releases of WikiMatrix (Schwenk et al.,
2021a), CCMatrix (Schwenk et al., 2021b), and
CCAligned'! (El-Kishky et al., 2020) have in-
creased the scaling of bitext mining by doing away
with the need for bilingual documents.

These techniques extract sentences from mono-
lingual data and attempt to align them with tech-
niques by combining sentence embeddings and
clever search algorithms. In such settings, it stands
to reason that proper segmentation might be even

Ynttps://github.com/facebookresearch/
LASER

""CCAligned somewhat limits the globalness of the search
by aligning pseudo documents based on domains.
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Unaligned Aligned Bitext
Document-Based Global Search

total sents  toks avg. sents  toks avg.
o 1 T DB B0 o (SN 2
A So S gat ase M soiv des
oM 00 e
woses A IS o
PUNKT ST A g s M 3ssM 393
mes N sw DI 0 ey M e
s M e SRS o 0N 2

Table 2: Training data sizes before (left, Unaligned) and after (right, Aligned Bitext) segmentation and alignment.
For each row, the top number denotes the source (de) size while the bottom denotes the target (en) size. For each
segmentation method, displays the total number of retrieved sentence pairs, the total number of tokens (based on
white-space), and the average number of tokens in a sentence.

more important, since all alignments are one-to-
one. The scaling potential of this technique allows
for massive datasets with billions of aligned sen-
tences to produced in many languages. We use the
same toolkit used to produce these datasets which
uses LASER embeddings and FAISS indexing for
quick retrieval.!?

5.3 Experimental Details

We train a 32,000 joint unigram subword vocab-
ulary using SentencePiece!?® (Kudo, 2018; Kudo
and Richardson, 2018) using the original data. We
use a Transformer (Vaswani et al., 2017) architec-
ture with 6 encoder and 6 decoder layers. We train
with a batch size of 16k tokens validating at the
end of each epoch and stopping if the validation
has not improved after 10 validations. We vali-
date on WMT109 test sets (with original segmenta-
tions). For a comprehensive list of hyperparame-
ters, please Table 7 in the Appendix.

5.4 Results

The amount of data produced by each segmenter
and alignment method varied significantly. Data
quantity after segmentation and alignment is dis-
played in Table 2. Vecalign is fairly consistent
in the amount of data aligned—roughly 180M to-
kens with ALWAYS creating the highest variance.

Phttps://github.com/facebookresearch/
LASER/blob/main/source/mine_bitexts.py

Bhttps://github.com/google/
sentencepiece

Vecalign also produces more data in terms of num-
ber of sentences compared to the alternative global
search method. The global search also varies more
significantly with a 10M token difference between
the smallest and largest datasets (excluding AL-
WAYS). !

We compute the full cross-product of segmenta-
tions at training and inference. Results are reported
in Table 3. Once again, we find that within a given
model, performance is relatively consistent at in-
ference regardless of segmentation. The exception
is the ORIGINAL row as these inputs are under-
segmented. This strong mismatch between training
and testing points to hallucinations which are fur-
ther explored in Section 6.

Generally, we see more variation in model perfor-
mance based on training data segmentation rather
than inference segmentation. One of the best per-
forming models was the model trained on the ORIG-
INAL data—made by preserving the original seg-
mentations. The prominent feature of its training
data was the prevalence of sub-sentence segmenta-
tions. We hypothesize this helped in two ways: 1)
it was not reliant on a strong end-of-sentence signal
(§ 6) and 2) the true alignments were more likely
to exist in the training set. If errors in segmentation
make alignment difficult, it is beneficial to have
segments that are guaranteed to correctly align to
something. Because the DGT dataset was transla-

4The default mine_bitexts.py setting was used for

LASER. The parameters for Vecalign are listed in Table 8 in
the Appendix.
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ORIGINAL ALWAYS ERSATZ MOSES PUNKT SpaCY PAIRS

Vec. Global Vec. Global Vec. Global Vec. Global Vec. Global Vec. Global Vec. Global
ORIGINAL 25.6 249 247 164 25.0 94 221 9.8 250 11.6 238 8.7 282 28.9
ALWAYS 31.2 317 308 312 304 313 308 309 313 310 302 298 30.6 314
ERSATZ 31.3 319 309 313 306 314 310 31.1 313 312 304 299 307 31.5
MOSES 314 319 309 313 306 314 310 311 313 312 304 299 308 31.6
PUNKT 31.3 319 309 313 306 315 310 311 313 312 304 299 307 31.5
SPACY 314 318 309 313 307 314 309 31.1 314 313 308 312 305 31.6

Table 3: German—English (de-en) results. The rows denote the segmenter used at inference while the columns
denote the segmenter used to create the training data. The diagonal, thus, has a matching segmenter for both training
and inference. The LASER global search alignment method was used to create bitext. Bold denotes significance (p

< 0.05) run by paired bootstrapping with sacreBLEU.

tion memory, most segments had a true alignment.

In the ORIGINAL inference-time setting, models
trained with Vecalign-produced bitext performed
better than their Global counterparts. We hypoth-
esize this is because Vecalign was able to recover
many-to-one or one-to-many alignments where the
Global aligner was not. This made the models more
robust to many-sentence inputs and outputs.

Lastly, we note that the choice of segmenter does
affect the training data, and thus the final trained
model. The ORIGINAL model often had the highest
BLEU score across inference-time segmentations.
The differences between the ORIGINAL model, and
the ERSATZ and PAIRS models were not statisti-
cally significant in most cases. Models trained on
data created by PUNKT, SPACY, or MOSES (often
used to create MT datasets) were not as competi-
tive.

6 Qualitative Analysis

Hallucinations, or addition of content during trans-
lation, and deletions are common in neural machine
translation. These models are no exception. Quali-
tative analysis reveals two types of errors that are
worth investigating further: 1) seemingly arbitrary
deletion of content when the input is unsegmented
2) addition of content without a true signal in the
source. We suspect the explanations for these be-
haviors are 1) a lack of many-sentence inputs occur-
ing in training data and 2) incorrect segmentations
leading to poorly aligned data. We display some
examples in Table 4.

6.1 Deletion

Almost all models fail when given unsegmented
data at inference (the ORIGINAL row). Upon in-
spection of these translations, it is obvious the rea-
sons for these scores. In Table 4, we show an
instance of this in the first column. The source

input has three sentences. Some models trained
with segmenters (ERSATZ, MOSES, PUNKT, and
SPACY) drop the majority of these sentences. The
models trained with the ORIGINAL segmentations
and the ALWAYS segmentation method incorpo-
rate information across sentences and hallucinate
new conjunction methods (inserting “with" or us-
ing commas). The model trained with the PAIRS
setting does a combination. As this setting often
has two sentences per line in the bitext, this trans-
lation also is limited to two lines and similar, to
PUNKT and ORIGINAL, hallucinates ways to com-
bine these sentences. We can infer the reason for
the drop in BLEU scores in the unsegmented set-
ting is because most models are deleting content.
In order to report the prevalence of deletion, we
report how many sentences were deleted during
translation.

There are 785 lines in the test data but most
of the lines contain more than one sentence. We
can use Moses (one of the segmenters that is quite
conservative—prone to undersegmenting) to count
how many sentences occur in the source input as
well as how many sentences occur in the translated
outputs. In Table 5, we display this information.

The fact that PAIRS translates more sentences is
logical as its training data often had pairs of sen-
tences in the training data. The ORIGINAL setting
translating more sentences than other models seems
counterintuitive as the training data was shorter on
average (see Table 2). We suspect that the reason
for this is more related to the fact that many train-
ing examples in the ORIGINAL setting did not end
in punctuation since they were below the sentence
level. In the ERSATZ training data, for example,
98% of training example’s target sequences end
with a period. Conversely, 62% of the ORIGINAL
data ended with a period. We reason that the model
was not highly likely to end the sequence after de-
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DELETION

ADDITION

SOURCE Fiir Online-Héndler sind viele zuriickgeschickte Der Premier droht damit, das Land am 31.
Pakete verlorene Ware. Rund 20 Millionen [Oktober ohne Abkommen aus der EU zu fiihren...]
Retouren landen so auf den Miill. Doch gibt es eine
Alternative.

ORIGINAL  For online traders, many returned packages are lost ~ The Prime Minister is threatening the country on 31
commodities, with around 20 million retours December.
pouring into the rubbish, but there is an alternative.

ALWAYS For online traders, many returned packages are lost, The Prime Minister is threatening to leave the
but there is an alternative. country on 31 December.

ERSATZ Some 20 million retours thus end up in the rubbish.  The Prime Minister is threatening to hold the

country on 31 May.

MOSES For online traders, many returned packages are lost ~ The Prime Minister is threatening to do so, the
goods. country on 31 December.

PUNKT For online dealers, many returned packages are lost ~ The Prime Minister is threatening to see the country
goods. on the 31st day of the month.

SPACY For online traders, many returned packages are lost ~ The Prime Minister is threatening the country on 31
goods. December.

PAIRS For online traders, many returned packages are lost ~ The Prime Minister is threatening the country on 31

goods, with some 20 million retours ending up in

rubbish. But there is an alternative.

December.

Table 4: Examples of differences in translations. The SOURCE denotes input to the model. Content in square
brackets was not part of input but has been included for context to reader. The DELETION column shows examples
of different models deleting content during translation due to unsegmented input. The ADDITION column shows
models hallucinating content when an incomplete input was given.

MODEL SENTENCES
REFERENCE 1959
ORIGINAL 1009
ALWAYS 785
ERSATZ 793
MOSES 790
PUNKT 830
SPACY 790
PAIRS 1399

Table 5: Number of sentences (as counted by Moses
segmenter) generated on the WMT20 de-en test set.
The model is each translation system trained on data
segmented by the specified segmenter.

coding a period due to these trends.

All segmenter models were affected by this be-
havior, but SPACY had more issues. SPACY, in
a manner different to the other segmenters, also
includes punctuation such as ‘:” as final punctua-
tion meaning it oversegments in many scenarios.
In sentences including colons, we see similar dele-
tion from SPACY. For instance, the SPACY model
translates “Katastrophe abgewendet: Grofibrand
in franzosischem Chemiewerk geloscht.’ simply
as “Avoiding disaster:"

Of the 157 sentences in the test data that included

a colon, SPACY translated only the first segment
in 78 of them; in 52 it translated only the second
segment; in 27 it translated parts of both.

6.2 Additions

When Raunak et al. (2021) studied the causes of
hallucinations, they attributed hallucinations to er-
rors in bitext alignment. It follows that segmen-
tation, as a precursor to bitext alignment, might
also affect hallucinations. The most obvious hallu-
cination we see in the translations is surrounding
dates. German often uses a format of “Freitag, 27.
September 2019" for “Friday, September 27, 2019".
Erroneous segmentation around the punctuation in
the date causes alignment issues or bad input to the
translation model. We see the effects of both.

The former, bad alignment, we see in the case
of the overly-aggressive segmenter (ALWAYS). Be-
cause the data was always split on the date in this
construction, the alignment suffers severely. We
see examples in the training data such as:

Source: Juli 2016 an.
Target: Done at Brussels, 20 July 2016.

The training data frequently contains dates like
this and the global search aligner was unable to
detect that additional information appeared on the
target side. The ALWAYS model memorized this
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extraneous information and generated it 8 times in
these experiments.

In the second case, where the input to the model
has been over-segmented, we see a similar effect.
When an ALWAYS segmenter is used at inference,
the models struggle on the incomplete information.
In the second column of Table 4, a complete sen-
tence has been segmented erroneously into two
incomplete sentences. For clarity the end of the
sentence (which was segmented into a separate in-
put) is included in square brackets. The incomplete
input has a two-fold effect: 1) the models hallu-
cinate months to attach to the date 2) ALWAYS,
ERSATZ, and PUNKT hallucinate verbs (to leave,
to hold, to see respectively).

7 Related Works

To the best of our knowledge, not much work has
been done about the effects of segmentation on
down stream tasks. Raunak et al. (2021) investi-
gates corpus-level noise and empirically links noise
patterns to types of NMT hallucinations. Other
work has focused on the effects that punctuation
has on neural language models (Ek et al., 2020;
Karami et al., 2021). In online simultaneous speech
segmentation, Wang et al. (2019) proposes an on-
line sentence segmentation approach which im-
proves downstream BLEU scores.

There is much more work pushing away from
the sentence-level paradigm and encouraging doc-
ument translation. Sun et al. (2022) has re-
cently shown that modern neural architectures still
achieve strong performance with longer, multi-
sentence inputs. A spate of recent work has gone
into better document evaluation metrics (Jiang
et al., 2022; Vernikos et al., 2022). Document
pairs contain the additional context needed to cor-
rectly translate certain discourse phenomenon such
as coreference resolution and consistent lexical
choices. Further, mining documents instead of
sentences circumvents the error propagation from
using various segmentation methodologies during
bitext mining.

8 Conclusion

An NMT system trained on segmented data re-
quires segmentation at inference; however, the ex-
act method of segmentation at inference seems to
have little quantitative effect. The larger impact of
segmentation occurs during the creation of bitext.
Whether the effect stems from the quality of the

produced sentence pairs or the limitations of differ-
ent alignment methods cannot be determined based
on these results. Despite this, various segmentation
and alignment method combinations create signifi-
cantly different amounts of bitext to train models
on—something that needs to be investigated further.
The differences in the resulting data produce mod-
els that perform differently. Lastly, we note that
when models are trained on segmented data, they
dramatically hallucinate at inference with unseg-
mented data by deleting long segments. By adding
some amount of unsegmented data in the training
data, this effect can be mitigated to recover upwards
of 4 BLEU points.

Together, we might conclude that avoiding seg-
mentation is the path forward. When the segmen-
tation and alignment techniques failed, half a mil-
lion sentence pairs were sometimes lost or left un-
aligned. Additionally, we see that less-segmented
bitext produces models that are more robust to un-
segmented data at inference. The biggest hurdle in
training document-level models is the lack of suffi-
cient document-level annotations. If true document
pairs exist in larger web-scraped corpora, most of
the original document structure (and informative
context) has been removed via bitext filtering and
deduplication. Future work might explore poten-
tial solutions to mining document-level data, and
circumvent these segmentation tools and their re-
spective noise.

9 Limitations

Most of this work relies on interactions between the
segmenters and the aligners. It’s the production of
training data—and the resulting quality and quan-
tity that is causing the differences in models. We
used off-the-shelf configurations for these aligners
and didn’t do significant hyper-parameter search-
ing. It’s possible that other toolkits or different
hyperparameters might normalize the effects of er-
roneous segmentation.

We also noted that Vecalign was able to recover
erroneous segmentation in the one-to-many and
many-to-one settings while showing that the global
method was not. Having a global search method
does not directly preclude these recoveries, but to
the best of our knowledge it hasn’t been investi-
gated.

Lastly, we limit ourselves to de—en as a lan-
guage pair here because of the availability of docu-
ment pairs. The ambiguity in puncutation surround-
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ing these two languages make them interesting for
segmentation. Also, German often uses a different
word order than English which can make aligning
erroneous segmentations difficult. These effects
might be minimized or non-existant in other lan-
guage pairs.
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A Appendix
A.1 Data

In Table 6 is a further breakdown if the amount
of sentences extracted from the datasets via each
segmenter. In most cases, a segmenter produces
more segmentations than the ORIGINAL dataset.
This is not true of the DGT dataset which shows
how over-segmented it was. Moses is the most
conservative segmenter with high-precision and
lower recall.

A.2 Hyperparameters

In Table 7, the hyperparameters used to train the
Fairseq NMT models are listed. When the parame-
ters are not listed, the defaults were used. Further,
we also list the settings used with the Vecalign
aligner in Table 8.
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‘ de en de en de en totals ‘ all
ORIGINAL | 524M 6.12M 1.83M 1.83M 039M 0.39M 15.80M | 12517
ALWAYS | 406M 3.66M 2.06M 18M 04IM 039M 1247M | 17434
ERSATZ | 2.62M 288M 193M 1.83M 040M 039M 10.04M | 16132
MOSES | 2.37M 3.05M 190M 179M 039M 039M 9.89M | 15915
PUNKT | 2.63M 3.0IM 197M 186M 040M 038M 1025M | 16137
SPACY 333M 4.15M 206M 197M 043M 042M 1235M | 17342
PAIRS 263M 3.07M 092M 092M 020M 020M 7.94M -

Table 6: Sizes of the source (de) and target (en) after applying segmentation techniques described in Section
2. These sizes are before alignment. To the right (WMT20), we list the sizes of the segmented test sets (all 12
languages together).

Parameter Value
Architecture Transformer
Encoder Layers 6
Decoder Layers 6
Embed Dim 512
FFN Dim 512
Attention Heads 8
Dropout 0.1
Attn. Dropout 0.1
ReLU Dropout 0.1
Label Smoothing 0.1
Adam Betas (0.9, 0.98)
Clip Norm 2.0
Lr Scheduler Inverse Sqrt
Warmup Updates 4000
Initial LR le-7
LR 0.0005
Min LR le-9
Batch Size 16k tok
Patience 10

Table 7: Values for the hyperparameters used during
training. Can be traced to the Fairseq parameters. If not
listed, default was used.

Parameter Value
Overlap 6
Max Alignment 4
Embedding Model | LASER (93 langs)

Table 8: Settings used with the Vecalign alignment

toolkit.
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