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Abstract

We report the results of the WMT 2022 shared
task on Quality Estimation, in which the chal-
lenge is to predict the quality of the output of
neural machine translation systems at the word
and sentence levels, without access to refer-
ence translations. This edition introduces a few
novel aspects and extensions that aim to enable
more fine-grained, and explainable quality esti-
mation approaches. We introduce an updated
quality annotation scheme using Multidimen-
sional Quality Metrics to obtain sentence- and
word-level quality scores for three language
pairs. We also extend the Direct Assessments
and post-edit data (MLQE-PE) to new language
pairs: we present a novel and large dataset on
English-Marathi, as well as a zero-shot test-set
on English-Yoruba. Further, we include an ex-
plainability sub-task for all language pairs and
present a new format of a critical error detection
task for two new language pairs. Participants
from 11 different teams submitted altogether
991 systems to different task variants and lan-
guage pairs.

1 Introduction

The 11th edition of the shared task on Quality Es-
timation (QE) builds on its previous editions and
findings to further benchmark methods for estimat-
ing the quality of neural machine translation (MT)
output at run-time, without the use of reference
translations. It includes (sub)tasks that consider
quality of machine translations at the word and
sentence levels.

Over the past years, the QE field has been mov-
ing towards trainable, large, multilingual models
that have been shown to achieve high performance,
especially at sentence-level (Specia et al., 2021).
In this edition, we further expand the provided re-
sources, introducing new low-resource language
pairs: a large dataset of English-Marathi, suit-
able for training, development and testing and a
smaller test-set on English-Yoruba for zero-shot

approaches. These, as well as previously published
datasets for QE, rely mainly on Direct Assessments
(DA)1 and post-edited translations, which provide
estimates of quality either by using the human qual-
ity score(s) for each segment or by estimating the
distance of a translation from a human-provided
correction. As these annotations can sometimes
obscure the exact location and/or significance of
a translation error, we wanted to investigate the
feasibility and efficiency of using a more fine-
grained annotation schema to obtain quality esti-
mations at word- and sentence- level, namely Mul-
tidimensional Quality Metrics (MQM) (Lommel
et al., 2014). MQM annotations have shown to be
more trustworthy for the metrics task (Freitag et al.,
2021a,b), motivating us to evaluate their suitability
for the QE task. We make available new develop-
ment and test data on three language pairs using
MQM annotations.

The aforementioned boost in performance of QE
systems frequently comes at the cost of efficiency
and interpretability, since they heavily rely on large
models with many parameters. As a result, the pre-
dicted quality estimates are hard to interpret. At
the same time, such high-performance, “black-box”
models are frequently susceptible to systematic
errors, such as negation omission (Kanojia et al.,
2021) and mistranslated entities (Amrhein and Sen-
nrich, 2022). Both phenomena are major concerns
for MT quality estimation since they can under-
mine users’ trust in new technologies and ham-
per the adoption of such models on a wide scale.
To motivate approaches that address these cases
we include an explainability subtask following its
first edition at Eval4NLP 2021 (Fomicheva et al.,
2021). In this subtask we ask participants to predict

1We note that the procedure followed for our data diverges
from that proposed by Graham et al. (2016) in three ways: (a)
we employ fewer but professional translators to score each
sentence, (b) scoring is done against the source segment (bilin-
gual annotation) and not the reference, and (c) we provide
translators with guidelines on the meaning of ranges of scores.
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the erroneous words as rationale extraction for a
sentence-level quality estimate, without any word-
level supervision. By framing error identification
as rationale extraction for sentence-level quality
estimation systems, this subtask offers an opportu-
nity to study whether such systems behave in the
same way as humans would do. We also reshape
the critical error detection task of last year and we
build a new corpus to test the ability of QE systems
to detect critical errors that simulate hallucinated
content with additions, deletions, named entities,
polarity changes and numbers. The corpus is cre-
ated using SMAUG (Alves et al., 2022) and we al-
low participation in constrained and unconstrained
settings. For the constrained setting, participants
have to build QE systems without having access
to data from SMAUG, whereas participants from
the unconstrained task can train their systems using
additional data from SMAUG.

In addition to advancing the state-of-the-art at
all prediction levels, our main goals are:

• To extend the languages covered in our
datasets;

• To further motivate fine-grained quality anno-
tation, informed at word and sentence level
using MQM;

• To encourage language-independent and even
unsupervised approaches especially for zero-
shot prediction;

• To study and promote explainable approaches
for MT evaluation; and

• To revisit critical error detection.

We thus have three tasks:

Task 1 The core QE task, consisting of separate
sentence-level and word-level subtasks. For
the sentence-level sub-tasks, the goal is to pre-
dict a quality score for each segment in the
test set, which can be a variant of DA (§2.1.1)
or MQM (§2.1.1). For the word-level sub-
tasks, participants have to predict translation
errors at word-level, via binary quality tags
(see §2.1.2).

Task 2 Explainable QE task, aiming to obtain word-
level rationales for sentence-level quality
scores (§2.2).

Task 3 The critical Error Detection task, aiming to
predict sentence-level binary scores indicating
whether or not a translation contains a critical
error (§2.3).

The tasks make use of large datasets annotated
by professional translators with either 0-100 DA
scoring, post-editing or MQM annotations. We up-
date the training and development datasets of pre-
vious editions and provide new test sets for Tasks
1 and 2. Additionally, we provide a novel setup
for Task 3, with novel train, development and test
data. The datasets and models released are publicly
available2. Participants are also allowed to explore
any additional data and resources deemed relevant,
across tasks.

The shared task uses CodaLab as submission
platform, where participants (Section 4) could sub-
mit up to 2 submissions a day for each task and
language pair (LP), up to a total of 10 submissions.
Results for all tasks evaluated according to standard
metrics are given in Section 5. Baseline systems
were trained by the task organisers and entered in
the platform to provide a basis for comparison (Sec-
tion 3). A discussion on the main goals and findings
from this year’s task is presented in Section 6.

2 Quality Estimation tasks

In what follows, we briefly describe each subtask,
including the datasets provided for them.

2.1 Task 1: Predicting translation quality
Being able to automatically predict the quality
of translations on sentence- or word-level with-
out access to human-references is the core goal
of the QE shared task. In this edition, we ex-
plored some new approaches towards quality anno-
tations for sentence- and word-level, and redefined
the word-level quality labelling scheme, in an at-
tempt to allow participants to employ multi-task
approaches and exploit fine-grained quality annota-
tions. Hence, the data was produced in two ways:

1. DA & Post-edit approach: The quality of each
source-translation pair is annotated by at least
3 independent expert annotators, using DA on
a scale 0-100. The translation is also post-
edited to obtain the closest possible, fully cor-
rect translation of the source. Using the post-
edited data, we generate Human-mediated

2https://github.com/WMT-QE-Task/
wmt-qe-2022-data
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Translation Edit Rate (HTER) (Snover et al.,
2006) scores, which are obtained by calculat-
ing the minimum edit distance between the
machine translation and its manually post-
edited version. By additionally considering
the alignment between the source and post-
edited sentence, we can propagate the errors to
the source sentence and annotate the segments
that were potentially mistranslated and/or not
translated at all. The HTER scores were made
available to participants as additional data, but
are not used as prediction targets.

2. MQM approach: Each source-translation pair
is evaluated by at least 1 expert annotator, and
errors identified in text are highlighted and
classified in terms of severity (minor, major,
critical) and type (omission, style, mistransla-
tion, etc).

The DA and MQM data was further processed
to a) obtain normalised quality scores that have
the same direction between high and low quality
and b) obtain word-level binary quality labels. We
provide more details on the required pre-processing
in §2.1.1 and §2.1.2.

DA & Post-edit data: For all language pairs
the data provided is selected from publicly avail-
able resources. Specifically for training we
used the following language pairs from the
MLQE-PE dataset (Fomicheva et al., 2022):
English-German (En-De), English-Chinese (En-
Zh), Russian-English (Ru-En), Romanian-English
(Ro-En), Nepalese-English (Ne-En), Esthonian-
English (Et-En) and Sinhala-English (Si-En),
which are all sampled from Wikipedia, except
for the Ru-En pair, which also contains sentences
from Reddit. Additionally, the language-pairs
used for development and testing also originate
from Wikipedia: English-Czech (En-Cs), English-
Japanese (En-Ja), Khmer-English (Km-En) and
Pashto-English (Ps-En).

Finally, the new English-Marathi (En-Mr) data
that is made available for train, development and
testing this year is sampled from a combination of
sources. More specifically the source side segments
of the English-Marathi data contain segments from
three different domains – healthcare, cultural, and
general/news. The general domain and cultural do-
main data were obtained from the English (source
side) segments in the IITB English-Hindi Parallel
Corpus (Kunchukuttan et al., 2018). However, the

healthcare domain data was obtained from publicly
available NHS monolingual corpus3.

All of the data was translated using large
transformer-based NMT models, with established
high performance for the languages in question.
Specifically, for the language pairs in the training
data (En-De, En-Zh, Et-En, Ne-En, Ru-En, Ro-
En, Si-En), all source sentences were translated
by a fairseq Transformer (Ott et al., 2019) bilin-
gual model. The exception is the English-Marathi
which was translated by the multilingual IndicTrans
(En-X) Transformer-based NMT model, which was
trained on the Samanantar parallel corpus (Ramesh
et al., 2022).

For the languages provided in the development
and test set, namely: En-Cz, En-Ja, Km-En and
Ps-En we maintain the same we use the MBART50
(Tang et al., 2020),4 to translate the source sentence
of the other languages pairs, since it has been found
to perform well, especially for low-resource lan-
guages (Tang et al., 2020). The En-Mr portion of
the development and test data is translated similarly
to the training data for this language pair.

Zero-shot language pair: This year we intro-
duced a “surprise” language-pair, English-Yoruba
(En-Yo), which represents a low-resource language
pair. The Yoruba language is the third most spoken
language in Africa, and it is native to southwest-
ern Nigeria and the Republic of Benin (Eberhard
et al., 2020). We extracted 1010 sentences in En-
glish from Wikipedia across 7 topics and translated
them to Yoruba using Google Translate. Using
adjusted guidelines from Fomicheva et al. (2021),
we trained annotators to indicate sentence-level
DA scores and to highlight erroneous words as
word-level explanations for the DA scores.5 On
the 1010 sentences, they obtained agreements of
0.487 Pearson on sentence-level and 0.380 kappa
on word-level. Note that in order to further en-
courage multilingual and unsupervised approaches,
the setup for this zero-shot approach was slightly
different to the previous edition, since we did not
reveal the language pair before the release of the
test data, and the zero-shot pair was included only
in the multilingual sub-tasks for quality estimation

3The NHS corpus source sentences were crawled from
the health directory of NHS available here: https://www.
nhs.uk/conditions/

4https://github.com/pytorch/fairseq/
tree/master/examples/multilingual

5Annotators were graduate students and native speakers of
Yoruba and fluent in English.
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(as opposed to a standalone subtask for this lan-
guage pair only).

MQM data: As training data, we used annota-
tions released for the Metrics shared task namely,
the concatenation of the annotations released from
Freitag et al. (2021a) with the annotations from
last year Metrics task (Freitag et al., 2021b). To-
gether, these annotations, cover 3 high-resource
language pairs, namely: Chinese-English (Zh-En),
English-German (En-De) and English-Russian (En-
Ru), and span across two domains (News and Ted
Talks). In contrast to DA, instead of one transla-
tion for each source, we have multiple translations
coming from system participation’s in the 2020
and 2021 News translation tasks (Barrault et al.,
2020; Akhbardeh et al., 2021). For development
set however, we follow an approach that is similar
to the one use for the DA data: we translated the
Newstest 2019 using a single NMT system, namely
MBART50. Subsequently, for each language pair
we asked an expert translator to provide MQM an-
notations. The test set was created similarly to the
development, but instead of using Newstest 2019
we used the Newstest 2022 (the News data from
this year’s General MT shared task).

Overall, the released data for Task 1covers a total
of 9 language pairs for training, 4 language pairs
for development and 6 language pairs for testing
including 1 zero-shot language pair. Statistics and
details for each language pair are provided in Table
1.

2.1.1 Sentence-level quality prediction
There were two competition instances for the
sentence-level sub-task. The first one focuses on
DA- and the second one on MQM-derived annota-
tions, both including a separate multilingual track.
In the future, we aim to consolidate the competition
instances into a single one for sentence-level, using
our findings from this edition to align the annota-
tion schemes in a better manner. We provide below
the details for each annotation scheme and a com-
prehensive table with statistics for all annotations
(Table 1).

DA annotations: For DA annotations, we fol-
lowed the annotation and scoring conventions of
previous editions. We provided MLQE-PE data
(Fomicheva et al., 2022) used in previous years for
training, which includes seven language pairs with
≈ 8,000 segments each. We also provided 26,000
segments of En-Mr which were annotated using the

same annotation conventions. All translations were
manually annotated for perceived quality, with a
quality label ranging from 0 to 100, following the
FLORES guidelines (Guzmán et al., 2019). Ac-
cording to the guidelines given to annotators, the
0-10 range represents an incorrect translation; 11-
29, a translation with few correct keywords, but the
overall meaning is different from the source; 30-50,
a translation with major mistakes; 51-69, a trans-
lation which is understandable and conveys the
overall meaning of the source but contains typos or
grammatical errors; 70-90, a translation that closely
preserves the semantics of the source sentence; and
91-100, a perfect translation. For each segment,
there were at least three scores from independent
raters (four in the case of En-Mr). DA scores were
standardised using the z-score by rater, and the
z-scores were provided as training targets. Par-
ticipating systems are required to score sentences
according to z-standardised DA scores.

MQM annotations: As we have seen (§2.1), for
the MQM annotations, we built on the available
Google MQM annotations (Freitag et al., 2021a)
that contain annotated data for the En-De and Zh-
En data of WMT 2020 News Translation Systems
(Barrault et al., 2020) as well as En-De, Zh-En and
En-Ru annotations from WMT Metrics 2021 (Fre-
itag et al., 2021b). These annotations, provided
as training data, amount to more than 30,000 seg-
ments in total (see Table 1 for details per language
pair). In addition, we provide newly annotated
development and test sets for all three language
pairs (En-De, En-Ru, Zh-En), amounting to ap-
proximately 1,000 segments per language pair.

Originally, MQM annotated segments include
annotated erroneous text-spans on the transla-
tion side that are assigned two types of labels:
(a) an error severity label {minor, major,
critical} and (b) an error category label such
as {grammar, style/awkward, omission,
mistranslation}, ...}. Each error sever-
ity is associated with a specific weight; hence a
sentence score can be calculated for each segment
based on these error weights. We demonstrate an
example of MQM annotations and scores in Figure
1.

MQM scores according to Google weight
scheme have the opposite direction of the DA
scores since larger MQM scores denote worse trans-
lation quality, i.e., a larger number of errors or more
severe errors. To address this inconsistency, we
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Language Sentences Tokens DA PE MQM CE Data Source
Pairs Train / Dev / Test22 Train / Dev / Test22

En-De 1 9,000 / 1,000 / – 131,499 / 16,545 / – ✓ ✓ Wikipedia
En-Zh 9,000 / 1,000 / – 131,892 / 16,637 / – ✓ ✓ Wikipedia
Ru-En 9,000 / 1,000 / – 94,221 / 11,650 / – ✓ ✓ Reddit
Ro-En 9,000 / 1,000 / – 137,466 / 17,359 / – ✓ ✓ Wikipedia
Et-En 9,000 / 1,000 / – 112,503 / 14,044 / – ✓ ✓ Wikipedia
Ne-En 9,000 / 1,000 / – 120,078 / 15,017 / – ✓ ✓ Wikipedia
Si-En 9,000 / 1,000 / – 125,223 / 15,709 / – ✓ ✓ Wikipedia
En-Mr 26,000 / 1,000 / 1,000 690,532 / 27,049 / 26,253 ✓ ✓
Ps-En – / 1,000 / 1,000 – / 27,045 / 27,414 ✓ ✓ Wikipedia
Km-En – / 1,000 / 1,000 – / 21,981 / 22,048 ✓ ✓ Wikipedia
En-Ja – / 1,000 / 1,000 – / 20,626 / 20,646 ✓ ✓ Wikipedia
En-Cs – / 1,000 / 1,000 – / 20,394 /20,244 ✓ ✓ Wikipedia
En-Yo – / – / 1,010 – / – / 21,238 ✓ ✓
En-De 2 28,909 / 1,005 / 511 839,473 / 24,373 / 13,220 ✓ WMT-newstest
En-Ru 15,628 / 1,005 / 511 357,452 / 24,373 / 13,220 ✓ WMT-newstest
Zh-En 35,327 / 1,019 / 505 1,586,883 / 51,969 / 15,602 ✓ WMT-newstest

En-De 155,511 / 17,280 / 500 8,193,693 / 915,061 / 27,771 ✓ News-Commentary
Pt-En 39,926 / 4,437 / 500 2,281,515 / 253,594 / 29,794 ✓ News-Commentary

Table 1: Statistics of the data used for Task 1 (DA), Task 2 (PE) and Task 3 (CE) (last four rows). The number of
tokens is computed based on the source sentences.

Figure 1: Example of MQM annotations on the target (translation) side, on a English–German (En-De) sentence
pair.

invert the MQM scores and standardise per anno-
tator. For training data we had access to multiple
annotations per segment and calculated an aver-
age score after standardisation, keeping also the
original MQM scores per annotator, to allow the
participants to take full advantage of the different
annotations (Basile et al., 2021). For the same
reasons, we opted not to aggregate the annotated
text-spans.

Regarding evaluation, systems in this task (both
for DA and MQM) are evaluated against the true
z-normalised sentence scores using Spearman’s
rank correlation coefficient ρ as the primary
metric. This is what was used for ranking sys-
tem submissions. Pearson’s correlation coefficient,
r, Mean Absolute Error (MAE), and Root Mean
Squared Error (RMSE) were also computed as sec-
ondary metrics but not used for the final ranking
between systems.

2.1.2 Word-level quality prediction

This sub-task focuses on detecting word-level er-
rors in the MT output. The goal is to automatically
predict the quality of each token using a binary
decision, i.e., using OK as a label for tokens trans-
lated correctly and BAD otherwise. We deviate
from the annotation pattern of previous years in
that, we do not consider annotations of the gaps
between tokens or source-side annotations. Instead,
to account for omission errors, we consider the fol-
lowing convention: the token on the right side of
the omitted text in the translation is annotated as
“BAD”. An additional <EOS> token is appended
at the end of every translation segment to account
for omissions at the end of each sentence. This al-
lows the provision of a unified framework for both
the post-edit originated annotations and the MQM
annotations.

We thus use the same source-translation pairs
used for the sentence-level tasks and obtain the
binary tags as follows:
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• For post-edited data, we use TER (Snover
et al., 2006) to obtain alignments between
translation and post-edit and annotate the mis-
aligned tokens as BAD.

• For MQM data, the tokens that fall within the
text-spans annotated as errors (or any sever-
ity or category) are annotated as BAD. If the
whitespace between two words is annotated as
an error, then this is considered an omission,
and the next token is annotated as BAD.

Participants were encouraged to submit for each
language pair and also for the multilingual vari-
ants of each sub-task. For the DA-based sentence-
level competition, as well as the word-level sub-
task, there was an additional multilingual variant
that included the zero-shot language pair (En-Yo).
The latter aimed at fostering work on language-
independent models, as well as models that are
truly multilingual.

For word-level task, submissions are ranked us-
ing the Matthews correlation coefficient (MCC)
as the primary metric, while F1-scores are pro-
vided as complementary information.

2.2 Task 2: Explainable Quality Estimation
Following the success of the shared task on Ex-
plainable Quality Estimation organized by the
Eval4NLP workshop in 2021 (Fomicheva et al.,
2021), in this sub-task we aim to address trans-
lation error identification as rationale extraction
from sentence-level quality estimation systems. If
a QE system reasonably estimates the quality of a
translated sentence, an explanation extracted from
the system should indicate word-level translation
errors in the input (if any) as reasons for imper-
fect sentence-level scores. Particularly, for each
input pair of source and target sentences, participat-
ing teams are asked to provide (i) a sentence-level
score estimating the translation quality and (ii) a list
of continuous word-level scores where the tokens
with the highest scores are expected to correspond
to translation errors considered relevant by human
annotators.

In this explainable QE task, we use all the nine
language pairs and their word-level test sets from
Task 1 (see §2.1.2) with En-Yo being a separate
language pair (rather than blending it in the mul-
tilingual test set). Therefore, the participants are
allowed to use the sentence-level scores from the
datasets in Task 1 to train their sentence-level mod-
els in Task 2. However, as Task 2 aims to promote

the research on the explainability of QE systems,
we encourage the participants to use or develop
explanation methods to identify contributions of
words or tokens in the input. Unlike Task 1, the
participants of Task 2 are not allowed to super-
vise their models with any token-level or word-
level labels or signals (whether they are from
natural or synthetic data) in order to directly
predict word-level errors. Consequently, we do
not require the participants to convert their word-
level scores into predicted binary labels (OK/BAD)
since this process usually requires a word-level QE
dataset to search for an optimum score threshold.

Concerning the evaluation of this task, we fo-
cus on assessing the quality of explanations (i.e.,
the submitted word-level scores), not the sentence-
level predictions. Specifically, we measure how
well the word-level scores provided by the partici-
pants correspond with human word-level error an-
notations, which are binary ground truth labels. Un-
like the Eval4NLP 2021 shared task, which ranked
participating systems by a combination of three
metrics (Fomicheva et al., 2021), we use Recall at
Top-K, also known as R-precision in information
retrieval literature (Manning et al., 2008, chap-
ter 8), as the primary metric this year due to
two reasons. First, it is preferable to have a single
main metric to avoid confusion and also some po-
tential side effects that combining the three metrics
might produce. Second, Recall at Top-K seemed
to help discriminate best between the participating
submissions in the Eval4NLP shared task. Assume
that, for a given pair of source and target sentences,
there are K words annotated as translation errors
by humans. Recall at Top-K equals r

K when there
are r out of the K error words appearing in the list
of top-K words ranked by the submitted word-level
scores descendingly. In addition, AUC (an area un-
der the receiver operating characteristic curve) and
AP (average precision) are used as secondary met-
rics. Considering the word level, AUC summarises
the curve between true positive rate and false posi-
tive rate, while AP summarises the curve between
precision and recall. For both of the secondary
metrics, higher values are the better. Although we
report metrics for sentence-level predictions, in-
cluding Pearson’s correlation and Spearman’s cor-
relation, as additional information, we do not use
them for ranking the participants or determining
the winner in this explainability task.
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2.3 Task 3: Critical Error Detection

In this sub-task, we reshape the binary classifica-
tion task introduced in last year’s edition (Specia
et al., 2021) to predict whether the translated sen-
tence contains (at least) one critical error.

Following Specia et al. (2021), we consider that
a translation contains a critical error if it deviates
from the meaning of the source sentence in such a
way that it is misleading and may lead to several
implications. As noted by Specia et al. (2021), de-
viations in meaning can happen in three ways: mis-
translation errors have critical content translated
incorrectly into a different meaning; hallucination
errors introduce critical content in the translation
that is not in the source; and deletion errors re-
move critical content that is in the source from the
translation.

In this task, we focus on five critical error cate-
gories:

• Additions: The content of the translation is
only partially supported by the source.

• Deletions: Part of the source sentence is ig-
nored by the MT engine.

• Named Entities: A named entity (people, or-
ganization, location, etc.) is mistranslated into
another incorrect named entity.

• Meaning: The translated sentence either intro-
duces or removes a negation and the sentence
meaning is completely reversed.

• Numbers: The MT system translates a num-
ber/date/time or unit incorrectly.

For this task, we introduce a new dataset ob-
tained by perturbing a corpus of News articles with
SMAUG (Alves et al., 2022) and using humans to
validate perturbation on the test set. The original
data for this task is composed of the News arti-
cles from OPUS News-Commentary (Tiedemann,
2012) for the language pairs English-German and
Portuguese-English.

For the English-German language pairs, there
are no Deviation in Meaning errors, as the pertur-
bation is only available for into English language
pairs. The new dataset is purposefully unbalanced,
as these phenomena are rare, containing approxi-
mately 5% of translations with critical errors. Table
1 presents the number of records for each language
pair.

Since the dataset for this task is artificially gen-
erated, the participants were encouraged to submit
systems that did not rely on the provided training
data. As such, submissions were split into two
groups: unconstrained and constrained. In the first
group, the participants have access to the training
data. In the second, the systems should only be
trained on quality scores such as DA, HTER and
MQM annotations. With this setting, we aim to
evaluate whether systems can identify critical er-
rors while maintaining correlations with human
judgements.

In the evaluation of this task, the participants
were not required to submit any classification
threshold for their systems. For the unconstrained
setting, the systems are specifically trained to detect
errors and should output high scores for translations
containing these errors. As such, for each language-
pair, we considered as positive predictions the K
records with highest scores, where K is the num-
ber of positive records for that language-pair in the
test set. Regarding the constrained setting, these
systems are only trained on quality scores and are
expected to assign lower scores to translations with
critical errors. Therefore, we considered the K
records with lowest scores as positive predictions.
From here, we measured the MCC, Recall and Pre-
cision for each submission.

3 Baseline systems

Task 1: Quality Estimation baseline systems:
For Task 1, both for word and sentence-level, we
used a multilingual transformer-based Predictor-
Estimator approach (Kim et al., 2017), which is de-
scribed in detail in Fomicheva et al. (2022). For the
implementation and training we use the OpenKiwi
(Kepler et al., 2019) framework. We trained the
baseline model using a multilingual and multitask
setting and training jointly on the sentence-level
scores and word-level tags. For the word-level loss,
Lword, the weight of BAD tags is multiplied by a
factor of λBAD = 3.0, but the sentence- and word-
level loss have equal weight in the overall joint
loss estimation: L = Lword + Lsent. We trained
different baselines for the DA/post-edit originated
language pairs and the MQM originated language-
pairs.

For the DA/post-edit baseline, the model was
trained using the DA scores as sentence targets and
the OK/BAD tags as word targets. For training we
used the concatenated data for all language pairs
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available under training data and used the concate-
nation of the additional language pairs that were
made available in the development set as valida-
tion. We trained two baselines with this setup, us-
ing different encoders for the encoding (predictor)
part of the architecture: (a) XLM-R transformer
with the xlm-roberta-large model and (b)
RemBERT model which has been pre-trained on
additional languages that include Yoruba and can
hence account for the zero-shot language.

For the MQM baseline, the model was trained
using the normalised and inverted MQM scores
as sentence targets and the OK/BAD tags as word
targets. The baseline model was trained using the
concatenated training data for all three language
pairs and used the concatenated development data
for the same pairs as the validation set. The XLM-
R transformer with the xlm-roberta-large
model was used as an encoder.

Task 2: Explainability baseline systems: We
provide two baseline systems for Task 2. One is
a random baseline where we sampled scores uni-
formly at random from a continuous [0..1) range
for each target token and for a sentence-level score.
The other one is a combination of a supervised
quality annotation model, OpenKiwi (Kepler et al.,
2019) and LIME (Ribeiro et al., 2016) where
OpenKiwi is used to predict sentence-level quality
scores while LIME is used to compute, for every
token in the target sentence, its importance for the
sentence-level quality score returned by OpenKiwi.
For the OpenKiwi implementation we used a sim-
ilar setup described for the baselines of Task 1,
but we trained the OpenKiwi model using only
sentence-level supervision, to align with the task re-
quirements. We trained two multilingual instances,
one on DA- and one on MQM-derived data, using
XLM-R large encoder in both cases.

LIME is a model-agnostic post-hoc explanation
method which trains a linear model to estimate the
behavior of a target model (i.e., OpenKiwi in our
case) around an input example to be explained so
the weights of the linear model correspond to the
importance of individual input tokens. Because
higher sentence-level scores in our gold standard
mean better translation quality, we invert token-
level scores generated by LIME so that higher val-
ues correspond to errors as required by the task
description.

Task 3: Critical Error Detection baseline sys-
tems: For task 3, we consider a baseline system
for each setting.

In the constrained setting, we considered
COMET-QE (Rei et al., 2021)6, which was a top-
performing QE-as-a-Metric system in last years
Metrics shared task (Freitag et al., 2021b).

Regarding the unconstrained setting, we fine-
tune an xlm-roberta-large model using the
COMET framework (Rei et al., 2020). Both the
source and translation are jointly encoded into a
vector representation which is the input of a final
estimator that predicts the probability of the transla-
tion containing a critical error. Here, the estimator
weights are randomly initialised. We fine-tune the
model on the provided training data for a maximum
of 5 epochs. At the end of each epoch, we perform
a validation step by measuring the MCC on the
validation set considering a classification threshold
of 0.5. We select the model with the highest MCC
on the validation data.

4 Participants

Alibaba-Translate (T1-DA): For the DA subtask,
the team participated in all language pairs
except the zero-shot LP. The implemented
system (Wang et al., 2021), uses glass-box
QE features to estimate the uncertainty of ma-
chine translation segments and incorporates
the features into the transfer learning from the
large-scale pre-trained model, XLM-R. The
participants used exclusively the DA data pro-
vided for this edition of the QE shared task. Of
the provided data, the 7 language pairs except
for English-Marathi, were combined to train
a multilingual model. For English-Marathi, a
separate bilingual model was trained. For the
final submission the participants ensembled
multiple checkpoints.

(T1-MQM): The submission for sentence-
level MQM task is based on a multilingual
unified framework for translation evaluation.
The applied framework UniTE (Wan et al.,
2022) considers three input formats – source-
only (QE or reference-free metric), reference-
only and source-reference-combined. The par-
ticipants used synthetic datasets with pseudo
labels during continuous pre-training phase,
and fine-tuned with DA and MQM training

6More precisely we used the wmt21-comet-qe-mqm
model
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datasets from the year 2017 to 2021. To
obtain the final model predictions they use
the source-only evaluation. For multilingual
phase, they ensembled predictions using two
different backbones – one using XLM-R en-
coder and the other using InfoXLM. For the
ensembling, they picked the best 2 check-
points on the development dataset.

BJTU-Toshiba (T1-MQM): BJTU-Toshiba par-
ticipation focused on ensembling different
models and using external data. They ensem-
ble multiple pre-trained models, both mono-
lingual and bilingual. The monolingual mod-
els are trained only on the text of the target
language. Specifically, they use monolingual
BERT, Roberta, and Electra-discriminator as
the monolingual extractor, and XLM-R as the
bilingual extractor. They also use in-domain
parallel data to fine-tune and adapt the pre-
trained models to the target language and do-
main. The in-domain data is selected by a
BERT-classifier from the parallel data pro-
vided by the news translation task, and for
each direction, they end up using roughly 1
million sentence pairs for fine-tuning. They
explore two styles of fine-tuning, namely
Translation Language Model and Replaced
Token Detection. For Replaced Token Detec-
tion, they use the first 1/3 layers of the model
as generator, and after the training they drop
the generator and only use the discriminator
as the feature extractor.

HW-TSC (T1): HW-TSC’s submission follows
Predictor-Estimator framework with a pre-
trained XLM-R Predictor, a feed-forward Es-
timator for sentence-level QE subtask and a
binary classifier Estimator for word-level QE
subtask. Specially, the Predictor is a cross-
lingual language model that receives source
and target tokens concatenated and returns
representations that attend to both languages.
WMT 2022’s news translation task training
data is been used to train the Predictor us-
ing a cross-lingual masked language model
objective. All of the WMT QE 2022 DA and
MQM training data are used to train two differ-
ent multilingual QE models, one for sentence-
level and another one for word-level.

(T2:) The language encoder trained for Task
1 is being used to get source and target token

embeddings. After computing cosine similar-
ity between target and source token embed-
dings, the max cosine similarity of each target
token to all the source tokens is selected as
quality score. Intuitively, a low score means
the target token is more likely to be an error
(lack of good alignment), so every target word
quality score is multiplied by a negative value.

HyperMT - aiXplain (T1-all): The system is
trained with AutoML functionalities in
FLAML framework using lightgbm estimator.
It utilizes COMET-QE score as feature
along-side with many other linguistic features
extracted with Stanza from source texts and
their translations: the number of tokens,
characters, and the average word length of
sentences; the frequency of Part-of-Speech
and Named Entity Recognition labels, and
the frequency of morphological features. The
differences in values of linguistic features
between source texts and translations are also
included as features. This allows the system
to work in multilingual settings as well.

IST-Unbabel (T1-all): IST-Unbabel team pro-
posed an extension of COMET, dubbed
COMET-Kiwi, which includes a word-level
layer and can be trained on both sentence-
level scores and word-level labels in a multi-
tasking fashion. Their final submission for
task 1 is a weighted ensemble between mod-
els trained using InfoXLM (Chi et al., 2021)
and RemBERT (Chung et al., 2021). All
these models are pretrained on the data from
the metrics shared tasks and, for word-level,
they pretrained on both QT21 and APE-Quest
datasets.

(T2) For the second task they use the
COMET-Kiwi framework as the backbone of
a sentence-level QE model and added layer
and headwise parameters to the QE model: for
each layer and for each head, they train indi-
vidual parameters to construct a sparse distri-
bution over the layers/heads to better leverage
these representations. They leveraged differ-
ent encoders – InfoXLM and RemBERT – and
used them individually as the backbone of our
QE sentence-level models. The models used
to extract explanations were multilingual ones
trained for DA and MQM separately. The ex-
plainability weights were obtained from the at-
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tention weights scaled by the norm of the gra-
dient of the value vectors (Chrysostomou and
Aletras, 2022). No word supervision was used
and all explanations were extracted relying
solely on models that produced the sentence-
level scores. The final submissions are ensem-
bles of explanations from different attention
layers/heads according to the validation data.
For the zero-shot language pair (En-Yo), they
created an ensemble with the attention lay-
ers/heads that were among the top-performing
ensembles for other language pairs.

(T3) For task 3 a single model from task 1
using InfoXLM encoder and trained on DA
annotations was submitted.

KU X Upstage (T3): KU X Upstage employs an
XLM-R large model without leveraging any
additional parallel corpus. Instead, they at-
tempt to maximise its capability by adopting
prompt-based fine-tuning, which reformulates
the Critical Error Detection task as a masked
language modelling objective (a pre-training
strategy of this model) before training. They
generate hard prompts suitable for QE task
through prompt engineering, and templates
consist largely of three types according to
the information utilised: naive template, tem-
plate with a contrastive demo, and template
with Google Translate. The final score is ob-
tained by extracting the probability of a word
mapped to BAD among verbalizers. They
gain an additional performance boost from
the template ensemble by adding the values
from multiple templates.

NJUNLP (T1-all): NJUNLP submission makes
use of pseudo data and multi-task learning.
Inspired by DirectQE (Cui et al., 2021), they
experiment with several novel methods to gen-
erate pseudo data for all three subtasks (MQM,
DA, and PE) using the conditional masked lan-
guage model and the NMT model to generate
high quality synthetic data and pseudo labels.
The proposed methods control the decoding
process to generate more fluent pseudo trans-
lations close to the actual distribution of the
gold data. They pre-train the XLM-R large
model with the generated pseudo data and
then fine-tune this model with the real QE task
data, using multi-task learning in both stages.
They jointly learn sentence-level scores (with

regression and rank tasks) and word-level tags
(with a sequence tagging task). For the fi-
nal submissions they ensemble sentence-level
results by averaging all valid output scores
and ensemble word-level results using a vot-
ing mechanism. For the pseudo label genera-
tion they use publicly available parallel data,
specifically: the data provided by the WMT
translation task for En-De (9M), En-Ru (3M),
and Zh-En (3M) language pairs. The 660K
parallel sentences from OPUS7 for the Km-
En language pair. They also use 3.6M parallel
data from the target translation model8 for the
En-Mr language pair, as well as WMT2017,
WMT2019, and WMT2020 En-De PE data
for the En-De language pair.

Papago (T1-full): Papago submitted a multilin-
gual and multi-task model, trained to predict
jointly both sentence and word level. The
system’s architecture consists of Pretrained
Language Model with task independent layers
optimized for both sentence and word level
quality prediction. They propose an auxiliary
loss function to the final objective function to
further improve performance. They also aug-
ment training data by either generating (i.e.
pseudo data) or collecting open source data
that is deemed to be relevant to QE task. Fi-
nally, they train and select the checkpoints for
the final submission with cross-validation for
better generalization and ensemble multiple
models for their final submission.

UCBerkeley-UMD (T1:DA): UCBerkeley-
UMD used a large-scale multilingual model
to back translate from Czech to English. They
compared the quality of the Czech translation
by examining the translation from Czech back
to English with the original source text in
English. This is motivated by literature that
humans tend to perform quality checks on
translations when they do not understand the
target language.

UT-QE (T2): The UT-QE team used XLMR-
Score (Azadi et al., 2022) as an unsupervised
sentence-level metric, which is computed as
BERTScore but in a cross-lingual manner
while using the XLM-R model. The matched

7https://opus.nlpl.eu/
8https://indicnlp.ai4bharat.org/

indic-trans/
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ID Affiliations

Alibaba Translate DAMO Academy, Alibaba Group & University of Sci-
ence and Technology of China & CT Lab, University
of Macau, China & National University of Singapore,
Republic of Singapore

(Bao et al., 2022)

BJTU-Toshiba Beijing Jiaotong University, China & Toshiba Co., Ltd. (Huang et al., 2022)
HW-TSC Huawei Translation Services Center & Nanjing Univer-

sity, China
(Su et al., 2022)

HyperMT - aiXplain aiXplain –
IST-Unbabel INESC-ID & Instituto de Telecomunicações & Instituto

Superior Técnico & Unbabel, Portugal
(Rei et al., 2022)

KU X Upstage Korea University, Korea & Upstage (Eo et al., 2022)
NJUNLP Huawei Translation Services Center, China (Geng et al., 2022)

Papago Papago, Naver Corp (Lim and Park, 2022)
UCBerkeley-UMD University of California, Berkeley & University of Mary-

land
(Mehandru et al., 2022)

UT-QE University of Tehran, Iran (Azadi et al., 2022)
Welocalize-ARC/NKUA Welocalize Inc, USA & National Kapodistrian Univer-

sity & Athena RC, Greece
(Zafeiridou and Sofianopoulos, 2022)

Table 2: Participants to the WMT22 Quality Estimation shared task.

tokens distances in this metric were used
as token-level scores. In order to alleviate
the mismatching issues, they also try to fine-
tune the XLM-R model on word alignments
from parallel corpora to make it represent the
aligned words in different languages closer
to each other, and use the fine-tuned model
instead of XLM-R for scoring sentences and
tokens.

Welocalize-ARC/NKUA (T1-DA): Welocalize-
ARC/NKUA’s submission for the Task 1
follows the Predictor-Estimator framework
(Kim et al., 2017) with a regression head
on top to estimate the z-standardised DA.
More specifically, they use a pre-trained
Transformer for feature extraction and then
concatenate the extracted features with
additional glass-box features. The glass-box
features are also produced using pre-trained
models and by applying multiple techniques
to estimate different types of uncertainty for
each translated sentence. The final features
are then used as input for the QE regression
model, which is a simple sequential Neural
Network with a linear output layer. Finally,
the performance of the model is optimised
by employing Monte Carlo Dropout during
both training and inference. Regarding the
data, they use only the provided datasets
(the MLQE-PE train/dev sets along with
the additional dataset for Marathi language)
as well as some of the provided additional

training resources of the Metrics shared task.

Table 2 lists all participating teams submitting
systems to any of the tasks, and Table 3 report
the number of successful submissions to each of
the sub-tasks and language pairs. Each team was
allowed up to ten submissions for each task variant
and language pair (with a limit of two submissions
per day). In the descriptions below, participation in
specific tasks is denoted by a task identifier (T1 =
Task 1, T2 = Task 2, T3 = Task 3).

5 Results

In this section, we present and discuss the results
of our shared task. Please note that for all the
three subtasks we used statistical significance test-
ing with p = 0.05.

5.1 Task 1
As we have seen in Task 1 description (§2.1.1),
submissions are evaluated against the true z-
normalised sentence scores using Spearman’s rank
correlation coefficient ρ along with the following
secondary metrics: Pearson’s correlation coeffi-
cient, r, Mean Absolute Error (MAE), and Root
Mean Squared Error (RMSE). Nonetheless, the fi-
nal ranking between systems is calculated us-
ing the primary metric only (Spearman’s ρ).
Also, statistical significance was computed using
William’s test.9

For the Task 1 word-level task, the submissions
are ranked using the Matthews correlation coeffi-

9https://github.com/ygraham/mt-qe-eval
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Task/LP # submission

Task 1 – Sent-level Direct Assessment 161
Multilingual w/o En-Yo 21
Multilingual w En-Yo 23
English-Marathi 24
English-Czech 33
English-Japanese 22
Pashto-English 16
Khmer-English 22

Task 1 – Sent-level MQM 402
Multilingual 38
English-German 65
English-Russian 62
Chinese-English 76

Task 1 – Word-level 247
Multilingual w/o En-Yo 18
Multilingual w En-Yo 17
English-Czech 32
English-Japanese 27
English-Marathi 24
Pashto-English 13
Khmer-English 28
English-German 28
English-Russian 18
Chinese-English 27

Task 2 – Explainable QE 161
English-Czech 14
English-Japanese 14
English-Marathi 13
Pashto-English 30
Khmer-English 25
English-German 17
English-Russian 12
Chinese-English 12
English-Yoruba 12

Task 3 – Sent-Level Critical Error Det. 20
Constrained

English-German 2
Portuguese-English 2

Unconstrained
English-German 10
Portuguese-English 6

Total 991

Table 3: Number of submissions to each sub-task and
language-pair at the WMT22 Quality Estimation shared
task.

cient (MCC). F1-scores are provided as comple-
mentary information only and statistical signif-
icance was computed using randomisation tests
(Yeh, 2000) with Bonferroni correction (Abdi,
2007) for each language pair.

The majority of participants implemented mul-
tilingual models and the top performing sys-
tems adopted a multi-tasking approach, learning
the sentence- and word-level targets jointly (IST-
Unbabel, Papago, NJUNLP). It is important to note
that all participants relied on large pre-trained en-
coders (XLM-R, RemBERT, BERT, ELECTRA),
which seems to be the norm for high-performance

in quality estimation, but can constitute a limita-
tion for performance in truly multi-lingual scenar-
ios where the target languages are not seen during
pre-training. Additionally, many final submissions
consisted of ensembles combining different large
pretrained models increasing even further the total
number of model parameters.

Another trend that seems to carry on from pre-
vious editions of the task is the incorporation of
additional features in QE models (glass-box fea-
tures were incorporated in Alibaba’s DA systems
while linguistic features were incorporated in aiX-
plain QE system), however in this edition such ap-
proaches were outperformed by models that put
more emphasis on pre-training, using auxiliary
tasks and external data.

For the sentence-level sub-tasks, participants
managed to achieve high correlations for the major-
ity of language pairs, especially for the DA origi-
nated data, with the exception of En-Ja. The results
show an improvement compared to the last edition,
although it is hard to draw a direct comparison due
to changes in the available train/development data.
However, it is interesting to note that performance
for En-Mr, for which we provided considerable
more data than for the other language pairs is still
in the same range as results for the other language
pairs. It would thus be interesting to investigate fur-
ther which properties render a language pair harder
to evaluate.

For the MQM data the overall correlations
achieved were lower in comparison to the DA ones
although still meaningful. Note that compared to
the DA data, the MQM language pairs were high-
resource ones, which could also influence perfor-
mance. Additionally, small discrepancies between
the annotation guidelines in the train set and the
dev/test sets could have further complicated the
task. We intend to further investigate the MQM
potential in future editions, with the addition of
new language pairs and more annotated data.

For the word-level subtask, IST-Unbabel,
NJUNLP and Papago tied at the top for most lan-
guage pairs, and we can observe that correlations
are moderate across language pairs (both DA and
MQM originated ones). It is important to note that
no team seems to have submitted predictions us-
ing a word-level only supervision; instead all the
participants of this task used a multi-task approach,
learning jointly word and sentence level scores.
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Model Multi Multi (w/o En-Yo) En-Cs En-Ja En-Mr Km-En Ps-En
IST-Unbabel 0.572 0.605 0.655 0.385 0.592 0.669 0.722
Papago 0.502 0.571 0.636 0.327 0.604 0.653 0.671
Alibaba Translate – 0.585 0.635 0.348 0.597 0.657 0.697
Welocalize-ARC/NKUA 0.448 0.506 0.563 0.276 0.444 0.623 –
BASELINE 0.415 0.497 0.560 0.272 0.436 0.579 0.641
lp_sunny‡ 0.414 0.485 0.511 0.290 0.395 0.611 0.637
HW-TSC – – 0.626 0.341 0.567 0.509 0.661
aiXplain – – 0.477 0.274 0.493 – –
NJUNLP – – – – 0.585 – –
UCBerkeley-UMD* – – 0.285 – – – –

Table 4: Spearman correlation with Direct Assessments for the submissions to WMT22 Quality Estimation Task 1.
For each language pair, results marked in bold correspond to the winning submissions, as they are not significantly
outperformed by any other system according to the Williams Significance Test (Williams, 1959). Baseline systems
are highlighted in grey; ‡ indicates Codalab username of participants from whom we have not received further
information and * indicates late submissions that were not considered for the official ranking of participating systems

Model Multi En-
De

En-
Ru

Zh-En

IST-Unbabel 0.474 0.561 0.519 0.348
NJUNLP 0.468 0.635 0.474 0.296
Alibaba-Translate 0.456 0.550 0.505 0.347
Papago 0.449 0.582 0.496 0.325
lp_sunny ‡ 0.415 0.495 0.453 0.298
BASELINE 0.317 0.455 0.333 0.164
BJTU-Toshiba – 0.621 0.434 0.299
HW-TSC – 0.494 0.433 0.369
aiXplain – 0.376 0.338 0.194
pu_nlp ‡ – 0.611 – –

Table 5: Spearman correlation with MQM for the sub-
missions to WMT22 Quality Estimation Task 1. For
each language pair, results marked in bold correspond
to the winning submissions, as they are not significantly
outperformed by any other system according to the
Williams Significance Test (Williams, 1959). Baseline
systems are highlighted in grey; ‡ indicates Codalab
username of participants from whom we have not re-
ceived further information.

Best performers The scores in Tables 4 - 6 show
the participant scores for the main metric, ordered
by the best performance in the multilingual sub-
tasks. IST-Unbabel is the clear winner for the mul-
tilingual subtasks, but for the individual language
pairs results vary and multiple participants are tied
at the top. All top-performing approaches (IST-
Unbabel, Papago, NJUNLP and Alibaba) share
some common characteristics: (1) they constitute
multilingual and multi-task approaches; (2) they
use external data during pre-training, either adapted
from other tasks (such as the Metrics task (Freitag
et al., 2022)) or generated artificially (pseudo data);
and (3) they use ensembling for the final submis-
sion.

5.2 Task 2

Three teams participated in Task 2, IST-Unbabel,
HW-TSC and UT-QE. IST-Unbabel participated
in all 9 language pairs, HW-TSC in all languages
pairs except English-Yoruba, and UT-QE only in
Khmer-English and Pashto-English. As shown in
Table 7, IST-Unbabel wins 7 of 9 LPs according to
the metric Recall at Top-K, HW-TSC the remaining
2. With Bonferroni correction, IST-Unbabel wins
4 LPs, HW-TSC wins 2, and both are indistinguish-
able on the remaining 3 LPs. Average precision
(AP) yields identical results as Recall at Top-K in
terms of ranking of the teams. There is one dif-
ference according to the metric AUC in terms of
winners: HW-TSC wins English-Japanese. Finally,
all participating teams beat both baselines in all
cases.

For sentence-level performance (see Appendix
D), IST-Unbabel wins all LPs according to Pear-
son’s correlation and all LPs according to Spear-
man’s correlation except for Khmer-English, which
HW-TSC wins. Not all teams beat all baselines in
terms of sentence-level performance.

The winning teams obtain the lowest sentence-
level correlations for English-Chinese, English-
Japanese and English-Yoruba and the highest cor-
relations for Khmer-English and English-German.
This may be related to the quality of annotations
and the quality of MT systems involved. For word-
level explainability scores, the lowest Recall at
Top-K scores are obtained for English-Yoruba and
English-Marathi, whereas the highest scores are ob-
tained for Pashto-English and Khmer-English. The
fact that the winning systems obtain low sentence
and word-level scores for English-Yoruba and high
scores for Khmer-English may indicate that the
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Model Multi Multi (w/o En-Yo) En-Cs En-Ja En-Mr Kh-En Ps-En En-De En-Ru Zh-En
IST-Unbabel 0.341 0.361 0.436 0.238 0.392 0.425 0.424 0.303 0.427 0.360
Papago 0.317 0.343 0.396 0.257 0.418 0.429 0.374 0.319 0.421 0.351
BASELINE 0.235 0.257 0.325 0.175 0.306 0.402 0.359 0.182 0.203 0.104
HW-TSC – 0.218 0.424 0.258 0.351 0.353 0.358 0.274 0.343 0.246
NJUNLP – – – – 0.412 0.421 – 0.352 0.390 0.308

Table 6: Matthew Correlation Coefficient (MCC) for the submissions to WMT22 Quality Estimation Task 1
(word-level). For each language pair, results marked in bold correspond to the winning submissions, as they are
not significantly outperformed by any other system based on randomisation tests with Bonferroni correction (Yeh,
2000). Baseline systems are highlighted in grey.

Model En-Cs En-Ja En-Mr En-Ru En-De En-Yo Km-En Ps-En Zh-En
IST-Unbabel 0.561 0.466 0.317 0.390 0.365 0.234 0.665 0.672 0.379
HW-TSC 0.536 0.462 0.280 0.313 0.252 – 0.686 0.715 0.220
BASELINE (OpenKiwi+LIME) 0.417 0.367 0.194 0.135 0.074 0.111 0.580 0.615 0.048
BASELINE (Random) 0.363 0.336 0.167 0.148 0.124 0.144 0.565 0.614 0.093
UT-QE – – – – – – 0.622 0.668 –

Table 7: Recall at Top-K for the submissions to the WMT22 Quality Estimation Task 2 (Explainable QE). For
each language pair, results marked in bold correspond to the winning submissions, as they are not significantly
outperformed by any other system based on randomisation tests with Bonferroni correction (Yeh, 2000). Baseline
systems are highlighted in grey.

Model En-De
(Cons)

En-De
(UN-
cons)

Pt-En
(Cons)

Pt-En
(UN-
cons)

KU X Upstage – 0.964 – 0.984
IST-Unbabel 0.564 – 0.721 –
BASELINE 0.074 0.855 -0.001 0.934
aiXplain – 0.219 – 0.179

Table 8: Matthews Correlation Coefficient (MCC) for
the submissions to WMT21 Quality Estimation Task
3 (Critical Error Detection). For each language pair,
results marked in bold correspond to the winning sub-
missions, as they are not significantly outperformed
by any other system based on randomisation tests with
Bonferroni correction (Yeh, 2000). Baseline systems
are highlighted in grey.

tasks are correlated (as one may intuitively expect):
a QE system that yields better sentence-level scores
also highlights word-level errors more correctly.

5.3 Task 3

In this task, we divide participants into uncon-
strained and constrained settings, and address each
group in separate. As in the last year, this task at-
tracted few participants, which we attribute to the
recentness of the task.

In the unconstrained setting, there are two par-
ticipants: KU X Upstage and HyperMT - aiXplain.
The first achieved very high values for the mea-
sured metrics, and is the best performer for this
setting for both language pairs. The second ob-
tained lower values, falling below the baseline on
both language pairs.

In the constrained setting, a single submission
was received: IST-Unbabel. Their system outper-
formed the baseline on both language pairs.

6 Discussion

In what follows, we discuss the main findings of
this year’s shared task based on the goals we had
previously identified for it.

General progress Participating systems
achieved very promising results for most
languages, including the newly introduced
language-pairs as well as the new annotation
style (MQM). The best performing submissions
showed moderate to strong correlation for
sentence-level DA and MQM prediction tasks.
While it is hard to draw direct comparisons with
the previous editions, the overall correlation scores
obtained are similar or improved for the common
language-pairs. In combination with the outcomes
of previous editions, it seems that multi-lingual and
multi-task systems that are able to take advantage
of multiple resources, are showing better and more
robust results. However, the word-level quality
prediction is still a challenging task and there
is ample room for improvement. Along the
same lines, further exploring explainability tasks,
that support the sentence level predictions with
word level scores seems a promising path to
motivate finer-grained approaches to word-level
quality annotations.
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DA vs MQM annotations To further understand
the observed discrepancies between top perfor-
mances in the DA and MQM sub-tasks for sentence-
level quality estimation, we analyse the distribu-
tions of predicted scores vs gold scores for each
language pair, as presented in Figure 2.

We can see in the scatter plots that there are mul-
tiple test-segments which are annotated as perfect
translations (maximum possible normalised MQM
score), which fail to be classified accordingly as
indicated by the top parts of the MQM scatter plots
in Figure 2. Overall, even with DA annotations we
can see that language pairs with more balanced
distribution between high and low quality seg-
ments (Km-En, Ps-En) are those for which QE
systems obtain better correlations, compare to
more skewed language pairs (En-Mr, En-Ja).

Additionally, we can see that the MQM scores
are significantly skewed towards higher scores,
with long-tails of few very low quality instances.
This provides motivation to revisit the quantifica-
tion of MQM annotations to generate sentence level
scores and further experiments into consolidating
MQM annotations from different annotators. Fur-
thermore, perhaps providing access to finer-grained
MQM annotations (using the category or severity
labels as targets) could aid in obtaining more mean-
ingful outcomes. In future editions we intend to
further expand the coverage of languages for MQM
annotations that will allow us to draw further con-
clusions and push the state-of-the-art further in this
track.

Zero shot predictions We found that even with-
out development data or prior knowledge about
the language pair, the systems that submitted
predictions for En-Yo still achieved meaning-
ful correlations. For the quality assessment and
explainability tasks, the achieved correlations are
lower compared to the “seen” language pairs, but
still comparable. We can also observe the scatter
plot distributions that show the correlation obtained
by the top performing system that is comparable
with the other DA distributions.

However, we noticed that the availability of
the zero-shot languages in the frequently used
pretrained encoders posed an additional chal-
lenge for the participants as the performance on
En-Yo seemed dependent on whether the pretrained
language model had seen Yoruba text during pre-
training. In future editions, we hope that mixing
different zero-shot languages will further motivate

unsupervised approaches.

Explainable quality estimation The perfor-
mance of the baselines in Task 2 suggests that ap-
plying a model-agnostic explanation method (i.e.,
LIME) to a relatively good sentence-level QE sys-
tem (i.e., OpenKiwi) straightforwardly may not re-
sult in plausible explanations. In particular, the
OpenKiwi+LIME baseline got higher Recall at
Top-K than the random baseline for only 5 LPs.
Using randomisation tests with Bonferroni correc-
tion, we found that the OpenKiwi+LIME base-
line can significantly outperform the random base-
line for only 2 LPs (En-Cs and En-Ja). Despite
its higher Pearson’s correlation at the sentence
level, OpenKiwi+LIME yielded random-like (or
even worse) explanations for MQM language pairs.
This also calls for a stronger baseline for the fu-
ture edition of the QE shared task. Additional sig-
nals/heuristics might be added to the future shared
task’s baselines such as sparsity of the rationales
(as used by IST-Unbabel) and alignments between
source and target sentences (as used by HW-TSC
and UT-QE).

Critical error detection. By comparing the per-
formance of the submitted systems, in particular
the baselines, we see that the difficulty of the con-
strained setting is much higher. We attribute this
discrepancy to the fact that the artificially generated
data follows a specific set of patterns, which can be
captured by current methods when given enough
examples. The HyperMT - aiXplain submission
seems to be an exception. However, although this
system is unconstrained, it is composed of fine-
tuned decision trees where the base features are
constrained. We consider that these features are
unable to provide sufficient information for the
decision trees to be able to identify critical errors,
even when fine-tuned on the provided training data.

Due to the scarcity of annotated data containing
critical errors, we argue that the constrained setting
presents a much more realist challenge, where sys-
tems are trained for correlating with human judge-
ments but are tested for robustness to critical errors.

For a future edition of this task, we envision a
design that simultaneously considers both corre-
lations with human judgements and robustness to
critical errors when evaluating a QE system. This
can be combined with Task 1, where besides the
current evaluation method, participants would also
receive a robustness score for their systems, mea-
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Figure 2: Scatter plots for the predictions against true DA/MQM scores for the top-performing system for each
language pair. The histograms show the corresponding marginal distributions of predicted and true scores.
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sured on a test set with critical errors. We hope that
this configuration would both attract more partici-
pants to this task (as it would not required training
a specific system for critical error detection) and
further motivate the treatment of critical errors in
the development of QE systems.

7 Conclusions

This year’s edition of the QE Shared Task in-
troduced a number of new elements: new low-
resource language pairs (Marathi and Yoruba), new
annotation conventions for sentence and word level
quality (MQM), new test sets, and new versions of
explainability and critical error detection subtasks.
The tasks attracted a steady number of participating
teams and we believe the overall results are a great
reflection of the state-of-the-art in QE.

We have made the gold labels and all submis-
sions to all tasks available for those interested in
further analysing the results, while newly inter-
ested participants can still access the competition
instances on codalab and directly compare their
performance to other models. We aspire for the
future editions to continue the efforts set in this
and previous years and expand the resources and
coverage of QE, while further exploring recent and
more challenging subtasks such as fine-grained QE,
explainable QE and critical error detection.
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A Official Results of the WMT22 Quality Estimation Task 1 (Direct Assessment)

Tables 9, 10, 11, 12, 13, 14 and 15 show the results for all language pairs and the multilingual variants,
ranking participating systems best to worst using Spearman correlation as primary key for each of these
cases.

Model Spearman RMSE MAE Disk footprint (B) # Model params
• IST-Unbabel 0.572 0.689 0.539 2,260,735,089 583,891,109
Papago 0.502 2.404 2.077 2,243,044,839 560,713,447
Welocalize-ARC/NKUA 0.448 0.794 0.632 2,307,101,417 576,733,248
BASELINE 0.415 0.979 0.820 2,280,011,066 564,527,011
lp_sunny ‡ 0.414 1.054 0.898 2,356,736,392 580,792,183

Table 9: Official results of the WMT22 Quality Estimation Task 1 Direct Assessment for the Multilingual variant.
Teams marked with "•" are the winners, as they are not significantly outperformed by any other system according to
the Williams Significance Test (Williams, 1959). Baseline systems are highlighted in grey. ‡ indicates Codalab
usernames of participants from whom we have not received further information.

Model Spearman RMSE MAE Disk footprint (B) # Model params
• IST-Unbabel 0.605 0.671 0.521 2,260,735,089 583,891,109
Alibaba Translate 0.587 0.675 0.533 2,191,440 560,981,507
Papago 0.571 1.793 1.451 2,243,044,839 560,713,447
Welocalize-ARC/NKUA 0.506 0.733 0.571 2,307,068,585 576,725,041
BASELINE 0.497 0.748 0.585 2,280,011,066 564,527,011
lp_sunny ‡ 0.485 0.757 0.596 2,356,736,392 580,792,183

Table 10: Official results of the WMT22 Quality Estimation Task 1 Direct Assessment for the Multilingual (w/o
English-Yoruba) variant. Teams marked with "•" are the winners, as they are not significantly outperformed by any
other system according to the Williams Significance Test (Williams, 1959). Baseline systems are highlighted in
grey. ‡ indicates Codalab usernames of participants from whom we have not received further information.

Model Spearman RMSE MAE Disk footprint (B) # Model params
• IST-Unbabel 0.655 0.720 0.545 2,260,735,089 583,891,109
• Papago 0.636 1.371 1.081 2,243,044,839 560,713,447
Alibaba Translate 0.635 0.746 0.607 2,191,440 560,981,507
HW-TSC 0.626 0.712 0.545 540,868,112 222,353,517
Welocalize-ARC/NKUA 0.563 0.785 0.610 2,307,068,585 576,725,041
BASELINE 0.560 0.804 0.608 2,280,011,066 564,527,011
lp_sunny ‡ 0.511 0.786 0.614 2,356,736,392 580,792,183
aiXplain 0.477 0.825 0.679 745,679,835 12,345
UCBerkeley-UMD* 0.285 1.252 0.961 – 177,853,440

Table 11: Official results of the WMT22 Quality Estimation Task 1 Direct Assessment for the English-Czech
dataset. Teams marked with "•" are the winners, as they are not significantly outperformed by any other system
according to the Williams Significance Test (Williams, 1959). Baseline systems are highlighted in grey. ‡ indicates
Codalab usernames of participants from whom we have not received further information and * indicates late
submissions that were not considered for the official ranking of participating systems
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Model Spearman RMSE MAE Disk footprint (B) # Model params
• IST-Unbabel 0.385 0.689 0.528 2,260,735,089 583,891,109
Alibaba Translate 0.348 0.673 0.522 2,191,440 560,981,507
HW-TSC 0.341 0.726 0.555 540,868,112 222,353,517
Papago 0.327 2.253 1.957 2,243,044,839 560,713,447
lp_sunny ‡ 0.290 0.718 0.556 2,356,736,392 580,792,183
Welocalize-ARC/NKUA 0.276 0.755 0.579 2,307,068,585 576,725,041
aiXplain 0.274 0.704 0.547 745,679,835 12,345
BASELINE 0.272 0.747 0.576 2,280,011,066 564,527,011

Table 12: Official results of the WMT22 Quality Estimation Task 1 Direct Assessment for the English-Japanese
dataset. Teams marked with "•" are the winners, as they are not significantly outperformed by any other system
according to the Williams Significance Test (Williams, 1959). Baseline systems are highlighted in grey. ‡ indicates
Codalab usernames of participants from whom we have not received further information.

Model Spearman RMSE MAE Disk footprint (B) # Model params
• Papago 0.604 0.658 0.514 2,243,044,839 560,713,447
• Alibaba Translate 0.597 0.456 0.349 2,191,440 560,981,507
• IST-Unbabel 0.592 0.498 0.365 6,932,353,559 583,891,109
• NJUNLP 0.585 0.617 0.414 3,264,730,349 560,145,557
HW-TSC 0.567 0.506 0.372 222,353,517 540,868,112
aiXplain 0.493 0.540 0.396 745,679,835 12,345
Welocalize-ARC/NKUA 0.444 0.534 0.401 2,307,068,585 576,725,041
BASELINE 0.436 0.628 0.461 2,280,011,066 564,527,011
lp_sunny ‡ 0.395 0.570 0.443 2,356,736,392 580,792,183

Table 13: Official results of the WMT22 Quality Estimation Task 1 Direct Assessment for the English-Marathi
dataset. Teams marked with "•" are the winners, as they are not significantly outperformed by any other system
according to the Williams Significance Test (Williams, 1959). Baseline systems are highlighted in grey. ‡ indicates
Codalab usernames of participants from whom we have not received further information.

Model Spearman RMSE MAE Disk footprint (B) # Model params
• IST-Unbabel 0.669 0.714 0.569 2,260,735,089 583,891,109
Alibaba Translate 0.657 0.778 0.596 2,191,440 560,981,507
Papago 0.653 2.786 2.291 2,243,044,839 560,713,447
Welocalize-ARC/NKUA 0.623 0.794 0.619 2,307,068,585 576,725,041
lp_sunny ‡ 0.611 0.784 0.621 2,356,736,392 580,792,183
BASELINE 0.579 0.774 0.616 2,280,011,066 564,527,011
HW-TSC 0.509 1.043 0.804 222,353,517 540,868,112

Table 14: Official results of the WMT22 Quality Estimation Task 1 Direct Assessment for the Khmer-English
dataset. Teams marked with "•" are the winners, as they are not significantly outperformed by any other system
according to the Williams Significance Test (Williams, 1959). Baseline systems are highlighted in grey. ‡ indicates
Codalab usernames of participants from whom we have not received further information.
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Model Spearman RMSE MAE Disk footprint (B) # Model params
• IST-Unbabel 0.722 0.719 0.575 2,260,735,089 583,891,109
Alibaba Translate 0.697 0.720 0.594 2,191,440 560,981,507
Papago 0.671 0.763 0.646 2,243,044,839 560,713,447
HW-TSC 0.661 0.729 0.592 540,868,112 222,353,517
BASELINE 0.641 0.788 0.663 2,280,011,066 564,527,011
lp_sunny ‡ 0.637 0.954 0.775 2,356,736,392 580,792,183

Table 15: Official results of the WMT22 Quality Estimation Task 1 Direct Assessment for the Pashto-English
dataset. Teams marked with "•" are the winners, as they are not significantly outperformed by any other system
according to the Williams Significance Test (Williams, 1959). Baseline systems are highlighted in grey. ‡ indicates
Codalab usernames of participants from whom we have not received further information.
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B Official Results of the WMT22 Quality Estimation Task 1 (MQM)

Tables 16, 17, 18 and 19 show the results for all language pairs and the multilingual variant, ranking
participating systems best to worst using Spearman correlation as primary key for each of these cases.

Model Spearman RMSE MAE Disk footprint (B) # Model params
• IST-Unbabel 0.474 0.973 0.559 2,260,735,089 583,891,109
NJUNLP 0.468 0.945 0.579 3,264,730,349 560,145,557
Alibaba Translate 0.456 0.855 0.493 2,260,733,079 565,137,999
Papago 0.449 1.332 0.990 2,243,044,839 560,713,447
lp_sunny ‡ 0.415 0.952 0.536 2,356,736,392 580,792,183
BASELINE 0.317 1.041 0.575 2,280,011,066 564,527,011

Table 16: Official results of the WMT22 Quality Estimation Task 1 MQM for the Multilingual variant. Baseline
systems are highlighted in grey. ‡ indicates Codalab usernames of participants from whom we have not received
further information.

Model Spearman RMSE MAE Disk footprint (B) # Model params
• NJUNLP 0.635 0.838 0.594 3,264,730,349 560,145,557
• BJTU-Toshiba 0.621 0.818 0.545 2,239,711,849 559,893,507
pu_nlp ‡ 0.611 0.997 0.716 1,326,455,799 237,846,178
Papago 0.582 0.906 0.556 2,243,044,839 560,713,447
IST-Unbabel 0.561 0.854 0.521 2,260,743,851 565,139,485
Alibaba Translate 0.550 0.769 0.466 2,260,733,079 565,137,999
lp_sunny ‡ 0.495 0.875 0.534 2,356,736,392 580,792,183
HW-TSC 0.494 0.953 0.612 470,693,617 117,653,760
BASELINE 0.455 0.970 0.576 2,280,011,066 564,527,011
aiXplain 0.376 0.995 0.747 368,857,948 12,345

Table 17: Official results of the WMT22 Quality Estimation Task 1 MQM for the English-German dataset. Teams
marked with "•" are the winners, as they are not significantly outperformed by any other system according to
the Williams Significance Test (Williams, 1959). Baseline systems are highlighted in grey. ‡ indicates Codalab
usernames of participants from whom we have not received further information.

Model Spearman RMSE MAE Disk footprint (B) # Model params
• IST-Unbabel 0.519 0.963 0.531 2,260,743,915 565,139,485
• Alibaba Translate 0.505 0.961 0.590 2,260,733,079 565,137,999
• Papago 0.496 1.428 1.126 2,243,044,839 560,713,447
• NJUNLP 0.474 0.997 0.666 3,264,730,349 560,145,557
lp_sunny ‡ 0.453 0.915 0.548 2,356,736,392 580,792,183
BJTU-Toshiba 0.434 1.011 0.659 2,239,711,849 559,893,507
HW-TSC 0.433 1.257 0.809 2,260,780,823 565,137,436
aiXplain 0.338 1.116 0.785 368,857,948 12,345
BASELINE 0.333 1.051 0.606 2,280,011,066 564,527,011

Table 18: Official results of the WMT22 Quality Estimation Task 1 MQM for the English-Russian dataset. Teams
marked with "•" are the winners, as they are not significantly outperformed by any other system according to
the Williams Significance Test (Williams, 1959). Baseline systems are highlighted in grey. ‡ indicates Codalab
usernames of participants from whom we have not received further information.
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Model Spearman RMSE MAE Disk footprint (B) # Model params
• HW-TSC 0.369 1.163 0.770 2,260,780,823 565,137,436
• IST-Unbabel 0.348 1.073 0.559 2,260,735,089 583,891,109
• Alibaba Translate 0.347 0.989 0.490 2,260,733,079 565,137,999
• Papago 0.325 0.980 0.397 2,243,044,839 560,095,633
• BJTU-Toshiba 0.299 1.128 0.612 1,736,199,083 434,015,235
lp_sunny ‡ 0.298 1.064 0.525 2,356,736,392 580,792,183
NJUNLP 0.296 0.999 0.476 3,264,730,349 560,145,557
aiXplain 0.194 1.481 1.079 368,857,948 12,345
BASELINE 0.164 1.102 0.543 2,280,011,066 564,527,011

Table 19: Official results of the WMT22 Quality Estimation Task 1 MQM for the Chinese-English dataset. Teams
marked with "•" are the winners, as they are not significantly outperformed by any other system according to
the Williams Significance Test (Williams, 1959). Baseline systems are highlighted in grey. ‡ indicates Codalab
usernames of participants from whom we have not received further information.

93



C Official Results of the WMT22 Quality Estimation Task 1 (Word-level)

Tables 20, 21, 22, 23, 24, 25, 26, 27, 28 and 29 show the results for all language pairs and the multilingual
variants, ranking participating systems best to worst using Matthews correlation coefficient (MCC) as
primary key for each of these cases.

Model MCC Recall Precision Disk footprint (B) # Model params
• IST-Unbabel 0.341 0.466 0.810 2,260,744,555 565,139,485
Papago 0.317 0.422 0.787 2,241,394,304 560,301,035
BASELINE 0.235 0.356 0.765 2,280,011,066 564,527,011

Table 20: Official results of the WMT22 Quality Estimation Task 1 (word-level) for the Multilingual task. Teams
marked with "•" are the winners, as they are not significantly outperformed by any other system according to the
Williams Significance Test (Williams, 1959). Baseline systems are highlighted in grey.

Model MCC Recall Precision Disk footprint (B) # Model params
• IST-Unbabel 0.361 0.494 0.830 2,260,744,555 565,139,485
• Papago 0.343 0.451 0.858 2,241,394,304 560,301,035
BASELINE 0.257 0.378 0.838 2,280,011,066 564,527,011
HW-TSC 0.218 0.404 0.628 2,336,352,552 612,368,384

Table 21: Official results of the WMT22 Quality Estimation Task 1 (word-level) for the Multilingual w/o English-
Yoruba task. Teams marked with "•" are the winners, as they are not significantly outperformed by any other
system according to the Williams Significance Test (Williams, 1959). Baseline systems are highlighted in grey.

Model MCC Recall Precision Disk footprint (B) # Model params
• IST-Unbabel 0.436 0.578 0.852 2,260,744,555 565,139,485
• HW-TSC 0.424 0.570 0.848 2,260,780,823 565,137,436
• Papago 0.396 0.549 0.739 2,240,570,795 560,095,834
BASELINE 0.325 0.426 0.870 2,280,011,066 564,527,011

Table 22: Official results of the WMT22 Quality Estimation Task 1 (word-level) for the English-Czech dataset.
Teams marked with "•" are the winners, as they are not significantly outperformed by any other system based on
randomisation tests with Bonferroni correction (Yeh, 2000). Baseline systems are highlighted in grey.

Model MCC Recall Precision Disk footprint (B) # Model params
• HW-TSC 0.258 0.497 0.728 2,260,780,823 565,137,436
• Papago 0.257 0.502 0.699 2,241,394,304 560,301,035
• IST-Unbabel 0.238 0.491 0.687 2,260,743,979 565,139,485
BASELINE 0.175 0.375 0.795 2,280,011,066 564,527,011

Table 23: Official results of the WMT22 Quality Estimation Task 1 (word-level) for the English-Japanese dataset.
Teams marked with "•" are the winners, as they are not significantly outperformed by any other system based
on randomisation tests with Bonferroni correction (Yeh, 2000). Baseline systems are highlighted in grey. “Rank”
indicates the averaged ranking of participants with regards to all metrics (including memory print and number of
parameters) and not the final shared task ranking which is decided according to MCC.
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Model MCC Recall Precision Disk footprint (B) # Model params
• Papago 0.418 0.420 0.951 2,241,394,304 560,301,035
• NJUNLP 0.412 0.472 0.939 3,264,730,349 560,145,557
• IST-Unbabel 0.392 0.414 0.947 2,260,744,107 565,139,485
HW-TSC 0.351 0.428 0.917 2,260,780,823 565,137,436
BASELINE 0.306 0.282 0.946 2,280,011,066 564,527,011

Table 24: Official results of the WMT22 Quality Estimation Task 1 (word-level) for the English-Marathi dataset.
Teams marked with "•" are the winners, as they are not significantly outperformed by any other system based on
randomisation tests with Bonferroni correction (Yeh, 2000). Baseline systems are highlighted in grey.

Model MCC Recall Precision Disk footprint (B) # Model params
• Papago 0.429 0.762 0.660 2,241,394,304 560,301,035
• IST-Unbabel 0.425 0.779 0.555 2,260,744,107 565,139,485
• NJUNLP 0.421 0.744 0.677 3,264,730,349 560,145,557
BASELINE 0.402 0.769 0.567 2,280,011,066 564,527,011
HW-TSC 0.353 0.759 0.395 2,260,780,823 565,137,436

Table 25: Official results of the WMT22 Quality Estimation Task 1 (word-level) for the Khmer-English dataset.
Teams marked with "•" are the winners, as they are not significantly outperformed by any other system based on
randomisation tests with Bonferroni correction (Yeh, 2000). Baseline systems are highlighted in grey.

Model MCC Recall Precision Disk footprint (B) # Model params
• IST-Unbabel 0.424 0.691 0.733 2,260,744,107 565,139,485
Papago 0.374 0.646 0.723 2,241,394,304 560,301,035
BASELINE 0.359 0.695 0.628 2,280,011,066 564,527,011
HW-TSC 0.358 0.699 0.597 2,260,780,823 565,137,436

Table 26: Official results of the WMT22 Quality Estimation Task 1 (word-level) for the Pashto-English dataset.
Teams marked with "•" are the winners, as they are not significantly outperformed by any other system based on
randomisation tests with Bonferroni correction (Yeh, 2000). Baseline systems are highlighted in grey.

Model MCC Recall Precision Disk footprint (B) # Model params
• NJUNLP 0.352 0.351 0.980 3,264,730,349 560,145,557
• Papago 0.319 0.336 0.960 2,241,394,304 560,301,035
• IST-Unbabel 0.303 0.317 0.956 2,260,744,107 565,139,485
HW-TSC 0.274 0.292 0.954 2,260,780,823 565,137,436
BASELINE 0.182 0.213 0.970 2,280,011,066 564,527,011

Table 27: Official results of the WMT22 Quality Estimation Task 1 (word-level) for the English-German dataset.
Teams marked with "•" are the winners, as they are not significantly outperformed by any other system based on
randomisation tests with Bonferroni correction (Yeh, 2000). Baseline systems are highlighted in grey.

Model MCC Recall Precision Disk footprint (B) # Model params
• IST-Unbabel 0.427 0.468 0.958 2,260,743,915 565,139,485
• Papago 0.421 0.381 0.966 2,241,394,304 560,713,447
• NJUNLP 0.390 0.440 0.949 3,264,730,349 560,145,557
HW-TSC 0.343 0.396 0.945 2,260,780,823 565,137,436
BASELINE 0.203 0.144 0.960 2,280,011,066 564,527,011

Table 28: Official results of the WMT22 Quality Estimation Task 1 (word-level) for the English-Russian dataset.
Teams marked with "•" are the winners, as they are not significantly outperformed by any other system based on
randomisation tests with Bonferroni correction (Yeh, 2000). Baseline systems are highlighted in grey.
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Model MCC Recall Precision Disk footprint (B) # Model params
• IST-Unbabel 0.360 0.327 0.966 2,260,743,915 565,139,485
• Papago 0.351 0.338 0.973 2,241,394,304 560,713,447
• NJUNLP 0.308 0.303 0.988 3,264,730,349 560,145,557
HW-TSC 0.246 0.181 0.910 2,260,780,823 565,137,436
BASELINE 0.104 0.123 0.965 2,280,011,066 564,527,011

Table 29: Official results of the WMT22 Quality Estimation Task 1 (word-level) for the Chinese-English dataset.
Teams marked with "•" are the winners, as they are not significantly outperformed by any other system based on
randomisation tests with Bonferroni correction (Yeh, 2000). Baseline systems are highlighted in grey.
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D Official Results of the WMT22 Quality Estimation Task 2 (Explainable QE)

Tables 30, 31, 32, 33, 34, 35, 36, 37 and 38 show the results for all language pairs, ranking participating
systems best to worst using “Recall at Top-K” on target sentences as primary key for each of these cases.

Model Word-level (Target sentence) Sentence-level
Recall at Top-K AUC AP Pearson’s Spearman’s

• IST-Unbabel 0.561 0.725 0.659 0.548 0.511
• HW-TSC 0.536 0.709 0.632 0.314 0.323
BASELINE (OpenKiwi+LIME) 0.417 0.537 0.500 0.342 0.352
BASELINE (Random) 0.363 0.493 0.453 0.011 0.016

Table 30: Official results of the WMT22 Quality Estimation Task 2 for the English-Czech dataset. Teams marked
with "•" correspond to the winning submissions, as they are not significantly outperformed by any other system
based on randomisation tests with Bonferroni correction (Yeh, 2000). Baseline systems are highlighted in grey.

Model Word-level (Target sentence) Sentence-level
Recall at Top-K AUC AP Pearson’s Spearman’s

• IST-Unbabel 0.466 0.641 0.557 0.252 0.243
• HW-TSC 0.462 0.651 0.547 0.132 0.148
BASELINE (OpenKiwi+LIME) 0.367 0.509 0.451 0.202 0.217
BASELINE (Random) 0.336 0.503 0.418 0.028 0.019

Table 31: Official results of the WMT22 Quality Estimation Task 2 for the English-Japanese dataset. Teams
marked with "•" correspond to the winning submissions, as they are not significantly outperformed by any other
system based on randomisation tests with Bonferroni correction (Yeh, 2000). Baseline systems are highlighted in
grey.

Model Word-level (Target sentence) Sentence-level
Recall at Top-K AUC AP Pearson’s Spearman’s

• IST-Unbabel 0.317 0.667 0.448 0.585 0.467
• HW-TSC 0.280 0.625 0.412 0.317 0.426
BASELINE (OpenKiwi+LIME) 0.194 0.479 0.310 0.336 0.372
BASELINE (Random) 0.167 0.489 0.296 0.043 0.017

Table 32: Official results of the WMT22 Quality Estimation Task 2 for the English-Marathi dataset. Teams marked
with "•" correspond to the winning submissions, as they are not significantly outperformed by any other system
based on randomisation tests with Bonferroni correction (Yeh, 2000). Baseline systems are highlighted in grey.

Model Word-level (Target sentence) Sentence-level
Recall at Top-K AUC AP Pearson’s Spearman’s

• IST-Unbabel 0.390 0.747 0.511 0.416 0.459
HW-TSC 0.313 0.686 0.422 0.369 0.426
BASELINE (Random) 0.148 0.527 0.256 0.022 0.015
BASELINE (OpenKiwi+LIME) 0.135 0.428 0.230 0.252 0.330

Table 33: Official results of the WMT22 Quality Estimation Task 2 for the English-Russian dataset. Teams marked
with "•" correspond to the winning submissions, as they are not significantly outperformed by any other system
based on randomisation tests with Bonferroni correction (Yeh, 2000). Baseline systems are highlighted in grey.
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Model Word-level (Target sentence) Sentence-level
Recall at Top-K AUC AP Pearson’s Spearman’s

• IST-Unbabel 0.365 0.776 0.490 0.559 0.553
HW-TSC 0.252 0.689 0.361 0.375 0.435
BASELINE (Random) 0.124 0.504 0.212 -0.049 -0.043
BASELINE (OpenKiwi+LIME) 0.074 0.442 0.172 0.370 0.414

Table 34: Official results of the WMT22 Quality Estimation Task 2 for the English-German dataset. Teams marked
with "•" correspond to the winning submissions, as they are not significantly outperformed by any other system
based on randomisation tests with Bonferroni correction (Yeh, 2000). Baseline systems are highlighted in grey.

Model Word-level (Target sentence) Sentence-level
Recall at Top-K AUC AP Pearson’s Spearman’s

• IST-Unbabel 0.234 0.671 0.359 0.309 0.321
BASELINE (Random) 0.144 0.514 0.246 -0.086 -0.101
BASELINE (OpenKiwi+LIME) 0.111 0.442 0.218 0.085 0.160

Table 35: Official results of the WMT22 Quality Estimation Task 2 for the English-Yoruba dataset. Teams marked
with "•" correspond to the winning submissions, as they are not significantly outperformed by any other system
based on randomisation tests with Bonferroni correction (Yeh, 2000). Baseline systems are highlighted in grey.

Model Word-level (Target sentence) Sentence-level
Recall at Top-K AUC AP Pearson’s Spearman’s

• HW-TSC 0.686 0.720 0.751 0.601 0.610
IST-Unbabel 0.665 0.660 0.751 0.617 0.598
UT-QE 0.622 0.628 0.694 0.222 0.190
BASELINE (OpenKiwi+LIME) 0.580 0.520 0.653 0.417 0.430
BASELINE (Random) 0.565 0.498 0.633 -0.048 -0.045

Table 36: Official results of the WMT22 Quality Estimation Task 2 for the Khmer-English dataset. Teams marked
with "•" correspond to the winning submissions, as they are not significantly outperformed by any other system
based on randomisation tests with Bonferroni correction (Yeh, 2000). Baseline systems are highlighted in grey.

Model Word-level (Target sentence) Sentence-level
Recall at Top-K AUC AP Pearson’s Spearman’s

• HW-TSC 0.715 0.716 0.777 0.393 0.418
IST-Unbabel 0.672 0.612 0.740 0.593 0.601
UT-QE 0.668 0.643 0.727 0.409 0.402
BASELINE (OpenKiwi+LIME) 0.615 0.503 0.676 0.378 0.403
BASELINE (Random) 0.614 0.497 0.662 -0.002 0.002

Table 37: Official results of the WMT22 Quality Estimation Task 2 for the Pashto-English dataset. Teams marked
with "•" correspond to the winning submissions, as they are not significantly outperformed by any other system
based on randomisation tests with Bonferroni correction (Yeh, 2000). Baseline systems are highlighted in grey.

Model Word-level (Target sentence) Sentence-level
Recall at Top-K AUC AP Pearson’s Spearman’s

• IST-Unbabel 0.379 0.785 0.475 0.103 0.190
HW-TSC 0.220 0.652 0.315 0.097 0.159
BASELINE (Random) 0.093 0.463 0.162 0.041 -0.010
BASELINE (OpenKiwi+LIME) 0.048 0.388 0.126 -0.007 0.159

Table 38: Official results of the WMT22 Quality Estimation Task 2 for the Chinese-English dataset. Teams marked
with "•" correspond to the winning submissions, as they are not significantly outperformed by any other system
based on randomisation tests with Bonferroni correction (Yeh, 2000). Baseline systems are highlighted in grey.

98



E Official Results of the WMT22 Quality Estimation Task 3 (Critical Error Detection)

Tables 39, 40, 41 and 42 show the results for all language pairs and the multilingual variants, ranking
participating systems best to worst using Matthews correlation coefficient (MCC) as primary key for each
of these cases.

Model MCC Recall Precision Disk footprint (B) # Model params
• IST-Unbabel 0.564 0.619 0.619 2,260,735,025 565,137,435
BASELINE 0.074 0.191 0.191 2,277,430,785 569,330,715

Table 39: Official results of the WMT22 Quality Estimation Task 3 (Critical Error Detection) for the English-
German (Constrained) dataset. Teams marked with "•" are the winners, as they are not significantly outperformed
by any other system based on randomisation tests with Bonferroni correction (Yeh, 2000). Baseline systems are
highlighted in grey.

Model MCC Recall Precision Disk footprint (B) # Model params
• KU X Upstage 0.964 0.968 0.968 2,244,861,551 559,890,432
BASELINE 0.855 0.873 0.873 2,260,734,129 565,137,435
aiXplain 0.219 0.318 0.318 2,052,963,739 12,345

Table 40: Official results of the WMT22 Quality Estimation Task 3 (Critical Error Detection) for the English-
German (UNconstrained) dataset. Teams marked with "•" are the winners, as they are not significantly outper-
formed by any other system based on randomisation tests with Bonferroni correction (Yeh, 2000). Baseline systems
are highlighted in grey.

Model MCC Recall Precision Disk footprint (B) # Model params
• IST-Unbabel 0.721 0.761 0.761 2,260,735,025 565,137,435
BASELINE -0.001 0.141 0.141 2,277,430,785 569,330,715

Table 41: Official results of the WMT22 Quality Estimation Task 3 (Critical Error Detection) for the Portuguese-
English (Constrained) dataset. Teams marked with "•" are the winners, as they are not significantly outperformed
by any other system based on randomisation tests with Bonferroni correction (Yeh, 2000). Baseline systems are
highlighted in grey.

Model MCC Recall Precision Disk footprint (B) # Model params
• KU X Upstage 0.984 0.986 0.986 2,244,861,551 559,890,432
BASELINE 0.934 0.944 0.944 2,260,734,129 565,137,435
aiXplain 0.179 0.296 0.296 9,395,107 12,345

Table 42: Official results of the WMT22 Quality Estimation Task 3 (Critical Error Detection) for the Portuguese-
English (UNconstrained) dataset. Teams marked with "•" are the winners, as they are not significantly outperformed
by any other system based on randomisation tests with Bonferroni correction (Yeh, 2000). Baseline systems are
highlighted in grey.
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