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Abstract

This paper describes the Transn’s submissions
to the WMT2022 shared task on Translation
Suggestion. Our team participated on two tasks:
Naive Translation Suggestion and Translation
Suggestion with Hints, focusing on two lan-
guage directions Zh→En and En→Zh. Apart
from the golden training data provided by the
shared task, we utilized synthetic corpus to
fine-tune on DeltaLM (∆LM), which is a pre-
trained encoder-decoder language model. We
applied two-stage training strategy on ∆LM
and several effective methods to generate syn-
thetic corpus, which contribute a lot to the re-
sults. According to the official evaluation re-
sults in terms of BLEU scores, our submis-
sions in Naive Translation Suggestion En→Zh
and Translation Suggestion with Hints (both
Zh→En and En→Zh) ranked 1st, and Naive
Translation Suggestion Zh→En also achieved
comparable result to the best score.

1 Introduction

Combining machine translation (MT) and human
translation (HT) is becoming a popular way in
translation practice, which uses a typical way of
post edit (PE) – the human translators are asked to
provide alternatives for the incorrect word spans
in the results generated by MT (Green et al., 2013;
Bahdanau et al., 2015; Vaswani et al., 2017; Zouhar
et al., 2021; Yang et al., 2021). In order to improve
the efficiency of PE, researchers proposed transla-
tion suggestion (TS) to provide the sub-segment
suggestions for the annotated incorrect word spans,
and experiments show that TS can substantially
reduce translators’ cognitive loads and the post-
editing time (Wang et al., 2020; Lee et al., 2021;
Yang et al., 2021).

This paper describes the contribution of Transn
IOL Research to the WMT22 Translation Sugges-
tion shared task, where systems were submitted
to two tasks: 1) Naive Translation Suggestion;
2) Translation Suggestion with Hints. For both

tasks we trained the models on pre-trained encoder-
decoder language model ∆LM (Ma et al., 2021)
with the corpus which were synthesized deliber-
ately, then submitted the ensemble results of the
trained models. Our main contributions are:

. We utilized the pre-trained language model
∆LM to generate TS, which gets good re-
sults on the shared tasks, and much lower
computational budget than training from raw
Transformers (Vaswani et al., 2017; Junczys-
Dowmunt and Grundkiewicz, 2018; Yang
et al., 2021) as well as better quality.

. Apart from the provided golden data anno-
tated by expert translators, we proposed the
constructing methods for silver and bronze
data to train TS system based on parallel cor-
pus and the NMT models provided by the
shared tasks, which contributes a lot for the
final results.

. Based on the Naive Translation Suggestion
models, we proposed an effective algorithm
for the task of Translation Suggestion with
Hints, which improves BLEU scores signifi-
cantly.

The rest of this paper is organized as below. Sec-
tion 2 is a brief description for Translation Sugges-
tion shared task of WMT2022. Section 3 presents
our system, including data constructing and the
training process with ∆LM. Section 4 reports ex-
perimental results in the participated language di-
rections. Finally, we conclude our work in Section
5.

2 Translation Suggestion Tasks

Translation Suggestion is a new task on WMT2022,
which includes two sub-tasks.

Task 1 - Naive Translation Suggestion: This
sub-task focuses on the scenario where the user
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selects the incorrect span of the MT sentence with-
out entering any information, the model outputs
the alternatives automatically. Consider the source
sentence x, the MT sentence m, the incorrect span
selected by the user as w, the alternative y and the
model parameter θ, the naive TS can be formulated
as: P (y|x,m,w, θ).

Task2 - Translation Suggestion with Hints:
In actual applications, users usually have general
ideas of what they want. If they are dissatisfied
with all the suggestions provided by Naive TS, they
are willing to enter some hints for the model to
generate more accurate suggestions. Given the
hints h provided by users, the sub-task 2 can be
formulated as: P (y|x,m,w, h, θ). In this task, we
take the top− k initial characters of the alternative
words as the hint, and the k is randomly selected
for each example.

Task 1 includes 4 language directions (En⇔Zh
and En⇔De) and Task 2 includes 2 language direc-
tions (En⇔Zh). We participated En⇔Zh language
directions for both tasks.

3 Implemented Systems

We fine-tune the pre-trained language model ∆LM
on synthetic data and the task golden data for Task1,
then adjust N-best parameter along with an opti-
mization algorithm for Task2. The details are de-
scribed in this section.

3.1 Pre-trained Model

∆LM is a pre-trained multilingual encoder-decoder
model, which outperforms various strong baselines
on both natural language generation and translation
tasks (Ma et al., 2021). Its encoder and decoder
are initialized with the pre-trained multilingual en-
coder InfoXLM (Chi et al., 2020), and trained in
a self-supervised way. ∆LM’s pre-training tasks
include span corruption on monolingual data and
translation span corruption on bilingual data. We
choose ∆LM as the pre-trained model for TS task
because the pre-training task of translation span
corruption is similar to TS. The only difference is
that ∆LM masks spans in target sentence as well as
spans in source sentence on bilingual data, which
follows the idea from mT6 (Chi et al., 2021), but
TS only masks one span in target sentence.

We use ∆LM-base model in our experiments,
which has 360M parameters, 12-6 encoder-decoder
layers, 768 hidden size, 12 attention heads and
3072 FFN dimension.

3.2 Construct Synthetic Data
The golden data provided by the TS tasks are an-
notated by expert translators, which are expensive
and labor-consuming. Since the 15k golden data
are far from enough to fine-tune a ∆LM model,
we propose several methods to construct synthetic
data for TS on parallel corpus and the specified
NMT models. These synthetic data are named as
silver or bronze data according to its constructing
complexity as well as effect contribution.

Silver Data Silver data are constructed on
parallel corpus and additional models or tools. We
implemented two kinds of silver data construction.

1) The data are obtained via difference compari-
son on MT and target sentences. Given a parallel
corpus sentence pair of source and target sentence,
we first translate the source sentence by the NMT
model (which is used to generate the train/dev/test
data of the TS task and released to all task partic-
ipants), then compute edit distance (ED) between
MT and target sentence to measure the cost of edit-
ing from MT to target. We choose ED metric of
LCS (Longest Common Subsequence) (Bergroth
et al., 2000), which means only insertion and dele-
tion operations are allowed (not substitution oper-
ation). ED is usually calculated by dynamic pro-
gramming, and it can indicate the words which are
inserted or deleted from MT to target sentence by
a trace-back approach. So we can get a TS span by
concatenating all words between the first and last
edited words in target sentence. Table 1 shows an
example for it. This can be formulated as:

TS = diff(NMT (source), target) (1)

Thus, (source, targetdiff_mask, TS) is the con-
structed train data, and targetdiff_mask is the
masked translation where the TS span is replaced
with a placeholder. If the edited parts in target sen-
tence is too long, it will induce a long TS span and
short masked translation, so we filter out such data
by a threshold.

2) The data are constructed by masking special
parts on target sentences. By browsing the golden
TS train data, we found there were certain regu-
larity. Apart from the haphazard TS spans, NEs
(Named Entity) and non-translated elements (espe-
cially digits) inclined to be mistranslated. So we
can focus on constructing synthetic data by mask-
ing and predicting NEs and non-translated elements
in target sentences. We use spaCy1 NER function

1https://spacy.io/
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MT 4.6.1 Suspension for Contractor reasons
target 4.6.1 Suspension because of Contractor reasons
difference 4.6.1 Suspension <add>because</add> <del>for</del><add>of</add> Contractor reasons
TS because of
targetdiff_mask 4.6.1 Suspension <mask> Contractor reasons

Table 1: An example of synthetic data by difference comparison on MT and target sentences.

to extract such spans in target sentences, and select
NE labels of PERSON, LOC, ORG, PRODUCT,
MONEY and QUANTITY. This can be formulated
as:

TS = NER(target) (2)

Thus, (source, targetNER_mask, TS) is the con-
structed train data, and targetNER_mask is the
masked translation where the TS span is replaced
with a placeholder.

Bronze Data Bronze data are sampled di-
rectly on parallel corpus. Sampling on parallel
corpus is straightforward and simple but effective
for TS model. This method is also used by (Yang
et al., 2021). Given the sentence pair (source,target)
in the parallel corpus, we denote target\i:j as a
masked version of target sentence where its frag-
ment from position i to j is replaced with a place-
holder (1 ≤ i ≤ j ≤ |target|). The targeti:j

denotes the fragment of target from position i to
j. We treat targeti:j and target\i:j as the TS and
masked translation respectively. This can be for-
mulated as:

TS = targeti:j (3)

So we get the constructed train data
(source, target\i:j , TS).

When the target language is Chinese, we tok-
enize the target sentence by Jieba2 before sampling
on it.

3.3 Training Process

We perform two-stage fine-tuning on ∆LM for
training the TS models. In the first stage, we use
the silver and bronze train data to fine-turn on the
original ∆LM model. In the second stage, we con-
tinue to fine-tune on the results of the first stage
with the golden train data. Because there are much
more train data and time consumption in the first
stage than that of the second stage, we just train one
model for stage 1, but train several models for stage
2 with different parameters considering the plan of
model ensemble. The details will be described in
Section 4.

2https://github.com/fxsjy/jieba

3.4 Optimization Algorithm for TS
Candidates with Hints

For Task2, we use the same models as that of Task1
to generate TS candidates, and the minor adjust-
ment is just generating more outputs with a larger
N-best value during predicting. Given TS candi-
dates by the initial predicting order, our optimiza-
tion algorithm is simple and effective. Firstly, each
TS candidates is converted to a string consisting of
the first character of the words in TS, and secondly,
we compute LCS (Bergroth et al., 2000) between
each string and the hint by the candidates order,
then choose the longest LCS from the results. If
there are multiple longest LCSs, just choose the
first one by the candidates order. Finally, the TS
candidate corresponding to the longest LCS is se-
lected as the best TS.

For Chinese language, first of all the TS can-
didates should be converted to phonetic symbols
word by word, then perform the above process. We
use pypinyin3 to get phonetic symbols of Chinese
words.

4 Experiments

We present the performance of the implemented
models on the dev and test datasets, as well as
some additional analysis.

4.1 Data Used

In addition to the golden train and dev data pro-
vided by the TS tasks, other data we used to train
TS models are from WMT22 general translation
task4, and just part of the bilingual data are used.

Data Used for Zh→En Direction The origi-
nal parallel corpus for generating synthetic data are
14 million ParaCrawl v9 Zh⇔En and 15 million
UN Parallel Corpus V1.0 Zh⇔En bilingual data.
Following the data constructing methods in section
3.2, all of the constructed silver and bronze data are
110 million. We sampled 4 times on different posi-

3https://github.com/mozillazg/
python-pinyin

4https://www.statmt.org/wmt22/
translation-task.html
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Dataset Stage Zh→En En→Zh

dev set
Stage 1 15.62 25.10
Stage 2 28.15 38.08

test set Stage 2 28.42 39.71

Table 2: BLEU of two stages on dev or test sets for
Zh⇔En language directions

tions for every sentence when constructing bronze
data.

Data Used for En→Zh Direction Besides the
original parallel corpus of Zh→En direction, we
added 6 million CCMT corpus. The data construct-
ing methods are the same as Zh→En direction, and
we finally got 120 million silver and bronze data.

4.2 Results of Task 1

Following the two-stage fine-tuning process de-
scribed in section 3.3, Table 2 summarizes the re-
sults of Task 1 for Zh⇔En language directions.

On stage 1, we fine-tune ∆LM-base with the
constructed silver and bronze data. All models
are implemented on top of the open source toolkit
Fairseq5. We train on 6 GeForce RTX 3090 GPUs.
The optimizer is Adam (Kingma and Ba, 2014)
with β1 = 0.9 and β2 = 0.98. The learning rate is
6e-5 with a warming-up step of 8000. The models
are trained with the label smoothing cross-entropy,
and the smoothing ratio is 0.1. All the dropout prob-
abilities are set to 0.3. The gradient accumulation
is used due to the high GPU memory consumption,
and we set max-tokens = 1600 and update-freq =
64. To speed up the training process, we conduct
training with half precision floating point (FP16).
We validate on dev set every 1000 updates, and
the early stop patience is 5. Under these training
parameters, the model converges at epoch 3.

On stage 2, we use the golden train and dev data
provided by the TS tasks, and continue to fine-tune
on the checkpoint with the best validation perfor-
mance of stage 1. Only a few training parameters
were adjusted on stage 1. The learning rate is re-
duced to 3e-5. In order to apply model ensemble
strategies, the dropout varies in [0.1, 0.2, 0.3], and
the update-freq varies in [3, 4, 5] with the fixed
max-tokens 1600. The submissions are ensemble
results of all models trained on stage 2.

5https://github.com/facebookresearch/
fairseq

Dataset & parameter Zh→En En→Zh
test set, N-best=100 39.95 48.60

Table 3: BLEU of test set with hints when N-best=100

4.3 Results of Task 2
Task 2 intends to predict more accurate translation
suggestions under additional hints. So we enlarge
the N-best value gradually from 5 to 100 to gener-
ate more TS candidates, and search the optimal TS
by the algorithm described in section 3.4. Figure 1
shows the results on dev set where the N-best value
is set in [5, 10, 20, 30, 50, 80, 100]. It seems that
the BLEU rises with the increase of N-best value,
but the gains diminish when N-best exceeds 50.
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Figure 1: BLEU of dev set with hints for different N-
best values

We get the final submissions on test set under
N-best = 100, and the official BLEU scores are
shown in Table 3 for Zh→En and En→Zh language
directions.

4.4 Results Analysis Considering TS
Accuracy

In practice, TS is designed to replace the incorrect
span in target sentence during PE, so an absolutely
accurate TS is important for post-editing translators.
Therefore we analyze the accuracy indicator for TS
in this section. Predicting an absolutely accurate
TS relies heavily on TS length, then we analyze
it based on different TS lengths, as well as top-
k predictions, considering that instead of the top
predicted TS, an accurate but top-k-located TS is
also valuable for PE through the interactive options.
Here top-k predictions are generated in the same
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TS Len =1 ≤3 ≤5 ≤10 All
dev TS, Num=2767

(Proportion)
1279

(46.2%)
2181

(78.8%)
2488

(89.9%)
2709

(97.9%)
2767

(100%)

Top-1 predictions
Positive Num 657 900 931 949 950

Accuracy 51.4% 41.3% 37.4% 35.0% 34.3%

Top-3 predictions
Positive Num 806 1159 1198 1217 1217

Accuracy 63.0% 53.1% 48.2% 44.9% 44.0%

Top-5 predictions
Positive Num 943 1379 1434 1458 1458

Accuracy 73.7% 63.2% 57.6% 53.8% 52.7%

Table 4: TS accuracy analysis on dev set for Zh→En language direction

way as the TS candidates in Section 3.4.
For Zh→En language direction, Table 4 shows

that if there is just one word in TS, the accuracy
is 51.4% for the top predictions; and the accuracy
reaches 63.0% or 73.7% if we consider top-3 or
top-5 predictions. Similarly, the accuracy is 41.3%,
53.1%, or 63.2% if considering top-1, top-3, or top-
5 predictions respectively for the TSs no more than
3 words. The accuracy decreases gradually as the
TS length increases. A significant finding is that
even on the whole dev set, the accuracy still reaches
52.7% if we consider the top-5 predictions. There-
fore, the accuracy indicator may help us determine
when and how the TS options are activated.

4.5 Effects of Training Procedure and
Synthetic Data

The two-stage fine-tuning procedure is essential
for our results. If stage 1 is not applied, which
means just fine-tuning ∆LM on the golden data,
we get very low BLEU scores, i.e., 2.19 in Zh→En
language direction on dev set. If stage 2 is not
applied and just fine-tuning ∆LM on the synthetic
silver and bronze data, the BLEU scores are 15.62
in Zh→En and 25.10 in En→Zh (see Table 2), with
a decrease of about 13 BLEU score than the full
two-stage fine-tuning procedure.

The effects of the synthetic silver and bronze
data are also analyzed. Table 5 lists the results in
Zh→En language direction for the single silver or
bronze data on stage 1 and stage2. It shows that the
silver synthetic data plays a more important role
for the final performance than the bronze data.

5 Conclusions

We present the Transn IOL Research submissions
of the WMT2022 shared task on Translation Sug-
gestion. Our system is implemented with two-

Systems Zh→En
Stage 1 Stage 2

silver & bronze data 15.62 28.15
only silver data 13.53 26.11

only bronze data 10.24 24.06

Table 5: Effects of the synthetic silver and bronze data
for Zh→En language direction on dev set

stage fine-tuning on ∆LM, which is a pre-trained
encoder-decoder language model. To improve the
performance, we construct synthetic data by differ-
ence comparison, named-entity masking and ran-
dom sampling on parallel corpus. We propose an
effective algorithm to choose optimal translation
suggestion with hints. The accuracy indicator of TS
is also analyzed for more efficient PE in practice.
On the participated 4 tracks of En⇔Zh language
directions, we achieved best scores on 3 tracks and
comparable result on another track.

Effective translation suggestions benefit a lot for
post editing. In the future, we plan to research field
related and fine-grained TS models to improve sys-
tem performance, and will integrate these advanced
techniques in our translation practice.
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