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Abstract

We describe our neural machine translation sys-
tems for the WMT22 shared task on unsuper-
vised MT and very low resource supervised
MT. We submit supervised NMT systems for
Lower Sorbian-German and Lower Sorbian-
Upper Sorbian translation in both directions.
By using a novel tokenization algorithm, data
augmentation techniques, such as Data Diversi-
fication (DD), and parameter optimization we
improve on our baselines by 10.5-10.77 BLEU
for Lower Sorbian-German and by 1.52-1.88
BLEU for Lower Sorbian-Upper Sorbian.

Introduction

This paper describes our Machine Translation (MT)
systems for the WMT22 shared task on "Unsu-
pervised MT and Very Low Resource Supervised
MT"1, which features translation between Lower
Sorbian, Upper Sorbian, and German. Lower (dsb
and Upper Sorbian (hsb) are Slavic minority lan-
guages spoken in the Eastern part of Germany with
7.000 and 30.000 native speakers respectively. Text
data for these languages collected and made avail-
able by the Sorbian Institute and the Witaj Lan-
guage Centre (Libovický and Fraser, 2021).

We submit systems for Lower Sorbian-German
and Lower Sorbian-Upper Sorbian in both transla-
tion directions. We focused on the supervised ap-
proach, using only the parallel data made available
by the task organizers for all the above languages.

We were able to improve on our baselines by: i.
employing a new tokenization algorithm, High Fre-
quency Tokenizer (HFT) (Signoroni and Rychlý,
2022); ii. augmenting the original parallel data
with the Data Diversification (DD) technique by
(Nguyen et al., 2020); iii. tuning the architec-
ture and the parameters of the models, such as
encoder/decoder depth, number of attention heads,
dropout, batch size, etc.

1https://statmt.org/wmt22/unsup_and_very_low_res.html

We employed HFT since it aims to obtain more
meaningful subword dictionaries, while DD was
chosen because it does not involve additional data
apart from the original parallel corpus. Both this
techniques are relevant when working with a lim-
ited amount of data.

This paper is structured as follows: Section 1
summarizes the data used in training; Section 2
outlines our methodology, introducing our novel
tokenizer and the models we used; Section 3 sums
up our final systems, while Section 4 relates and
discusses the results of our experiments; Section 5
contains some final remarks.

1 Data

We experiment with Lower Sorbian-German and
Lower Sorbian-Upper Sorbian translation, using
only the parallel data provided for each pair.

The parallel data for the dsb-de and the dsb-hsb
pairs consist of ∼40k and ∼62k sentences respec-
tively. We use only these data, as the approach we
decided to follow does not need additional data. Af-
ter applying this method, our final corpus size for
training is ∼360k sentences for dsb-de, and ∼560k
for dsb-hsb.

2 Methodology

In this section, we first present briefly our novel to-
kenizer, High Frequency Tokenizer, or HFT. Then,
we describe the architecture of our models and how
we trained them.

2.1 High Frequency Tokenization
Sennrich and Zhang (2019) showed that a mean-
ingful subword tokens vocabulary is crucial for
achieving good performance in low-resource NMT.
While they experiment with BPE, we employ our
novel tokenization algorithm, High Frequency Tok-
enizer, or HFT. This word segmentation methods
aims to provide more meaningful subword dictio-
naries by obtaining more frequent, and thus better
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<token-delimiter>

<single-uppercase>
<explicit-whitespace>

<all-uppercase>

<end-of-uppercase>

Figure 1: Special characters in the pretokenization and
tokenization.

represented subwords. Given the importance of
tokenization for low-resource NMT, we argue that
is an important point to consider.

HFT uses the advantage of pretokenization,
where sentences are split into tokens on the borders
of alphanumeric and non-alphanumeric characters.
The current prototype uses the regular expression
\b of the Unix sed2 command . Both the begin-
ning and the end of each token is explicitly anno-
tated, differently from previous systems such as
subword-nmt BPE and sentencepiece.

HFT subwords are learnt from these tokens, they
never cross the token boundaries, each token from
the pretokenization is handled independently from
other tokens. It speeds up both vocabulary learning
and actual subword tokenization.

We also use case normalization for characters
with both uppercase and lowercase. A single upper-
case letter is changed to a special <uppercase-next>
character and lowercase version of the given let-
ter. A sequence of uppercase letters is changed to
lowercase with a special <all-uppercase> and <end-
of-uppercase> characters attached to the beginning
and the end of the sequence. Figure 1 gives the
special characters hft uses in pretokenization and
tokenization.

The learning algorithm starts from a vocabulary
containing all characters from the training text as
possible subwords and the number of occurrences
of the given subword (character). Then, it gradually
increase the vocabulary in the following steps:

1. it processes all the words (tokens) from the
pretokenized text to find the best subword
segmentation using only subwords from the
current vocabulary, counts the frequencies of
each subword and of all possible subword can-
didates (pairs of succeeding subwords);

2. selects the top K candidates with the highest
frequency and adds them as new subwords to

2https://www.gnu.org/software/sed/manual/sed.html

the vocabulary (K is 5% of the target vocabu-
lary size as default);

3. removes from the vocabulary all non-single-
character subwords with frequency lower than
the last added candidate;

4. repeat from 1. until the requested vocabulary
size is reached

The best subword tokenization (in step 1)
searches in all possible subword segmentation se-
quences the one with the lowest number of tokens
and, for same number of tokens, the highest mini-
mum frequency.

We evaluated HFT against Byte-Pair Encoding
(BPE) (Sennrich et al., 2016) and Unigram (Kudo,
2018) on the metrics described by (Gowda and
May, 2020) and on a weighted average of the fre-
quencies of the tokens in the vocabulary. HFT
performed well, providing better results for almost
all test cases. Preliminary data on HFT’s impact on
downstream NMT also showed promising results.
(Signoroni and Rychlý, 2022)

Moreover, during the experimentation for this
task, we further confirmed that using HFT-
tokenized data leads to better translation quality,
calculated with sacreBLEU (Post, 2018), against a
subword-nmt BPE baseline.

2.2 Data Diversification

For our final models we follow the Data Diversifica-
tion (DD) approach of Nguyen et al. (2020). While
most of the research in low-resource NMT avails it-
self of external data by employing techniques such
as backtranslation and transfer learning, this sim-
ple, yet effective method does not need any external
data, but only the original parallel corpus. The DD
procedure is the following:

1. Train k different models on the authentic paral-
lel corpus, in both the forwards and backwards
directions;

2. Infer the translations with all the trained mod-
els, so to obtain k synthetic source and target
data;

3. merge the translations to create a new parallel
dataset, which comprises the original parallel
data, plus an authentic source to synthetic tar-
get, and a synthetic source to authentic target
section;
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Figure 2: Sample of Lower Sorbian text tokenized with HFT.

4. Train new models on these augmented parallel
data;

5. repeat for n rounds.

Since Nguyen et al. (2020) reports that addi-
tional rounds of DD do not boost the performance
of the resulting systems significantly, our systems
were trained after just one round of DD. We have a
level of diversification k=4, since we included all
the previous experiments models’ output, plus the
original parallel data.

2.3 Preprocessing
We use both training and development test data
as provided, without cleaning of any kind. We
tokenize the data with two subword tokenization al-
gorithms, BPE and HFT. For the former, we use the
subword-nmt implementation. For HFT, we use
our own implementation. We experiment with dif-
ferent vocabulary sizes, and our results are in line
with previous research, such as Sennrich and Zhang
(2019). They showed that a smaller vocabulary
sizes improves the performance of low-resource
NMT. In line with these findings, our experiments
with vocabulary size of 12k and 10k, even if well
below the standard 32k, performed worse than our
final choice of 4k tokens.

We train a tokenizer for each language on the
train split of the datasets, and share the dictionaries
during all the stages of training.

2.4 Models
Table 1 gives details about the architecture and
training parameters of each model we trained.

We experiment with two different model archi-
tectures, both based on the Transformer (Vaswani
et al., 2017). The first, which we dubbed t-[tok]3,
is a standard Transformer (Vaswani et al., 2017);
while the second, called and t-opt-[tok], is a Trans-
former with optimized parameters for the size of
the dataset.

We use Fairseq (Ott et al., 2019) for training
the models, generating translations, and evaluating
them.

3We trained models on data tokenized both with BPE and
HFT. Since they share the same architecture and training pa-
rameters, [tok] stands either for bpe or hft.

As our baseline, we train a Transformer
(Vaswani et al., 2017) with default hyper param-
eters and BPE tokenization, which we refer to as
t-bpe. 4 As a first experiment, we train t-hft, a stan-
dard Transformer trained on data tokenized with
HFT. We use adam as optimizer and we maximize
BLEU score on the validation set at each epoch.
For the BPE models, we use detokenized BLEU,
but for HFT this was not implemented during train-
ing. We train both t-[tok] models for 100 epochs
with dropout of 0.1, and 10240 maximum tokens
for each batch. We use a learning rate of 0.0005
and the inverted square root scheduler for all of our
models.

Secondly, we train another Transformer with the
optimized hyper parameters found by (Araabi and
Monz, 2020) for a dataset of 40k sentence pairs:
5 encoder/decoder layers, 2 attention heads, and a
feed-forward dimension of 2048. During our exper-
iments, however, we observed that a feed-forward
dimension of 1024 gives better results. We do this
with data tokenized with both methods, obtaining t-
opt-bpe and t-opt-hft. These models are trained for
100 epochs, with dropout of 0.3, label smoothing
of 0.5, encoder and decoder word dropout of 0.1,
activation dropout of 0.3, and a maximum batch
size of 4096 tokens.

Lastly, we build the DD parallel corpus by col-
lating the outputs of all previous systems in both
directions, beginning with the authentic parallel
data, and adding both combinations of original and
synthetic source and target data. We then use the
DD-data to train both t-bpe-dd and t-hft-dd, which
share the same architecture the t-[tok] models. The
training is also similar, just differing in the number
of epochs, which for these last models is 50.

2.5 Evaluation

To find our best candidates for submission, we gen-
erate translation on a development test set of un-
seen sentence pairs, either provided by the task
organizers, or set aside from the train portion of the
data. We produce translations with the standard set-
tings (beam search with a beam of 5) using the best

4We still use a vocabulary size of 4k, which is already an
improvement on the standard size of 32k.
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PARAMETER
MODEL

t-[tok] t-opt-[tok] t-[tok]-dd
Vocabulary size 4000 4000 4000
feed-forward dimension 2048 1024 2048
attention heads 8 2 8
dropout 0.1 0.3 0.3
enc/dec layers 6 5 6
label smoothing 0.1 0.5 0.1
enc/dec word dropout 0.0/0.0 0.1/0.1 0.0/0.0
activation dropout 0.0 0.3 0.0
max tokens 10240 4096 10240

Table 1: Architecture details and training parameters for each model.

DSB-DE DE-DSB DSB-HSB HSB-DSB
t-bpe 27.92 22.74 72.01 69.71
t-hft 34.20 30.86 72.21 70.71
t-opt-bpe 29.75 25.06 71.37 69.50
t-opt-hft 35.46 31.12 71.83 68.95
t-bpe-dd 33.02 28.54 73.47 71.98
t-hft-dd 38.42 33.53 73.53 71.59

Table 2: Trained models and BLEU score during inference on development test data

checkpoint of each model and evaluate the detok-
enized output with sacreBLEU (Post, 2018). For
the BPE models, we detokenize with the provided
argument, while for HFT we use our own plug-in
script. We use the same settings to translate the
test set for our submissions. Table 2 gives BLEU
scores, computed on the development test sets, for
each system we experimented with.

During inference on the development test set,
models trained on HFT data outperformed the BPE
baseline by 4.99 to 8.12 BLEU for the dsb-de pair,
while for dsb-hsb the difference in score is minimal.
t-opt-[tok] was better than the corresponding t-[tok]
model in the dsb-de pair. For dsb-hsb, this does
not hold true, with t-opt-[tok] always performing
worse than the baseline. t-[tok]-dd improves on
both the baseline and t-opt-[tok] for every language
pair and direction.

2.6 Inconclusive and Negative Results

During DD, we collated data from all four experi-
mental models for each pair, both t-[tok] and t-opt-
[tok], regardless of their performance. This later
resulted in our best systems. For the dsb-de pair,
we also tried to ensemble data from the four best
performing systems to create the DD train set, all
from HFT data and ranging from 34.99 to 37.20
BLEU on the dsb-de side, and 31.12 to 30.42 on

the reverse direction. This was done with the in-
tuition that better train data should result in better
performance. However, after training t-[tok]-dd
on these data, the resulting system that performed
worse by -0.58, giving 37.84 BLEU on the develop-
ment test set. In contrast, the final t-[tok]-dd gave
us 38.42 BLEU, and was trained on data generated
with systems ranging from 27.92 to 35.46 BLEU
on the dsb-de side, and from 22.74 to 31.12 for the
reverse direction.

While this small difference in BLEU score may
not be significative, further investigation should be
conducted as this may indicate that a more diverse
dataset is better than one with a higher quality for
training with NMT systems with DD. Our initial
hypothesis for why this happens is that being the
systems’ performance closer, the translations they
generate are similar. This leads to worse general-
ization potential for the resulting final system.

3 Final Systems

Table 3 gives BLEU and chrF scores for our final
submissions.

For all pairs and directions we worked on, our
best systems was t-hft-dd, a Transformer trained
on a single NVIDIA A405 for 50 epochs on DD

5Previous systems were always trained on a single GPU,
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t-hft-dd

DSB-DE
BLEU 49.5
chrF 73.0

DE-DSB
BLEU 50.5
chrF 74.1

DSB-HSB
BLEU 72.2
chrF 87.5

HSB-DSB
BLEU 72.3
chrF 87.5

Table 3: BLEU and chrF scores for our best systems on
the final test set.

HFT-tokenized data, with a vocabulary size of 4k,
feed-forward dimension of 2048, dropout 0.3, and
10240 for each batch.6

Our hypotheses on why HFT leads to improve-
ments on these datasets are the following. On top
of providing more frequent and better defined token
for the model to learn, it also explicitly marks both
beginning and end of the words during pretokeniza-
tion. This could be relevant for morphologically
complex languages, such as the ones in this task,
since it provides more information to the model
on possible prefixes and suffixes. Contrast this
with the fact that subword-nmt BPE only explic-
itly mark continuation with the @@ marker. This
kind of tokenization thus makes no distinction be-
tween full words and word endings. Moreover, it
seems to struggle with capitalized words and punc-
tuation, which can also be informative, if handled
optimally. HFT’s pretokenization seems to help
with this issue. Investigating these topics will be
further addressed by future work.

4 Conclusions

This paper described our submission for the
WMT22 shared task on Unsupervised MT and
Very Low Resource Supervised MT. We presented
systems for Lower Sorbian-German and Lower
Sorbian-Upper Sorbian translation in both direc-
tion under supervised training conditions. To train
our best systems we employed a novel tokenization
algorithm, HFT, to obtain more meaningful sub-
word vocabularies, contrasted to a BPE baseline;
and Data Diversification (Nguyen et al., 2020) to
augment the training data using only the parallel
dataset provided for each language pair.

variably on a A40, A100 or a Tesla T4. Training times did not
exceed 12 hours for both t-[tok]-dd systems.

6Every other unmentioned parameter was left at the default
setting.

During our experiments we confirmed that opti-
mizing not only the Transformer’s hyper param-
eters, but also the subword vocabulary quality
and size, are crucial steps for low-resource NMT.
Choosing the appropriate vocabulary size for the
dataset, could lead to significant improvements in
BLEU score even with a small amount of parallel
data. These, however, are still open and complex
problems, since previously proposed settings or,
even more so default ones, did not always provide
the best results.

Limitations and Future Work

While providing NMT systems for Lower Sorbian-
German and Lower Sorbian-Upper Sorbian that per-
form reasonably well, some other methods, some
of which were used by other submissions, could
provide better results. These should be taken into
account, if a system for these language pairs will
be deployed for language conservation, revitaliza-
tion, or everyday use. Such system may also be
hampered by the limited scope of the training data,
which is inherent in their size. As for other low-
resource and, especially for endangered languages,
documentation ventures such as those of the Sor-
bian Institute and the Witaj Language Centre are
vital to create bigger, more comprehensive datasets,
which are still needed for the current NLP method-
ologies to work at their best.

Ethics Statement

NMT systems are, as every other data-driven tech-
nology, sensible to biases and other shortcomings
in their training data. De-biasing datasets and NLP
systems’ output is a scope of research that lies out-
side the scope of this shared task and thus, from
the scope of this paper. If these systems were to be
employed in a real-world scenario such as language
conservation, revitalization or everyday translation,
we advise caution as to the limitations mentioned
above.

Following Lacoste et al. (2019), we report that
the experiments and the research that led to the
results presented in this paper were conducted
on a private server infrastructure consisting of a
NVIDIA Tesla T4, A40, and A100 for around 500
hours of training at an efficiency of 0.59 kg/kWh7

for a total of 20.39 kg CO2 eq.

7The Czech Republic’s country average as reported
in https://www.carbonfootprint.com/docs/2018_8_electricity_
factors_august_2018_-_online_sources.pdf
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