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Abstract

Automatic Language Identification represents
an important task for improving many real-
world applications such as opinion mining and
machine translation. In the case of closely-
related languages such as regional dialects, this
task is often challenging. In this paper, we
propose an extensive evaluation of different
approaches for the identification of Italian di-
alects and languages, spanning from classical
machine learning models to more complex neu-
ral architectures and state-of-the-art pre-trained
language models. Surprisingly, shallow ma-
chine learning models managed to outperform
huge pre-trained language models in this spe-
cific task. This work was developed in the con-
text of the Identification of Languages and Di-
alects of Italy (ITDI) task organized at VarDial
2022 Evaluation Campaign. Our best submis-
sion managed to achieve a weighted F1-score of
0.6880, ranking 5th out of 9 final submissions.

1 Introduction

Dialect classification represents a key task in the im-
provement of many other downstream tasks such as
opinion mining and machine translation, where the
enrichment of text with geographical information
can potentially result in improved performances for
real-world applications (Zampieri et al., 2020).

As a result, the interest in the study of language
variation has been steadily growing in the last
few years, as highlighted by the increasing num-
ber of publications and events related to the topic
(Zampieri et al., 2014, 2015; Malmasi et al., 2016;
Zampieri et al., 2017, 2018, 2019; Gaman et al.,
2020; Chakravarthi et al., 2021). However, little
has been done so far by researchers in the context
of automatic dialect and language recognition for
the Italian language.

In this context, the Identification of Languages
and Dialects of Italy (ITDI) task of VarDial 2022

Equal contribution.

Figure 1: Geographical origin of the Italian dialects and
languages studied in the shared task.1

Evaluation Campaign (Aepli et al., 2022) aims to
bridge this gap, facilitating the development of
models capable of properly classifying 11 regional
languages and dialects from Italy’s mainland and
islands. Figure 1 shows the geographical origin of
these different dialects and languages.

In this paper, we present the results of an exten-
sive evaluation of three different approaches for
the automatic identification of the given dialects.
After an introductory literature review (§2), we
proceed with a more in-depth discussion on the
details of the ITDI task and the dataset provided
by the organizers (§3). Then, we introduce the
proposed architectures (§4) and the experimental
results for each one of them (§5). We also provide
some additional analysis of the models on classifi-
cation errors and feature space visualization (§6).
Finally, we include some concluding remarks on
the shared tasks and possible limitations and routes
for improvement of our work (§7).

1For a more complete and accurate map, refer to
https://en.wikipedia.org/wiki/Languages_of_Italy.

https://en.wikipedia.org/wiki/Languages_of_Italy
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2 Related Works

Dialect identification represents a well-known task
in the literature, for which the first contributions
can be traced back to more than fifty years ago
(Mustonen, 1965). An extensive and complete re-
view of the field can be found in (Jauhiainen et al.,
2019). However, language identification still repre-
sents a non-trivial task in the case of closely-related
languages and dialects.

Although deep neural models nowadays yield
state of the art performances in many NLP tasks,
shallow machine learning models have shown to be
still highly competitive in discriminating between
similar languages. Some examples are Linear SVM
and Naïve Bayes classifiers (Ceolin, 2021; Çöl-
tekin, 2020) and Logistic Regression (Bhargava
et al., 2015; Ács et al., 2015).

Also the use of Convolutional Neural Networks
is still popular in this type of task. In particular,
CNN-based approaches achieved competitive re-
sults in both VarDial 2019 Evaluation Campaign
(Tudoreanu, 2019) and VarDial 2020 Evaluation
Campaign (Rebeja and Cristea, 2020).

The introduction of transformers (Vaswani et al.,
2017) has represented a breakthrough in many NLP
tasks, and language identification is no exception.
Models based on this architecture achieved state-of-
the-art performance in many practical applications.
A recent example is again VarDial 2020 Evalua-
tion Campaign, where the use of a fine-tuned ver-
sion of BERT previously trained on three publicly
available Romanian corpora (Zaharia et al., 2020)
reached a weighted F1 score of 96.25% on the MO-
ROCO dataset (Butnaru and Ionescu, 2019) in the
Romanian vs Moldavian identification task.

However, the literature regarding automatic Ital-
ian languages and dialects identification is still rel-
atively underdeveloped. Some recent work has
been done to encourage the study of the diachronic
evolution of Italian language and the differences
between its dialects (Zugarini et al., 2020), but no
prior work has focused specifically on contempo-
rary Italian dialects identification.

3 Task and Data Description

3.1 ITDI

ITDI is one of the three tasks proposed as part of
the VarDial 2022 Evaluation Campaign.

The language varieties evaluated in this task
are 11, both from Northern Italy (Piedmontese,

Venetian, Emilian-Romagnol, Ligurian, Friulian,
Ladin, and Lombard), Southern Italy (Neapolitan
and Tarantino) and Islands (Sardinian and Sicilian).
In the following chapters, varieties’ names will be
abbreviated coherently with (Aepli et al., 2022).

This is the first edition of the task.The task is
closed, therefore, participants are not allowed to
use external data to train their models (except for
off-the-shelf pre-trained language models).

The training dataset is provided by the organiz-
ers and consists of 265 016 selected Wikipedia arti-
cles from March 1st 2022 dumps, comprehensive
of all the 11 varieties evaluated in the task. The
development set consists of 6799 annotated sen-
tences that cover only 7 out of the 11 varieties
evaluated in the shared tasks (there are no develop-
ment samples for Emilian, Neapolitan, Ladin, and
Tarantino). The test set, on the other hand, consists
of 11 090 samples, and covers only 8 out of the 11
varieties (Piedmontese, Sicilian and Sardinian are
not represented). The composition of the test set
was disclosed only after the end of the competition.

3.2 Data Exploration

Since the training data don’t come from a well-
known documented dataset, a preliminary explo-
ration has been initially conducted to gain useful
insight about them. This investigation highlighted
a huge imbalance between classes as shown in Fig-
ure 2, since the 3 most represented dialects (Vene-
tian, Piedmontese and Lombard) account for al-
most three quarters of the articles in the training
data. On the other hand, other dialects (such as Friu-
lian, Emilian-Romagnol, and Ligurian) are heavily
under-represented.

Hence, imbalanced data seems to represent a
major challenge and should be addressed during
the development and evaluation of the model.
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Figure 2: Percentages of Wikipedia articles per variety.
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3.3 Pre-Processing of the Wikipedia Dumps

The training data is provided in the form of raw
Wikipedia dumps and, as highlighted by the or-
ganizers, a careful pre-processing is an important
part of the task. In this section, we describe how
we extracted and cleaned samples from the raw
Wikipedia dumps.

Document extraction The extraction of
Wikipedia documents and an initial pre-processing
step is performed using WikiExtractor (Attardi,
2015), a Python script that extracts and cleans
text from Wikipedia database dumps. The use of
this particular tool for extraction was suggested
by the organizers of the shared task. However, a
careful qualitative analysis of the resulting text
samples pointed out the need for more fine-grained
processing of training samples.

Document cleaning Firstly, we remove all the
HTML tags (e.g. <br>, &amp;, etc.) and
Wikipedia meta information (e.g. contributors,
timestamps and comments) that were not success-
fully filtered out by WikiExtractor. Then, we ob-
serve that most of the documents of length < 50
characters are not valuable samples, as they come
from documents for which WikiExtractor failed to
extract any text at all or from pages that contain
simple and repetitive name entity definitions (e.g.
small towns or years articles). Hence, we trim them
from the training dataset. Moreover, we observe
that the training set contains duplicate documents
(e.g. Web domain pages in Venetian Wikipedia).
Therefore, we remove all the duplicate documents
from the dataset.

Sentence splitting Finally, since the task evalu-
ates dialect classification at sentence level, we split
all the documents into sentences using the Italian
spaCy tokenizer (Honnibal and Montani, 2017).
After the splitting, a further filtering is applied to
the sentences to trim a huge set of almost-identical

Pre-processing step # samples
Original documents 265 016

remove length < 50 244 688
remove duplicates 218 670

sentence split 698 837
sentence cleaning 382 859

Table 1: Number of training samples after each
pre-processing step.

sentences from the training data (e.g. sentences
about municipalities, cities or years that occur thou-
sand of times and differ only in the entity name).
Moreover, we fix some transcription mismatches
between training and validation samples (e.g. Vene-
tian Wikipedia articles use the letter "ł" to tran-
scribe particular phonemes, which is, on the other
hand, transcribed as a standard "l" in the validation
samples).

Pre-processing results The exact number of sam-
ples after each pre-processing step is shown in Ta-
ble 1, while a representation of the distribution of
the input sentences over all the 11 dialects can be
found in Figure 3. It can be observed from the latter
that the distribution of training samples is slightly
more uniform compared to the initial Wikipedia
document distribution. Nonetheless, the substantial
class imbalance between different languages and
dialects persists.

EML NAP PMS FUR LLD LIJ LMO ROA SCN VEC SC
Dialect

0

10000

20000

30000

40000

50000

60000

70000

80000

Nu
m

be
r o

f t
ra

in
in

g 
se

nt
en

ce
s

1.8%

5.7%

15.1%

3.5%

6.1%
4.9%

21.9%

3.2%

15.2%
13.9%

8.7%

Figure 3: Number of sentences in the training set for
each of the eleven dialects included in the task.

4 Methods

4.1 Linear Models
Linear models are still a widely used tool in the
context of automatic language identification. We
experiment with three different models, namely
Linear Support Vector Machines (SVM), Naïve
Bayes classifiers (NB) and Logistic Regression
(LR). The models are trained on scaled word-level
TF-IDF feature vectors. We also experiment with
models trained on character-level n-grams TF-IDF,
word-level n-grams TF-IDF, or other type of text
embedding (e.g. hashing vectorizers) and scaling
techniques. Dimensionality-reduction techniques
to reduce the initial embedding dimensions are also
investigated. All the models that we use in these ex-
periments are off-the-shelf models from the Python
library scikit-learn (Pedregosa et al., 2011).
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4.2 Convolutional Neural Networks
Convolutional Neural Networks (CNN) are a pow-
erful modular approach for text classification
(Zhang et al., 2015). We implemented both word-
based and character-based networks. In this section,
we introduce the design of the character-level net-
work. Besides replacing an alphabet of characters
with a vocabulary of words, the word-level CNN
approach is identical. The encoding is performed
extracting an alphabet of size m from the train-
ing data. Each input sentence is transformed into
a sequence of m-sized vectors with fixed length
l0. Any character exceeding length l0 is ignored,
and any character that is not in the alphabet, in-
cluding blank characters, is encoded as an all-zero
vector. In our particular dataset, the alphabet ex-
tracted from the training set consists of m = 989
characters. We set l0 = 60 and add 0 padding if
the sequence is shorter than 60 characters.

Table 7 describes in detail the CNN architec-
ture. Both character-level and word-level networks
are 3 layers deep, with 2 convolutional layers and
1 fully-connected layer. ReLU function is then
used as an additional step on top of convolution.
We choose max-pooling to represent features map
to Pooled Feature Map, which helps reducing the
number of parameters and prevent overfitting. In
the fully-connected step, we combine all input fea-
tures resulting from the last hidden layer to predict
the classes using a softmax function.

4.3 Transformers
The use of transformer-based models has been
proved effective even in the context of language
identification. In particular, the fine-tuning of large
pre-trained language models such as BERT (Devlin
et al., 2019) yielded competitive performances in
the previous iteration of VarDial Evaluation Cam-
paign (Zaharia et al., 2020). Following this line
of work, we experiment with the fine-tuning of six
HuggingFace BERT models:

• AlBERTo (Polignano et al., 2019), an Italian
uncased BERTBASE model pre-trained on Ital-
ian tweets.

• dbmdz-cased/uncased (Schweter, 2020), an
Italian BERTBASE model pre-trained on Ital-
ian Wikipedia dump and various texts from
the OPUS corpora.

• dbmdz-xxl-cased (Schweter, 2020), an Ital-
ian BERTLARGE model pre-trained on Italian

Wikipedia dump and various texts from the
OPUS corpora and OSCAR corpus.

• mrm8488-bert (Romero, 2020), a dbmdz-
cased with an additional fine-tuning on Italian
SQuAD for Q&A, to measure the impact of
additional tuning on downstream tasks.

• multilingual BERTBASE (Devlin et al., 2019),
pre-trained on a corpora of 102 languages.

For all the encoders, a linear classifier is added on
top of the CLS token, and the resulting model is
then fine-tuned for two epochs on the identification
task. A non-extensive hyper-parameter tuning is
performed on the best-scoring model, re-training it
with both frozen and non-frozen embeddings and
with variable maximum sequence length. The use
of class weights to counter class imbalance, as well
as different classifier layers, are also investigated.

5 Results and Discussion

5.1 Linear Models
Initially designed and implemented as baseline
references, linear models ended up achieving the
greatest performances among all the investigated
methods. Table 2 shows the results for this category
of approaches.

For conciseness, we only report validation scores
for models trained on word-level TF-IDF embed-
dings scaled to zero mean and unit variance. Other
embedding (hashing vectorization) and scaling (no
scaling, robust scaling) techniques don’t show any
performance improvement. Projecting the original
embeddings to a lower-dimensional features space
with Principal Component Analysis also results in
an overall performance decay.

Among the implemented models (SVM, NB and
LR), LR is the one that achieves the best perfor-
mance, with a F1-micro score of 0.8957. Thus, we
proceed with an extensive hyper-parameter search
for this specific method.

Model Embedding F1-micro
Linear SVM tf-idf 0.8308
Naïve Bayes tf-idf 0.8467
Logistic Regression tf-idf 0.8957

+ SAG solver 0.9295
+ class weights 0.9445

LR ensemble tf-idf 0.9424

Table 2: Linear model evaluation on the validation set.
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We find that the use of SAG solver (Schmidt
et al., 2017) and class weights (to counter the
training set class imbalance, defined using cross-
validation) further increases the validation score,
reaching a final F1-micro of 0.9445. Table 3 shows
a more detailed evaluation of the model on single
dialects. Finally, we implement an ensemble of
LR models trained with different class weights (in-
versely proportional to class frequency and cross-
validated) and random seeds. However, the ensem-
ble doesn’t improve the validation score.

Dialect Precision Recall F1 Support
PMS 0.95 0.99 0.97 1191
FUR 0.99 0.99 0.99 676
LIJ 0.96 0.99 0.98 617

LMO 0.92 0.93 0.92 1231
SCN 0.96 0.96 0.96 1371
VEC 0.95 0.89 0.92 1236
SC 0.93 0.85 0.89 477
acc. 0.94 6799

w. avg 0.95 0.94 0.95 6799

Table 3: Best LR model evaluation on single validation
dialects. The last two rows report the overall model
accuracy and weighted average of each metric.

We speculate that the great performances
achieved by this method depend on the consistent
linguistic variety between the evaluated Italian di-
alects and languages, which allows for a neat sepa-
ration of the different classes in the feature space
induced by TF-IDF. Moreover, an important ad-
vantage of LR model might be, surprisingly, its
simplicity. The number of parameters learned by
the model is relatively small (∼5 million) com-
pared to other investigated models (BERT has 110
million parameters). This might prevent the model
from overfitting the training data and improve its
ability to generalize to out-domain sentences.

On the other hand, the LR approach shows
some intrinsic limitations that are difficult to over-
come, namely the impossibility of handling out-of-
vocabulary words (OOV) and the missing dialects
in the validation set, which might lead to an overfit
of the validation dialects.

5.2 CNN

The details of implemented models are provided
in Appendix A section with the table 7. By im-
plementing different sets of hyper-parameter, we
aim to find a better model architecture and train-

ing regime for classifier tasks. Several hyper-
parameters, including learning rate, dropout, kernel
sizes, batch sizes, embedding size, are taken into
consideration in our experiment.

Table 4 shows the classification results of two
CNN models over a different number of epochs.
The best performance is achieved from the CNN
model tokenized at character-level trained over 20
epochs. In general, there is no significant differ-
ence between CNN char-level and word-level im-
plementation. On the other hand, the training for
the word-level implementation is remarkably more
time-expensive compared to the same setting run-
ning on the CNN char-level. The computational
cost difference between the two approaches might
be explained by their different vocabulary size. The
vocabulary size of CNN word-level models and
CNN character-level models are shown in the table
7 and are respectively 989 and 788, 197 tokens.

The best CNN model achieves a F1-micro score
of 0.8605 on the validation data, showing a signifi-
cant performance gap compared to linear models
results mentioned in §5.1.

We identify two main reasons why Convolu-
tional Neural Network could not perform better
than other linear classifiers. Firstly, the noncompet-
itive result of CNN might be the consequences of
how text is embedded. We encode text in character-
level/word-level with different embedding sizes.
However, a single character, i.e., 1-gram, is the
only way to encode the text. Meanwhile, in lin-
ear models we encoded texts with different con-
figurations, including word levels, character levels
and characters within the boundary of word level.
Secondly, CNN might be more complicated than
classifier methods to handle our dataset. In general,
a powerful model tends to treat simple problems
with complicated architecture. This leads to the
over-fitting issue, which indicates that our model is
too complex for the problem that it is solving. Con-
sequently, the model resulting from CNN performs
poorly on the unseen data.

Encoding Epochs F1-micro
char-level 5 0.8421
char-level 10 0.8555
char-level 20 0.8605
word-level 5 0.8299
word-level 10 0.8513

Table 4: CNN models evaluation on the validation set.
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5.3 Transformers

Table 5 shows the evaluation for the 6 different
pre-trained BERT (Devlin et al., 2019) investigated.
In general, all models yield similar performances,
fluctuating from approximately 0.87 to 0.89 of F1-
micro score, while there is a significant difference
in the training time between dbmdz-xxl-cased and
the others. However, dbmdz-xxl-cased achieves the
best identification performance, with an F1-micro
score of 89.07%.

In the second phase, we perform a more de-
tailed investigation on the best-scoring model built
on dbmdz-xxl-cased. Table 8 in Appendix B
shows models evaluation with several set of hyper-
parameters. Class weights, sequence max lengths,
and freezing embeddings are investigated.

Concerning class weights, both validation
weights used in LR and proportionally-inverse
weight are investigated to reduce the class imbal-
ance issue. Yet, both weights slightly decrease
model performances. In particular, class weights
result in a score decrease of 0.43%.

Then, we observe that freezing the CLS embed-
dings for the model, i.e. training only the linear
classifier and not the stacked encoding layers dur-
ing the fine-tuning, leads to a significant decrease
in the validation score. We hypothesize that, due to
the significant difference between Italian language
and its dialects, BERT model cannot be used as
feature extractor without an additional fine-tuning.

Finally, we observe that increasing the max
length of each sentence from 50 to 70 improved
the identification score. Setting a sequence’s max-
imum length is important because it decides how
much information the model can extract. However,
an increased training cost is the direct drawback of
this approach. Table 8 shows that the training time
increased more than 35%, from 56 minutes to 76
minutes, with the same setup.

Model name F1-micro Train time
AlBERTo 0.8850 0:58:01

dbmdz-cased 0.8813 0:57:33
dbmdz-xxl-cased 0.8907 1:45:51
dbmdz-uncased 0.8784 0:57:55
mrm8488-bert 0.8829 0:57:22

multilingual-BERT 0.8711 0:57:23

Table 5: Different pre-trained BERTs evaluation.
Training times refer to a 2-epochs training on GPU, in

the same settings described in Appendix C.

The visualization of CLS embeddings (described
in §6.2) pushed us to further experiment with dif-
ferent classifiers trained on top of them. However,
none of the investigated methods (MLPs, bagging
and boosting) achieved noticeable improvements
on the default linear classifier.

Team Model Accuracy F1-micro
SUKI - 0.9053 0.9007

Phlyers - 0.6817 0.6943

ETHZ
LR 0.6718 0.6880

BERT 0.5759 0.5760
LR** 0.6952 0.7058

Table 6: Final ITDI shared leaderboard.

5.4 Shared Task Results
The final results of ITDI task are shown in Table
6. In our case, the best submission ranked 5th out
of 9 total submissions with an F1-micro score of
0.6880. This submission was produced using the
best LR model from §5.1, trained on both train-
ing and validation data together. However, this
solution could have been further improved with a
better choice of class weights. Inspired by (King
and Zeng, 2001), we defined alternative weights as
wc = τ/ȳ, where τ is the fraction of class c in the
population (here supposed uniform across all the di-
alects), and ȳ is the fraction in the training sample.
With this choice of weights, our late submission
(**, not ranked) achieved an F1-micro of 0.7058.
Predictions from the best-performing BERT model
(described in §5.3) achieved an F1-micro of 0.5760.
The submission produced with the CNN was with-
draw from the competition because of a minor bug
in the prediction shuffling. Detailed identification
scores for every class are included in Appendix D.

For all the models, a huge gap between valida-
tion and test score can be clearly observed. This
discrepancy can be mainly attributed to two dialects
that were not included in the validation set but were
evaluated in the test, namely Tarantino and Ladin.

We speculate that Ladin, in particular, caused
the greatest decay in our final score. Its low re-
call, together with the low accuracy registered for
Venetian and Lombard, points out a degenerate be-
haviour of the classifier, which seems to classify
most of Ladin samples as one of the other two di-
alects, hence lowering all the respective F1 scores.
On the other hand, Tarantino was probably intrin-
sically difficult to discriminate, as all the teams
achieved poor performances on its identification.
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6 Analysis

6.1 Error Analysis

In this section, we present a more fine-grained
analysis of the incorrect predictions for our best-
performing model, Logistic Regression.

Firstly, we investigate the most confounded di-
alects and languages on the development set. The
resulting confusion matrix is reported in Figure 4.
It is possible to observe how the greatest source
of confusion for the models is represented by two
pairs of dialect, Lombard-Venetian and Sardinian-
Sicilian. In fact, 6.5% of Venetian sentences (81
sentences) are classified as Lombard, and 7.9%
of Sardinian sentences (38 sentences) are labeled
as Sicilian. This, together with the trade-off be-
tween the performances on the exact same two
pairs of dialects (observed during the fine-tuning
of the model), corroborates the hypothesis of an
intrinsic difficulty in the discrimination between
the two pairs of dialects. We speculate that this phe-
nomenon might origin in a consistent number of
shared lexical features, mainly due to geographical
and cultural factors. Furthermore, this behaviour
is observed also for CNN and BERT models (as
shown in the confusion matrices included in Ap-
pendix E), confirming its model-agnostic nature.

Figure 4: Confusion matrix on the development set
predictions for Logistic Regression.

Finally, we leverage the simple and explainable
nature of Logistic Regression to investigate which
features contribute the most to wrong classifica-
tions (which will be referred to as confounding
features).

(a) el (b) ghe

(c) lu (d) perché

Figure 5: Distribution of some selected confounding
features across dialects, both in the training (blue) and
validation (orange) sets.

In Multinomial Logistic Regression, for each
class yk the model computes a log-odds ratio
log p/(1− p) (also known as logit(p)) of the prob-
ability p that sample X belongs to class yk as

logit yk(p) = βk,0 +
N∑
i=1

βk,iXi (1)

where X is the input vector and β is the learned
coefficients vector. Hence, the contribution ψk of
each feature Xi to the odds that the sample X is
classified as yk equals to

ψk(Xi) = eβiXi (2)

In our analysis, we extract for each wrongly classi-
fied sample all the the confounding features with
a contribution to the wrong class ψwrong > 1.2,
that is all the features that increased the odds of the
wrong class by more than 20%.

As expected, most of these features are either
Italian words (for example no, perché, non, con,
chi) or words shared between the confounded di-
alects (for example cossa, lu, me, vegnir). In partic-
ular, we further investigate the distribution of these
words in the training and validation dataset. The
result of this analysis shows a considerable discrep-
ancy in the distributions for most of the studied
features, reported for some of them in Figure 5.

We therefore speculate that the difference across
in-domain and out-domain vocabulary distribution
is one of the main issues that cause misclassifica-
tion of the model.
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6.2 Visualization

To gain additional insights on the different em-
bedding techniques used by the investigated meth-
ods, we try to visualize their respective high-
dimensional feature spaces. In particular, we
exploit two well-known dimensionality-reduction
techniques, Principal Component Analysis (Pear-
son, 1901) and t-distributed Stochastic Neighbor
Embedding (t-SNE) (van der Maaten and Hinton,
2008), to obtain 2-dimensional projections of the
validation embeddings.

Technique PCA is initially used to project the
TF-IDF embeddings to a 1000-dimensional space
(preserving 68.71% of the information). Then, t-
SNE is applied to these projection to obtain a final
two-dimensional visualization. The combination
of PCA and t-SNE obtained slightly better visual
results compared to their independent application.
In the case of CNN and BERT the PCA step is
omitted, as the original embeddings (linear layer
input for CNN and CLS token for BERT, both ex-
tracted from fine-tuned instances of the respective
best models) have already a limited number of di-
mensions 7728 and 768 respectively. The results
of these visualizations are presented in Figure 6.

Results In TF-IDF visualization, it’s possible to
identify one cluster for each dialect (with the ex-
ception of Sardinian). The clusters are not well-
separated when compared to BERT visualization,
but this might be due to the loss of information in-
troduced in the projection from an extremely high-
dimensional space (3 orders of magnitude higher
than BERT) to the 2-dimensional space.

CNN embeddings are on the other hand chaotic.
It is possible to identify some clusters in the pro-
jected space, but they are not as clear as for the
other two models.

The visualization for BERT embeddings is, on
the other hand, particularly meaningful. The clus-
ters for different dialects are clearly outlined. More-
over, it’s interesting to observe how the most con-
fused dialects from §6.1 (Lombard-Venetian and
Sardinian-Sicilian) effectively show overlapping
embeddings in the hyperspace.

7 Conclusion

This paper presented the findings of our team at
the Vardial 2022 ITDI shared tasks. The Logistic
Regression model achieved the best results, outper-
forming the other two models and ranking within

LMO
SCN
VEC
LIJ
FUR
SC
PMS

(a) TF-IDF embeddings.

LIJ
SCN
LMO
PMS
VEC
FUR
SC

(b) CNN embeddings.

LMO
SCN
VEC
LIJ
FUR
SC
PMS

(c) BERT embeddings.

Figure 6: Visualization of the feature space for the dif-
ferent embedding techniques.

the top 5 submissions. Although CNN and BERT
approaches have not yielded remarkable results,
the experiments produced valuable insights. In par-
ticular, we observed no notable difference in the
model performance of character-based and word-
based CNN, of which the vast vocabulary size is
more costly in terms of training time. On the
other hand, BERT models performed weakly in
this cross-domain language identification task, gen-
eralising less than linear models.

In the future, models’ performances could be
increased by calibrating different class weights on
a validation set comprehensive of all the dialects
and languages, and also a more extensive hyper-
parameters fine-tuning for the neural models could
be carried out. This could, eventually, increase the
cross-domain adaptability of our models.
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Appendix A CNN Model Summary

In this Appendix section, we provide a more detailed insight on the CNN model structure. Table 7 reports
the summary of both character-level and word-level networks.

Tokenization CNN Model Summary

Character
level

(embeddings): Embedding(989, 512)

(conv2d): Conv2d(1, 16, kernel_size=(3, 3), stride=(2, 1), padding=(1, 0))

(max_pool2d): MaxPool2d(kernel_size=(6, 12), stride=(2, 1), padding=(1, 0),
dilation=1, ceil_mode=False)

(conv2d_2): Conv2d(16, 16, kernel_size=(6, 6), stride=(2, 1), padding=(1, 0))

(max_pool2d_2): MaxPool2d(kernel_size=(6, 12), stride=(2, 1), padding=(1, 0),
dilation=1, ceil_mode=False)

(linear): Linear(in_features=7728, out_features=12, bias=True)

Word
level

(embeddings): Embedding(788197, 512)

(conv2d): Conv2d(1, 16, kernel_size=(3, 3), stride=(2, 1), padding=(1, 0))

(max_pool2d): MaxPool2d(kernel_size=(6, 12), stride=(2, 1), padding=(1, 0),
dilation=1, ceil_mode=False)

(conv2d_2): Conv2d(16, 16, kernel_size=(6, 6), stride=(2, 1), padding=(1, 0))

(max_pool2d_2): MaxPool2d(kernel_size=(6, 12), stride=(2, 1), padding=(1, 0),
dilation=1, ceil_mode=False)

(linear): Linear(in_features=7728, out_features=12, bias=True)

Table 7: CNN Model Summary

Appendix B Evaluation of BERT dbmdz-xxl-cased

In this Appendix section, we provide the evaluation results for the best-scoring BERT model, dbmdz-xxl-
case, with several set of hyper-parameters. Results are shown in Table 8.

Weights Embedding Max length F1-micro Training time
No weights trainable 50 0.8907 1:45:51

LogReg cross-validated weights frozen 50 0.2023 0:17:00
LogReg cross-validated weights trainable 50 0.8866 0:56:00
LogReg cross-validated weights trainable 70 0.8931 1:16:47

Inverse weights trainable 50 0.8907 0:55:59

Table 8: Experiments with dbmdz-xxl-cased BERT
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Appendix C Run-time Efficiency

In this Appendix section, we present a simple evaluation on the profiled run-time efficiency of the proposed
models. The Logistic Regression model is trained locally on CPU (with 8 concurrent workers), with an
Apple M1 @ 3.2 GHz and 16GB memory. On the other hand, the neural models (CNN and BERT) were
trained on Google Colab Nvidia K80 @ 0.82GHz and 12GB memory. The training for LR required 73s,
extremely less than to 2-epochs BERT (6351s) and 20-epochs CNN (6480s).

The inference times were elapsed from models loaded in Google Colab, with a Intel(R) Xeon(R) CPU
@ 2.20GHz and 13GB of memory. Inference on the test set (11087 samples) took 0.45s for LR, 1.37s for
CNN and 11.87s for BERT.

Appendix D Shared Task Submission Results in Detail

In this Appendix section, we report the detail test evaluation results for Logistic Regression (Table 9),
improved Logistic Regression (Table 10) and BERT (Table 11) submissions.

Dialect Precision Recall F1-micro Support
EML 0.9721 0.7176 0.8257 825
FUR 0.942 0.969 0.9553 1323
LIJ 0.9226 0.8203 0.8685 2282

LLD 0.9362 0.26 0.407 2200
LMO 0.5365 0.9608 0.6885 689
NAP 0.8758 0.7034 0.7802 2026
TAR 0.6047 0.1725 0.2684 603
VEC 0.377 0.8244 0.5174 1139

weighted average 0.8254 0.6718 0.6880 11087

Table 9: LR test results for single languages and dialects.

Dial. Prec. Rec. F1-micro Supp.
EML 0.9455 0.7782 0.8537 825
FUR 0.8945 0.9743 0.9327 1323
LIJ 0.8569 0.8554 0.8561 2282

LLD 0.9312 0.3568 0.5159 2200
LMO 0.4687 0.9681 0.6316 689
NAP 0.8364 0.7621 0.7975 2026
TAR 0.4833 0.1924 0.2752 603
VEC 0.4313 0.6260 0.5107 1139

w. avg 0.7908 0.6952 0.7058 11087

Table 10: Improved LR test results for single languages
and dialects.

Dial. Prec. Rec. F1-micro Supp.
EML 0.9489 0.7661 0.8478 825
FUR 0.9542 0.9448 0.9495 1323
LIJ 0.9081 0.7533 0.8235 2282

LLD 0.9727 0.0486 0.0926 2200
LMO 0.5833 0.9753 0.7300 689
NAP 0.8830 0.4654 0.6096 2026
TAR 0.7455 0.0680 0.1246 603
VEC 0.3176 0.8964 0.4690 1139

w. avg 0.8352 0.5759 0.576 11087

Table 11: Improved LR test results for single languages
and dialects (late submission, not ranked).
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Appendix E Confusion Matrices for CNN and BERT Models.

In this Appendix section, we include the confusion matrices for CNN and BERT predictions on the
development set (Figure 7).
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Figure 7: CNN (left) and BERT (right) confusion matrices.


