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Abstract

Videos of group interactions contain a wealth
of information beyond the information directly
communicated in a transcript of the discussion.
Tracking who has participated throughout an
extended interaction and what each of their tra-
jectories has been in relation to one another is
the foundation for joint activity understanding,
though it comes with some unique challenges
in videos of tightly coupled group work. Mo-
tivated by insights into the properties of such
scenarios, including group composition and the
properties of task-oriented, goal-directed tasks,
we present a successful proof-of-concept. In
particular, we present a transfer experiment to
a dyadic robot construction task, an ablation
study, and a qualitative analysis.

1 Introduction

The broad area of transcript understanding from
video encompasses more than the information com-
municated through discussion, especially when the
video captures small group interactions. In that
case, each action is meaningful in the context of
a broader task. From a social perspective, actions
and reactions are meaningful in relation to one an-
other. Sequences of actions of an individual within
an interaction are meaningful as an enactment of
role taking within a group activity. Building on
recent work in multi-object tracking, which is a
paradigm of interest in the computer vision com-
munity, this paper presents a proof-of-concept for
model transfer for tracking the trajectories of par-
ticipants within a small group activity. In particular,
we target tightly coupled group work, which is chal-
lenging due to the close proximity of participants,
intermittent motion, and periodic movement in and
out of view. Success tracking within such scenar-
ios is a key enabler for joint activity understanding,
which requires at the foundation tracking who has
participated throughout an extended interaction and
what each of their trajectories has been in relation

20

to one another. Our results demonstrate positive
impact of three different enhancements motivated
by consideration of the nature of tightly coupled
collaborative group activities.

In many contexts of learning and work, dyads
and small groups work together to accomplish a
goal. The ability to understand a video capturing
this type of interaction has many real world appli-
cations. For example, video recordings of such
interactions are very common forms of data for
research on group learning, communication, and
group work. Real time understanding of group
interactions has also been used to trigger support
for group behavior in order to improve outcomes.
Facilitators overseeing multiple groups can use re-
ports of this real time understanding to support
decision making regarding how they divide their
attention between groups.

In the remainder of the paper, we first offer a
review of related work both from the computer vi-
sion community and from the multi-modal learning
analytics community. Next, we present our tech-
nical approach, extending recent successes using
DeepSORT for Multiple Object Tracking (MOT).
We then present a successful experiment producing
results demonstrating improvement over a state-
of-the-art baseline, as well as an ablation study to
investigate the individual effects of each enhance-
ment and a qualitative analysis of those effects.

2 Background & Related Work

From a technical perspective, the work reported
in this paper has its roots in recent directions in
the Multi-Object Tracking (MOT) literature. How-
ever, as the intended application is within areas of
research and practice focused on supported group
work and learning, we also review work from the
field of Learning Analytics.
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Figure 1: An overview of the DeepDSORT ™ model architecture used in our experiments which extracts bounding
boxes from frames using Detectron and then use Kalman Filter and REID based assignments to match previous

tracks and create new unmatched tracks.

2.1 Multi-Object Tracking

In recent years, multi-object tracking has been a
growing paradigm of interest in the computer vi-
sion community. The task requires the ability to
detect multiple objects, mainly individual people,
and consistently maintain their identities through
the course of their trajectories given video input.
The capability to successfully monitor trajectories
grounds many high-level multimodal activities in
video understanding, such as pose estimation and
action recognition (Wang et al., 2013; Luo et al.,
2017).

With advances in object detection and the popu-
lar MOT benchmark (Dendorfer et al., 2020), many
state-of-the-art competitive tracking methods have
emerged (Zhang et al., 2021; Wojke et al., 2017;
Bewley et al., 2016). Offline models using batch-
ing strategies tend to perform well on the bench-
mark (Zhang et al., 2021). However, in domains
where the goal is to achieve live video understand-
ing, computationally efficient online tracking meth-
ods (Wojke et al., 2017; Bewley et al., 2016) that
sequentially infer trajectories in real-time are pre-
ferred.

Despite advances in multi-object tracking, state-
of-the-art models struggle with key issues, partic-
ularly in maintaining trajectory identities through
occlusions and interactions among multiple objects.
Our research in this paper shares the common goal
of tackling these key issues directly, particularly
in its exploration of group work in which com-
plex interpersonal interactions are commonplace
and are the necessary centerpiece to understanding
dynamics of the activity.
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2.2 Tracking Collaboration and Social
Processes

In the field of Learning Sciences, automatic tempo-
ral analyzes of collaborative data have become es-
sential to operationalize successful learning in stu-
dent groups. Much of learning analytics has been
focused around natural language data, particularly
automated analysis of student discussion, which
has consistently shown to be a valuable method
in assessing student learning (Rosé et al., 2008;
McLaren et al., 2007) and scaffolding engaging
collaborative interactions (Kumar et al., 2007).

However, with the understanding that collabo-
rative processes are innately multimodal, there is
acknowledgment that traditional textual discourse
may not tell the entire story. Consequently, multi-
modal learning analytics has become increasingly
popular with the examination of visual patterns
such as, in gesture, pose, and eye gaze. Recent
studies have used multimodal data to detect misun-
derstandings during collaborative tasks (Cherubini
et al., 2008), discover insights in learning processes
(Spikol et al., 2018), and provide beneficial visual
feedback to instructors in the classroom (Ahuja
et al., 2019, 2021).

More broadly, collaborative learning analysis is
one of many social processes that may benefit from
precise multi-object tracking. In museums, visitor
trajectories can provide curators with insights into
improving interaction with content (Mezzini et al.,
2020), and body tracking has been used to create
immersive digital story telling exhibits (Genc and
Hakkild, 2021). Multi-object tracking is also ap-
plied in virtual reality (Uchiyama and Marchand,
2012), and provides information to create simu-
lations for professional development, such as vir-
tual reality for educators in the classroom (Ahuja
et al., 2021). Our aim is to contribute to the abil-



ity to identify and maintain trajectories throughout
videos, which provides an essential backbone and
grounding for these detections in multimodal learn-
ing analytics.

3 Method

To perform tracking on videos in small group in-
teraction, we explore the widely used online Deep-
SORT algorithm developed for Multiple-Object
Tracking (MOT) benchmark. We extend the Deep-
SORT algorithm to improve transfer of the model
from the task on which it was trained, namely track-
ing pedestrians walking on streets, to our group
work setting. We begin with an explanation of the
well-known DeepSORT algorithm and then discuss
the extensions we have added.

3.1 DeepSORT

A tracking model must be able to detect bound-
ing boxes, detect objects to track and continue to
identify them for as long as they are in view, thus
managing the lifespan of tracked objects. Deep-
SORT uses F-RCNN (Ren et al., 2015) or YOLO
(Redmon and Farhadi, 2018), to detect bounding
boxes on tracked objects. Building on SORT, Deep-
SORT also uses the Kalman filtering framework
for track handling. Deviating from SORT, it uses
CNN based appearance features for tracking as
well, hence the prefix “"Deep”.

The algorithm considers two means for assign-
ing tracks with bounding box detection, namely,
one considering motion and the other considering
appearance, captured in two different metrics, as
shown in Figure 1.

Kalman Filter - Tracking is based on an 8-
dimensional state space (u, v, r, h, 4, 0, 7, B)
that includes the center of the bounding box (u, v),
the aspect ratio r and height h and their respec-
tive velocities in the image coordinates. A standard
Kalman filter with constant velocity motion and lin-
ear observation models is used, where the bounding
box (u, v, r, h) is considered a direct observation
of the object state. It uses squared Mahalanobis
distances between the predicted Kalman states and
the newly arrived measurements.

dm(zaj) = (d] - yl)TS;l(dJ - yl)

where the i-th track distribution is projected into the
measurement space as (y;, S;) and d;, which is the
j-th bounding box detection for the current frame.
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We use a high threshold of 0.95 for this distance in
order to filter out unassociated detections.

REID - When the motion uncertainty across
frames is high, the Mahalanobis distance is not
a suitable metric. Also, during occlusions it is very
difficult to apply Kalman filter based approaches
for continuous frame tracking. Hence, appearance
based features using person REID (reidentification)
models becomes essential in those scenarios. For
this, we compute appearance feature for each of the
bounding boxes detected using a CNN-based REID
and extract an appearance feature X for each track
1, which is a function of the current appearance
feature of the track x; and previous X;. We have
used a simple CNN-based REID model to study the
effectiveness of the algorithm in zero-shot transfer
in our proof-of-concept experiment.

z; = REID(bounding_box(7))
X' = flzs, X7

Next, the smallest cosine distance is applied be-
tween the previously computed F* for the i-th track
and the j-th detection feature r; for the frame in
consideration, in appearance space, with an admis-
sible threshold, which we keep as 0.2.

do(i,§) = min(1 — X'r;)

For the initial few frames, we use Kalman filter
based assignment to confirm the initial set of tracks,
and then after that we try matching with the ap-
pearance based features, because they are usually
consistent across frames. For later frames, only
when the appearance based features aren’t able to
match confirmed tracks with the bounding boxes or
there are bounding boxes that are left undetected,
we use Kalman Filter based assignment for match-
ing. The metrics are complementary to each other,
where the Kalman metric is usually used to recover
from short-term motion-based assignments that are
missed by appearance metrics, whereas the appear-
ance metric helps to recover detection of objects
having been lost from view from long-term occlu-
sion.

3.2 Additions to DeepSORT

To the original DeepSORT algorithm, we intro-
duce a set of enhancements to improve tracking in
our target group work settings. We call the model
with these changes DeepSORT'. We explore a
modification to DeepSORT to replace YOLO with



Detectron. We refer to the revised DeepSORT with
Detectron as DeepDSORT, and the version with
our enhancements DeepDSORT . Our proposed
algorithm extensions are motivated from insights
into tightly coupled group work, in particular, that
the extended interaction involves a persistent set
of participants who may move in and out of view
but otherwise remain stable. Motion within view is
related to the group work and thus purposeful. As
such, it can be expected that changes in position
across frames will be consistent over stretches of
time. In summary, our enhancements include no
longer deleting tracks with a maximum age, putting
a limit on the number of tracks to be created, and
introducing a smoothed version of the appearance
feature. Our model with enhancements is shown in
Figure 1.

3.2.1 No Max Age

DeepSORT uses a max age to maintain the life span
of a track. It deletes tracks that have not been de-
tected for a certain number of frames. Since Deep-
SORT was used for the MOT benchmark, which
was used to track pedestrians from surveillance
camera videos, it proved to be effective in that con-
text where the total number of objects to track is
unbounded, but if a track is not viewed for an ex-
tended time, they are unlikely to return. In our set-
ting, the number of participants who are important
to track is only the direct participants in the group
work, and thus bounded. However, unlike pedestri-
ans moving through an area, they may leave for an
extended time, but will nevertheless likely return to
the work. In this case, allowing for an unbounded
number of tracks is superfluous, and as participants
move in and out of view, their movement creates
opportunities for false positive detection of new
tracks. However, solving the problem by imposing
a max age is counter-productive since the likeli-
hood is high that tracks will return even if they
have left for some time. Thus, we remove the max
age constraint.

3.2.2 Number of tracks

Complementary to removing the max age con-
straint, we also take advantage of the bounded num-
ber of participants in the group work. There may
be other people in view, in the background, moving
through the space. Bounding the number of tracks
reduces the propensity to lose track of a main par-
ticipant and instead begin tracking someone in the
background.
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3.2.3 Smoothing appearance feature

In DeepSORT, current frame detections are com-
pared with all previous frame features of tracks to
find the closest track. Treating each frame sepa-
rately introduces the possibility that two different
tracks will appear similar. We mitigate this risk
by using a smoothed global appearance feature £
for each track ¢ considering the current frame track
feature f;, given by the following formula.

Fr=axfi+(1—a)*F'

Reducing the set of observations of a track to a
single smoothed version reduces the danger of a
pair of frames from different tracks inadvertently
appearing similar. For our experiments, we set o
as 0.1, weighing heavily towards past observations
and changing the representation only slowly over
time.

3.2.4 Detectron

To identify bounding boxes, F-RCNN or YOLO
based models have been shown to be very effective,
which are also used in DeepSORT. Detectron (Wu
et al., 2019) is an object detection model that is
able to detect more concise human-based bounding
boxes but with higher accuracy which is essen-
tial in our cases because the appearance features
might confuse with the other people or objects if
the bounding box is not very accurate in person
position. We call this model DeepDSORT ™.

4 Experiments

4.1 Dataset

In order to evaluate our multimodal approach in
small group activities and social processes, we col-
lected and annotated an exploratory video corpus
from a summer course conducted at Carnegie Mel-
lon University. During the course, groups of 2-3
students participated in a robotic arm instruction
task. The activity occurred over two collabora-
tive sessions, each lasting around several hours: a
robotic construction session in which students built
their mechatronic arms and a robotic arm learning
activity session in which students operated their
robot. Each group collected video and audio data
during each session using a Kodak Orbit 360 4K
VR Camera with its 197° 4K Ultra Wide View
Front Lens. Students were instructed to place each
camera on a small tripod at the end of their table to
capture every member of the group and the robotic
arm.



Dataset MOTA1 MOTP{ IDFI{ MT{ ML} IDsw| FP| FN|
DeepSORT Group 1 24.6 62.1 43.1 182 9.1 77 2229 2795
DeepSORT Group 2 5.2 56.4 38.7 25 25 24 2274 2718
DeepSORT Combined 154 59.7 41 216 171 101 4503 5513
DeepSORT™ Group 1 31.2 62.8 52.7 182 182 22 1135 2613
DeepSORT™ Group 2 6.3 56.5 46.1 25 25 16 1813 2463
DeepSORT™ Combined 18.8 59.6 494 21.6 21.6 19 1474 2538
DeepDSORT™  Group 1 78.1 89.9 85.9 636 9.1 36 165 1033
DeepDSORT™  Group 2 93.1 90.3 96.5 100 0 20 92 204
DeepDSORT™ Total 85.6 90.1 91.2 81.8 4.6 56 257 1237

Table 1: Combined results on our videos for DeepSORT, DeepSORT ' and DeepDSORT*

models. The arrow

indicates whether higher value indicates a good (1) or a bad ({) result.

MOTA{ MOTP{ IDF1{ MT{t ML| IDsw] FP| FNJ|
DeepDSORT* 85.6 90.1 91.2 81.8 46 56 257 1237
DeepDSORT* — smooth 84.3 90.1 84.5 81.8 0 71 795 1824
DeepDSORT ' — #tracks 83.6 90 85.6 77.3 0 78 957 1581
DeepDSORT™ + max age 83.6 90.1 73.9 21.1 749 15 1842 2636

Table 2: Different ablations for our DeepDSORT ™ model on both groups of videos by removing each component
that we introduce specifically for tracking group social processes.

These videos help study tracking in confined
spaces with limited number of people in social
processes. The videos feature many interactions
between students and the robotic arm, as well as
movement in different locations. Other complex
scenarios include occasional off-camera movement,
irrelevant background activity from other groups,
and intermittent occlusions of students. More-
over, by using a video corpus collected via a small
portable camera, social processes such as these may
be collected and given support in real-time. Con-
sequently, this corpus provides key scenarios that
are essential to be able to track people consistently
across frames for downstream automatic analysis
of individual and group traits and outcomes.

We conduct our experiments across 2 student
groups. We divided each video session into short
8 minute sections and extract about 500 frames
with 1 fps for tracking annotation from every sec-
tion. Each video has a gold standard tracking an-
notation created by extracting person class-based
bounding boxes for each frame using F-RCNN and
labeling each box with person IDs. In sum, we
experimented with 4 8-minute videos from each
group (8 videos in total), which comprises of 4148
annotated frames with a maximum of 3 students
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in a particular frame. People in the background
of the frames uninvolved in the activity are not
annotated because they are not part of the group
collaboration.

4.2 Metrics

We evaluate our videos on metrics that have been
commonly used for MOT benchmark, particularly
we focus on the following values:

MOTA: Combines three error sources: false
positives, missed targets and identity switches
MOTP: Misalignment between the predicted and
ground-truth bounding boxes

IDF1: Ratio of correctly identified detections
over the average of computed and ground-truth
detections

MT: Mostly tracked targets that are tracked atleast
80% of their life span

ML: Mostly lost targets that are tracked atmost
20% of their life span

IDsw: Total no of identity switches

FP: Total no of false positives

FN: Total no of false negatives / missed targets

We highlight these metrics because they are cru-



cial for further downstream applications concern-
ing individual and group activity in social pro-
cesses. That is, if models do not perform well
on these metrics, they cannot perform an essential
goal in multi-modal video understanding: identify-
ing key roles and salient interactions during social
processes. It is most important for models in this
domain to accurately identify tracks and consis-
tently maintain tracks without error. Additionally,
we are most concerned with a model’s ability to
never lose or miss tracks in an activity, highlighting
an emphasis on reducing false positives.

4.3 Experiments and Ablation

For both Group 1 and Group 2, we conduct the fol-
lowing experiments across variations of the Deep-
SORT model as described in 3:

* DeepSORT : original DeepSORT model as
implemented by (Bewley et al., 2016) which
uses YOLO to identify bounding boxes !

* DeepSORT " : modified DeepSORT with
YOLO and all additions mentioned in 3.2

* DeepDSORT ™" : modified DeepSORT with
Detectron 2 and all additions mentioned in 3.2

We also perform an ablation over the modified
DeepDSORT ™ model through the removal of mod-
ified individual components:

* DeepDSORT ™" — smooth : modified Detec-
tron DeepSORT without smoothing appear-
ance feature

* DeepDSORT ™ — # tracks : modified Detec-
tron DeepSORT without restriction of number
of tracks

* DeepDSORT " + max age : modified Detec-
tron DeepSORT with max age for tracking

For our experiments, we run the model over track-
ing for all the frames of the original video at 30
fps but the model is evaluated only on the gold-
standard annotated frames extracted at 1 fps. We
used 1 NVIDIA GTX 1080 GPU to run tracking
over each video. Each frame takes a processing
time of 0.18 s yielding a total of 5 fps. Running
this online, in real time, would process 5 frames
per second which is quite efficient for a tracking

"https://github.com/mikel-
brostrom/Yolov3_DeepSort_Pytorch
Zhttps://github.com/facebookresearch/detectron2
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algorithm. This is another reason for choosing
DeepSORT as the baseline because it is an ON-
LINE algorithm which is suitable for our purposes.
For the CNN based Person REID model, we pre-
train the model on the market1501 (Zheng et al.,
2015) dataset, which is also used in the original
DeepSORT implementation.

5 Results

Table 1 shows the results of tracking over two sets
of videos collected for two different groups, across
DeepSORT, DeepSORT+ and DeepDSORT ™ mod-
els. We can see that introducing the required com-
ponents discussed in Section 3.2, to just the Deep-
SORT model, leads to a decrease in false posi-
tives and false negatives in DeepSORT . Further,
we see improvements in almost all the metrics in
DeepDSORT™ showing that Detectron, in general,
is a better model than YOLO, and our additional
extensions lead to further improvement. Better
bounding boxes implies better appearance features
that make the appearance REID model less con-
fused, leading to a drop in false positives and false
negatives, thereby increasing IDF1. MOTA and
MOTP metric also improve because the detected
bounding boxes are closer to the ground-truth ones.
We see that for Group?2 videos the performance im-
provement is larger due to the Detectron model de-
tecting people in the videos more accurately. There
are more ID switches in the DeepDSORT ' model
than in DeepSORT™, but significantly less than in
DeepSORT. These ID switches account for a count
of the frames in which the IDs are switched. The
increased performance of DeepDSORT™ implies
that in the face of ID switches, it is able to recover.

6 Analysis

We perform ablation of our model to assess the
impact of each of our extensions. Table 2 shows
the results of removing each component. Figure 2
shows examples of qualitative errors introduced by
removing each component compared to the com-
plete model.

Smooth vs Non Smooth: For the smoothing abla-
tion, instead of adding the new appearance feature
as discussed in 3.2, we average all appearance fea-
tures so that each frame feature receives equal im-
portance such that smoothing is not applied. With-
out smoothing, abrupt changes in appearance or
slight movement will likely change inference more
drastically. We expect that without smoothing, the



(a) Tracking results when smoothing is not done and the features are averaged out for all the past frames, showing that it gives
rise to false positives and ID switches. The upper results are DeepDSORT™ results without smoothing and the lower ones are
DeepDSORT™ results.

(b) Tracking results when there is no cap on the number of tracks, showing that it gives rise to new tracks getting created when
there is a slight mismatch in features (like when the person is in motion). The upper results are DeepDSORT™ results without
limit on number of tracks and the lower ones are DeepDSORT™ results.

(c) Tracking results when maximum age is included as 100 frames, showing that when bounding box detections are missed
in between frames or people move in and out of the frame, new IDs are created, (cyan to yellow). The upper results are
DeepDSORT™ results with maximum age and the lower ones are DeepDSORT ™ results.

Figure 2: Qualitative ablation results showing the removal of each component as discussed in Table 2, by removing
smoothing in a), removing cap on number of tracks in b) and adding maximum age of tracks in c). Colors around
bounding box indicate the track associated with the person, where a change in the color indicates an error made by
the model.
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model is more likely to confuse IDs when there is
motion. Quantitatively, Table 2 supports this find-
ing by revealing smoothing decreases ID switches
and false positives.

In qualitative analysis of the smoothing abla-
tion, we find errors that align with these expec-
tations. Note in Figure 2a, the track in the pur-
ple bounding box is incorrectly switched when
the individual leans forward in the non-smoothing
model. However, with smoothing, the model cor-
rectly maintains their track. From this ablation, we
conclude that smoothing helps decrease noise in
abrupt changes of appearance in cases of obstruc-
tion and motion.

Limited vs Unlimited Number of Tracks: We
also examine the ablation that removed the limit of
the number of tracks that can be created. By limit-
ing the maximum number of tracks to the number
of participants within the activity, we hypothesized
that the model would maintain tracks more con-
sistently with less likelihood of creating irrelevant
tracks during motion. The results in Table 2 sup-
port this hypothesis, as allowing the model to infer
an unlimited number of tracks increased the rate of
false positives.

This can be seen qualitatively in Figure 2b. Due
to motion by the individual in the cyan bounding
box, the ablation model mistakes motion for a new
person and incorrectly creates a new yellow bound-
ing box track around the individual. When tracks
are limited, the model does not have the ability
to create a new track and correctly maintains the
identity of the moving individual.

No Max Age vs Max Age: In the maximum age
ablation, we limit the maximum age of tracks to
100 frames. Originally, this threshold was used to
remove unnecessary tracks that leave and never
return in frame, commonly experienced in the
benchmark MOT dataset. In collaborative social
processes, the maximum age assumption was no
longer appropriate. We noted that often individuals
returned to the field of view after being occluded
or out of frame for long periods of time, or they
remain undetected by the model. By removing the
max age threshold, we suspected the model would
correctly maintain relevant tracks rather than dis-
carding them.

This is quantitatively supported by the large in-
crease in false positives and the decrease in IDF1
when a maximum age threshold of 100 frames was
introduced. This can also be observed in Figure 2c,
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as the cyan bounding box individual is incorrectly
discarded after leaving the frame and labeled as a
new yellow bounding box individual when return-
ing. This identity is correctly maintained without
the maximum age threshold.

We note that keeping a higher maximum age
threshold above 100 frames may also be a solution
to this issue. However, it is impossible to define
a generalizable amount of time for which people
within a given activity will be out of frame. Hence,
we conclude removing the maximum age threshold
so that relevant tracks are never removed is the best
approach for this modification.

7 Limitation

This paper targets tightly coupled group work,
which is a closed setting with a fixed finite number
of participants. If this assumption were required
to be lifted, then people in the background might
introduce the potential for false positives. A direc-
tion that would be valuable to explore in that case
would be taking depth-perception into account in
order to properly distinguish those engaged in the
task from people in the background. As people
move, their appearance changes, which introduces
challenges for the matching process. One possible
direction would be to tune the REID model over
the first few frames when a new track appears. In
order to further extend capabilities to participants
who are easily confused, for example because of
wearing similar clothing, more sophisticated REID
models might be used that treat different body parts
of individuals separately.

8 Conclusion

This paper presents a successful proof of concept
for the transfer of models trained to track pedes-
trians to a scenario that features tightly coupled
group work. With a small change to the original
DeepSORT algorithm, using Detectron instead of
YOLO, we are already able to achieve substantial
improvement. Additional extensions motivated by
the characteristics of tightly coupled group work
add further improvement. In future work we play
to explore more sophisticated REID models for this
purpose. While this study lays the foundation for
joint activity understanding, much is left to be done
to explore aspects other than participant trajecto-
ries, such as the interplay of participant emotions
and joint eye gaze.
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